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Abstract

The action of dopamine on the aggregation of the unstructured alpha-synuclein (a-syn) protein may be linked to the
pathogenesis of Parkinson’s disease. Dopamine and its oxidation derivatives may inhibit a-syn aggregation by non-covalent
binding. Exploiting this fact, we applied an integrated computational and experimental approach to find alternative ligands
that might modulate the fibrillization of a-syn. Ligands structurally and electrostatically similar to dopamine were screened
from an established library. Five analogs were selected for in vitro experimentation from the similarity ranked list of analogs.
Molecular dynamics simulations showed they were, like dopamine, binding non-covalently to a-syn and, although much
weaker than dopamine, they shared some of its binding properties. In vitro fibrillization assays were performed on these five
dopamine analogs. Consistent with our predictions, analyses by atomic force and transmission electron microscopy
revealed that all of the selected ligands affected the aggregation process, albeit to a varying and lesser extent than
dopamine, used as the control ligand. The in silico/in vitro approach presented here emerges as a possible strategy for
identifying ligands interfering with such a complex process as the fibrillization of an unstructured protein.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative movement

disorder, affecting an estimated four million people worldwide

[1,2]. It is characterized by the loss of the neuromelanin expressing

dopamine (DOP) neurons in the substantia nigra pars compacta and the

deposition of Lewy bodies in many of the cells remaining in this

region [3,4,5,6,7,8,9]. The major components of the Lewy bodies

are fibrillar aggregates of the alpha-synuclein protein (a-syn)

[6,10,11]. Thus, a-syn fibrillization and DOP metabolism are likely

to be linked to PD pathogenesis [11,12,13,14,15,16,17,18,19,20,21].

DOP and some derivatives (Figure 1), which may be present in

oxidizing conditions, form non-covalent and/or covalent adducts

with a-syn [21,22]. These molecules inhibit the conversion of a-syn

to mature fibrils, promoting instead, accumulation of oligomeric (or

protofibril) forms [23,24,25,26,27].

Recently, molecular dynamics (MD) simulations based on a-

syn’s nuclear magnetic resonance (NMR) structural ensemble [28]

in combination with biophysical methods, led some of us to

propose a structural basis for DOP non-covalent inhibition of a-

syn fibrillization [29]. This may be caused, at least in part, by 1)

the formation of nonspecific hydrophobic contacts between DOP

and its oxidation derivatives with the C-terminal; this includes the
125YEMPS129 region, as in agreement with experimental evidence

[23,28] and 2) long-range electrostatic interactions with residues in

the NAC region which are involved in the fibrillization process

[29].

Molecules structurally and electrostatically similar to a given

ligand might provide similar structure/activity relationships [30].

We screened ligands structurally and electrostatically similar to

DOP (Figure 2) from the ligand.info meta-database [31]. The ability

of these ligands to bind to a-syn was then explored by MD

simulations. The ligands bound weaker to the protein than DOP.

Consistently, high-resolution atomic force microscopy (AFM) and

transmission electron microscopy (TEM) data showed that the

ligands affected a-syn fibril assembly, but to a lower extent than

DOP. Remarkably, the best analogs revealed the most inhibitory

effects upon protein aggregation in terms of fibril length and

quantity.

Results

Dopamine Mimics: Identification and Binding to a-Syn
We screened seventy molecules of the ligand.info database [31]

with the largest similarity with DOP and its oxidation derivatives

(Table S1). The similarity was quantified according to the

Tanimoto’s equations [32]. The ligands were docked onto the

six structural representatives of human a-syn in aqueous solution.
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The procedure was identical to that of previously reported [29],

except that a refined set of structures of a-syn were used (see

Material and Methods). The resulting complexes were ranked in

terms of the number of contacts with the 125YEMPS129 region

known-to-be targeted by DOP [24,26,29]. Such ranking was used

only as a means to fast screen the ligands, and not to provide

structural predictions. In fact, there are severe limitations of this

procedure for an unstructured protein, as discussed by Slutzki et al

[33] Five commercially available ligands chosen randomly from

Table S1 and forming top ranking adducts (Figure 2), underwent

36 ns MD simulations in water solution (Table S2). The same

procedure was used for DOP and its derivatives (Figure 1).

DOP and its oxidation derivatives bound for 69% or more of

their time to a-syn (the criteria used to identify bound complexes

are described in Materials and Methods) and bound preferentially

to the target 125YEMPS129 region, similarly to previous MD

simulations [29]. As found previously [29], they did not form

specific interactions with the target region (Table S2). Moreover,

they interacted with one or both negative residues (E83 and E61)

of the NAC region (Table 1), a region known to be involved in the

fibrillization of the protein. DOP-E83 interaction might play a role

in the observed inhibition of fibrillization by DOP, as suggested

experimentally [29].

Three of the screened ligands (6-aminoindole, 5-hydroxyindole,

2-amino-4-tert-butylphenol) interacted significantly with a-syn (and

in particular with the 125YEMPS129 region), although to a lesser

extent than most dopamine derivatives (Table 1). In addition, they

formed much weaker stabilizing electrostatic interactions with E61

and/or E83 (Table 1).

We have also studied several binding regions of ligands other

than the target region. The results are provided in Table S3,

where the contacts are listed for those adducts in which the ligands

bind to regions other than the target region for more than 50% of

their time.

The other two ligands, tyramine and 4-(2-aminoethylaniline),

bound much less to a-syn (albeit still interacting with the
125YEMPS129 region), with almost no stabilizing interactions with

the two residues (E61 and E83) of NAC region.

As in the case of DOP, all the ligands did not form specific

interactions with any residues in the 125YEMPS129 region (Table S2).

Based on these results, we propose that: (i) the DOP mimics may

interfere with the fibrillization of a-syn, although to a lesser extent

than DOP and (ii) the ligands, that show the strongest binding to

a-syn, i.e 6-aminoindole, and 5-hydroxyindole, and 2-amino-4-

tert-butylphenol may have the strongest effect on the fibrillization

of a-syn. We next proceeded to perform in vitro assays to test these

two predictions.

In Vitro Fibrillization Assays
Human a-syn was produced and purified as described previously

[34], with some modifications. Protein analysis by SDS-PAGE

resulted in a single band showing a molecular weight (MW) of

<14 KDa. The exact MW, as determined by mass spectrometry,

Figure 2. Chemical structures of the five DOP analogs chosen
for the in silico/in vitro analysis.
doi:10.1371/journal.pone.0009234.g002

Figure 1. Dopamine and the oxidation derivatives known to
interact with a-syn. (A) Protonated Dopamine (DOP-H), (B) Dopamine
(DOP), (C) Dopamine-o-quinone (DQ), (D) Dopaminochrome (DCH), (E)
5,6-Dihydroxyindole (DHI), (F) Indol-5,6-quinone (IQ).
doi:10.1371/journal.pone.0009234.g001

Table 1. a-syn binding of ligands in figures 1, 2 in
aqueous solution observed in MD simulations. DOP
and its oxidation derivatives abbreviations are explained in
detail in figure 1. Column titles from left to right: (i) ligand
name (ii) percentage of time in which the ligands are bound
to a-syn and (iii) to the 125YEMPS129 ‘target’ region, (iv-v)
stabilizing electrostatic interaction energies between the
ligands and E83 and E61, two negatively charged residues of
the NAC region. Energy values of the force field are very
approximate1 and do not take into account the screening of
the solvent. They should be taken here only for qualitative
comparisons. Here they are normalized with respect to the
most negative interaction energy between the neutral ligands
and the two negative residues (-2.8 kcal/mol, relative to the
interaction between IQ and E83). The DOPH/E61 energy turns
out to be very large in absolute value because the ligand is
charged, in contrast to all the others.

Ligand
%
protein

%
target

Point Charge
Model Av 6

Std (E83)

Point Charge
Model Av 6

Std (E61)

DOPH 70 32 0.0 214.9

DOP 69 46 0.0 20.7

DQ 49 28 20.3 20.3

DCH 72 32 20.8 20.5

DHI 91 16 0.0 0.0

IQ 62 32 21.0 20.3

6-aminoindole 68 23 0.0 0.0

Tyramine 48 19 0.0 0.1

4-(2-aminoethyl)
aniline

39 9 0.0 -0.2

5-hydroxyindole 70 23 -0.9 0.0

2-amino-4-tert-
butylphenol

62 19 0.0 0.0

1L. Guidoni, V. Torre and P. Carloni, FEBS Letters 477 (2000) 37-42.
doi:10.1371/journal.pone.0009234.t001
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was 14459.4060.43 Da, and far-UV circular dichroism (CD)

measurements revealed a randomly coiled secondary structure.

Human a-syn was then used in the amyloid fibrillization

experiments in the presence and absence of the test ligands. For

each assay run, a concentration of 100 mM of a-syn was used for

the synthesis of the fibrils. All ligands were added together with the

a-syn in an equimolar concentration at the start of the assay run.

Due to its known inhibitory effect on a-synuclein fibrilization,

dopamine was used as the control ligand [26]. Fibril formation was

achieved using a continuous in vitro fibrillization assay, with

amyloid fibril formation monitored by the dye, thioflavin T (ThT).

Each assay was always run in triplicate. The assays ran for

100 hours, continuously, under a controlled temperature of 37uC.

At the end of the assay, each sample revealed a kinetic curve

suggestive of amyloid fibril formation [35,36,37] comprising of a

lag phase, an exponential growth phase and an end plateau

(Figure 3A), which is typical of a nucleated polymerization type

process [38]. Moreover, there appeared to be no observable

significant differences in the average lag phase time between all

ligands (including dopamine) and a-syn alone (Figure 3B).

For all in vitro assays, the ligands and the control ligand DOP

were dissolved in a concentration of 0.1% dimethylsulfoxide

(DMSO). This concentration had been determined empirically by

a series of preliminary experiments set out to elucidate the

concentration where DMSO had no effect, upon both the lag

phase and the assembly of fibrils (see Figure S1, S2 and S3).

The continuous presence of ThT in the assay was assessed by

AFM, to determine whether this could have an effect upon the

aggregation of the protein and/or the binding of a ligand to the a-

syn. As DOP has previously been shown by AFM to inhibit the

aggregation of a-syn [26], the reaction of DOP with a-syn protein

in equimolar concentration in the assay, was assessed by AFM,

both in the presence and absence of the ThT dye. Neither the

presence nor the absence of ThT appeared to have any effect on

the inhibitory effect of DOP on the aggregation of a-syn (Figure 4).

AFM and TEM Analysis of the Ligands on the
Aggregation of a-Syn

Samples were analyzed by both AFM and TEM. In order to

detect any distinctive effect upon the assembly of the fibrils, we

developed a detailed classification of the fibrillar structures that had

been formed. Based on AFM analysis, fibrillar structures were

classified as follows: mature fibrils (.0.75 mm in length), interme-

diate fibrils (0.5–0.75 mm), short fibrils/fragments (or protofibrils)

(,0.5 mm). Qualitatively, AFM analysis revealed some differences

in terms of a-syn fibril assembly in the presence of the ligands

(Figure 5A–G).

The a-syn fibrils in the absence of any of the ligands consistently

revealed predominantly ‘mature’ fibrils (<.0.75 mm in length) with

an average width of <9.2 nm 62.2 nm on TEM micrographs (107

fibrils) (Figure 4A and D, Figure 5H and Figure 6A and B, and Figure

S2 and Figure S3), in agreement with previous reports [39,40,41].

Moreover, they frequently appeared in clusters (Figure 4A and D,

Figure 6A and B, Figure S2 and Figure S3). In addition, round

spherical structures (possibly oligomers) were observed (Figure 5H

and Figure S2, Figure S3).

In the presence of the test ligands, in an equimolar concen-

tration with a-syn, the following observations were made. Overall,

whilst all ligands showed no complete inhibition on the assembly of

a-syn fibrils (Figure 5) compared to the control ligand DOP

(Figure 4), differences did appear in both fibril size and distribution

of particle aggregates (Figure 5A–G) when compared to a-syn alone

(Figure 4A and D, Figure 5H, Figure S2), which consistently

revealed mostly mature fibrils. DOP revealed no fibrils, and only

spherical structures (Figure 4B, C, E and F), whereas 5-hydro-

xyindole and 6-aminoindole revealed predominantly fibrils of an

intermediate and short size (Figure 5A, B, D, E). Tyramine and 2-

amino-4-tert-butylphenol revealed a mixture of both mature and

intermediate fibrils (Figure 5F and G), whereas 4-(2-aminoethylani-

line) revealed a mixture of all fibril sizes (Figure 5C). The ligand 6-

aminoindole appeared overall to show the greatest effect on the

assembly of a-syn fibrils. As MD simulations predicted that this

ligand and 5-hydroxyindole should have the strongest binding to a-

syn (Table 1), these two ligands were chosen for a more detailed

analysis by higher resolution with TEM.

By TEM, a-syn fibrils alone were generally observed in clusters

and longer than 0.75 mm in length (Figure 6A–B). In comparison,

6-aminoindole revealed individual structures, orientated in a

fibrillar form (Figure 6E–H), which at high magnification

suggested that these ‘fibrils’ could still be at an early/intermediate

stage of the fibrillization process. The ligand 5-hydroxyindole in

comparison showed clusters of a-syn fibrils, albeit shorter than a-

syn fibrils in the absence of this ligand (Figure 6C–D and

Figure 6A–B, respectively).

Figure 3. The kinetics of a-syn fibrillization with the DOP
analogs in comparison to a-syn alone. (A) Kinetics curves of a-syn
fibrillization in the presence of the test ligands. The fibrillization buffer
(i.e, no protein) was assayed in the absence of both a-syn and the test
ligands. All curves represent the mean kinetics output from at least 3
measurements. (B) Bar chart statistics displays no significant difference
between the lag phases.
doi:10.1371/journal.pone.0009234.g003

Modulated Alpha-Syn Aggregates

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e9234



Figure 4. AFM analysis of a-syn aggregation in the presence or absence of both ThT and DOP. AFM height images were acquired from
assay end products, which had been deposited onto freshly cleaved mica surfaces after 100 hours of incubation. The presence or absence of ThT
revealed no observable effect upon either the formation or morphology of a-syn fibrils when assay was run with a syn alone, (A) +ThT, (D)–ThT. The
inhibitory effect of DOP on the a syn fibrillization was clearly observed when the assay was run in the presence of DOP. (B, C, E, F). Moreover, the
presence (B, C) or absence (E, F) of ThT did not show any effect upon the inhibitory action of DOP on a-syn fibrillization.
doi:10.1371/journal.pone.0009234.g004

Figure 5. AFM analysis of a-syn aggregation in presence of test ligands as DOP analogs and alone. AFM height images were acquired
from assay end products, which had been deposited onto freshly cleaved mica surfaces after 100 hours of incubation. All images are displayed using
the same color scale as shown on the right hand side. (A–B) 5-hydroxyindole; (C) 4-(2-aminoethyl)aniline; (D-E) 6-aminoindole; (F) 2-amino-4-tert-
butylphenol; (G) tyramine; (H) a-syn only.
doi:10.1371/journal.pone.0009234.g005

Modulated Alpha-Syn Aggregates
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Discussion

The loss of dopaminergic neurons in the substantia nigra and the

presence of a-syn containing Lewy bodies are the classical diagnostic

markers of PD. DOP has been shown to inhibit a-syn aggregation by

binding to the a-syn protein [21,22,23,24,25,26,27,29]. Thus, DOP

mimics might have some effect on the aggregation of the protein.

We analyzed this issue using a combined in silico and in vitro

approach. Ligand screening and molecular docking allowed us to

identify the five commercially available ligands used in this study,

which are structurally and electrostatically similar to DOP

(Figure 2). Thus, we predicted that these ligands might have a

weaker inhibitory effect on fibrillization than DOP.

To test our predictions, we developed a continuous in vitro

fibrillization assay. We observed the kinetics of the fibrillization

process and analyzed the reaction end products by AFM to obtain

spatially resolved information of their morphology. AFM revealed

that the ligands caused some inhibitory effect, albeit weaker than

that of DOP (Figure 5 and Figure 4 respectively). Moreover, it was

clearly apparent that the fibrillar structures varied in terms of their

length and in the population distribution of the structures for each

test ligand (Figure 5), although the kinetic data were typical of an

occurring nucleation/polymerization mechanism (Figure 3A).

Likewise, the kinetics curves for each ligand did vary in terms of

exponential growth time and plateau phases (Figure 3A). The

ligand 6-aminoindole revealed the strongest inhibitory effect upon

fibril formation, which was consistent with the fact that it binds

most strongly (along with 5-hydroxindole) to the 125YEMPS129

‘target’ region (Table 1). In comparison, 4-(2-aminoethyalinine)

showed the weakest effect (Figure 5), consistent with our MD data

(Table 1).

Whilst all the ligands used in our study share the same chemical

scaffolding, we noticed (as revealed by both the kinetic output

curve and AFM analysis) the strength of DOP in inhibiting a-syn

fibril formation in comparison to the tested ligands, especially

tyramine (Figure 3); which was consistent with our modeling

(Table 1). Tyramine differs from DOP only by a hydrogen in place

of a hydroxyl group. The removal of the polar OH function is

associated with a loss of electrostatic interactions with the two

negatively charged groups of the NAC region. We thus propose

that the dihydroxyphenyl group (or 1,2 benzoquinone as in some

dopamine derivatives, like dopaminochrome) may play an

important role for binding to a-syn, possibly through long-range

electrostatic interactions. Moreover, based on these considerations,

we suggest that ligands with dihydroxyphenyl (or 1,2 benzoqui-

none) groups could be selected for further non-covalent binding

assays.

Indoles are compounds that are known to interact with metal

ions, which themselves are known to increase in PD brains [42].

Furthermore, metal ions are known to bind to, and facilitate, the

aggregation of a-syn [42,43]. Whilst we cannot exclude the

presence of metal ions in our assay, we nevertheless ensured that

the highest-grade analytical chemicals with the minimal presence

of metal ions were always used.

Interestingly, the ultra-structural analysis of a-syn in the

presence of 6-aminoindole not only showed fibrils more isolated

and shorter than just a-syn alone (Figure 6A–B), but at a higher

resolution it was possible to clearly identify that the process of

‘fibril’ developing into a mature fibril assembly had been affected

by the ligand, when compared to a-syn alone (Figure 6A compared

to 6H). Most importantly, the kinetic data for both a-syn with this

ligand, and a-syn alone, revealed similar ThT fluorescence with

the characteristic growth curve. Therefore, we only used ThT

fluorescence as a monitor of amyloid fibril formation. A more

detailed quantitative methodology of classification would aid to

verify our observations. This is currently under development.

Our conclusions, drawn from the ultra-structural analysis of

aggregated a-syn in the presence of 6-aminoindole, are further

supported by a recent study by Tashiro et al. [44], which

characterized over 76 hours of the fibrillization process of a-syn

by electron microscopy and small angle x-ray scattering. The

authors observed the progression of the formation of fibrils to a

mature form using a discontinuous fibrillization assay. Whilst they

clearly saw mature fibrils formed at 60 hours, our images at

100 hours for 6-aminoindole did not show this stage of formation

(Fure 6E–H). Our TEM images for 6-aminoindole (Figure 6E–H

and unpublished data) obtained at the end of the assay (i.e.:

Figure 6. TEM micrographs showing the effect of the
presence of 6-aminoindole or 5-hydroxindole on the aggre-
gation of a-syn. Whilst both samples revealed similar kinetic data,
typical of a nucleation/polymerization process, microscopy revealed
contrasting data. (A and B) a-syn fibrils formed in the absence of any
ligands, (C and D) a-syn fibrils formed in the presence of 5-
hydroxyindole and (E–H) 6-aminoindole. Arrows indicate fibrillar
structures of varying size.
doi:10.1371/journal.pone.0009234.g006
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100 hour) matched closest (if indeed that) with their images of the

aggregation of a-syn at 33 hours, which, they speculated, could

have been fibrils forming via a critical nucleus or soluble

oligomers. Most importantly, their study clearly supports our

implication that 6-aminoindole does indeed affect the nucleation/

polymerization mechanism. Whilst the main aim of our study was

to use in vitro assays to test our prediction of DOP mimics on a-syn,

it is clear that a detailed high resolution study over more time

points would lead to a deeper insight into the mechanism of the

observed DOP mimics on the aggregation of a-syn.

In conclusion, the combined in silico and in vitro approach

employed here is, to our knowledge, the first study where such a

detailed approach has been used to predict and evaluate ligands

that may affect the aggregation of a-syn by forming non-covalent

interactions. Biocomputational methods screened and predicted

ligands that could have some inhibitory effect on the aggregation

of a-syn protein. Remarkably, in vitro assays in combination with

high-resolution microscopy showed similar findings. The consis-

tency between both approaches highlights the importance of a

combined in silico and in vitro approach that could be used in

predicting and developing new drugs and therapeutic strategies for

PD.

Materials and Methods

Biocomputing of a-Syn Structures
A refined set of structures, obtained with an optimized protocol,

was kindly provided by M. Vendruscolo (personal communica-

tion). A cluster analysis was performed exactly as previously

reported [29]. Six representative structures were identified [29].

Biocomputing of Ligands
(i) The structures of dopamine and its oxidation products

(Figure 1 in [29]) were taken from a previous publication [23].

(ii) Ligands similar to DOP and to its oxidative derivatives

(Figure 1) were identified by virtual screening of the ‘ligand.info’

database [31]. This database contains <1,160,000 ligands.

Structural similarity was estimated by the Tanimoto’s equation

[32] using the ROCS algorithm in the OpenEye suite of programs

(http://www.openeye.org). The 3D molecular structures were

overlapped using atom-centered Gaussians [45]. A bias on the

overlay was achieved by adding a positive weight to similar

chemical groups. For each template, the 100 best hits were

selected (600 molecules overall).

The similarity in electrostatic potential between the selected

molecules and their templates in Figure 1 was then calculated

using the Tanimoto metric [32]. The EON module of Openeye

was used (See Supporting Information S1) [46]. The top 10 hits

for each template (60 ligands overall) were docked onto 6 a-syn

representative conformations of the protein NMR conforma-

tional ensemble; the same procedure as described previously by

Herrera et al. [29]. The adducts were ranked based on the

number of contacts [29] between the target region 125YEMPS129

[23,25,27] and the ligand. Five commercially available ligands

forming top ranking adducts were selected for experimental

analysis (Figure 2).

MD Simulations of Ligands (i) and (ii) to a-Syn
All of the adducts, with all the five ligands, underwent 6 ns of

MD in explicit solvent, as previously reported [29]. Version 2.6 of

the NAMD program was used [47]. Overall, 72 different MD

simulations were carried out. We identify as bound complexes the

adducts in which the distance between Ca of a-syn and ligands

center of mass is lower than 8 Å.

Expression, Purification and Characterization of
Recombinant Human a-Syn

All chemicals used for the experimental assays were high-

grade analytical chemicals .99.9% purity with minimal metal

impurities.

Human a-syn nucleotide sequence was cloned into the pET11a

expression vector and introduced into E. coli strain BL21 (DE3).

Expression of a-syn was obtained by growing cells in 100 mg/mL

ampicillin containing Luria-Bertani broth at 37uC until an OD600

of about 0.6, followed by induction with 0.6 mM isopropyl b-

thiogalactopyranoside for 5 hours. The protein was purified, based

on the method of Huang et al. [34].

Mass Spectrometry
The exact molecular weight of the purified a-syn was analyzed by

reverse phase high performance liquid chromatography (HPLC)

followed by mass spectrometry. Reverse phase HPLC was carried

out using a C4 Phenomenex Jupiter (15064.6 mm) and eluted with

a gradient of acetonitrile and trifluoroacetic acid (TFA) 0.085%

versus water and 0.1% TFA: from 5 to 35% over 5 min, from 35

to 55% over 20 min, from 55 to 95% over 2 min, at a flow rate

of 0.6 mL/min. The effluent from the column was monitored by

recording absorbance at 226 nm wavelength. The eluted peak was

collected and analyzed by mass spectrometry using a Mariner

System 5220 (Applied Biosystem) spectrometer. Mass measure-

ments were carried out in collaboration with Dr. P. De Laureto

(C.R.I.B.I., University of Padua, Italy).

Circular Dichroism (CD) Spectroscopy
CD measurements were carried out on a JASCO J-810

spectrophotometer. Spectra were acquired at room temperature

in Tris-HCl 20 mM, pH 8.0 using a HELLMA quartz cell (Cell

Bio), with an optical path-length of 0.1 cm. All spectra were

recorded in the 196–250 nm wavelength range, using a bandwidth

of 1 nm and a time constant of 1 s at a speed of 20 nm/min. The

signal-to-noise ratio was improved by accumulating 4 scans.

Preparation of a-Syn Solutions and Dopamine Analogs
for the In Vitro Studies

The solutions for the in vitro assay were prepared as follows. All

solutions were sterile, filtered through a 0.22 mm filter prior to

each assay run in order to reduce the presence of ‘contaminants’.

Lyophilized a-syn was dissolved in 20 mM Tris-HCl/150 mM

NaCl/pH 7.4 (i.e.: the fibrillization buffer) to achieve a stock

concentration of 3 mg/mL. All 5 test ligands (Figure 2) and

dopamine were dissolved in DMSO, to achieve a final stock

concentration of 10 mM. The ligands and a-syn were then both

diluted with the fibrillization buffer, to equimolar concentrations

(100 mM) in a final DMSO concentration of 0.1%. Amyloid fibril

formation was monitored with the histological dye, ThT. A total of

10 mM ThT was added to each sample. Final working volumes

were 200 mL per well. Fibril formation was monitored on either a

GEMINI EM plate reader or a Spectramax M5 (Molecular

Devices). Each test ligand with a-syn was run in triplicate, in 96

black well plates; each well containing 1 teflon bead. The plate was

incubated at 37uC, shaken, and ThT fluorescence readings were

recorded every 5 min till 100 hours. For each assay run, the

background fluorescence from each ligand (i.e. in the absence of

a-syn) was also recorded and run in triplicate.

AFM Analysis
The assay end product was imaged with a NanoWizard-II

BioAFM (JPK Instruments AG) operating in dynamic mode.
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Scans were made using an ARROWTM silicon probe with Al

coating at the detector side, a tip radius ,10 nm, a nominal spring

constant of 42 N/m and a nominal resonance frequency of

285 kHz (NanoWorld). Fibrils were deposited onto a freshly

cleaved piece of mica at a concentration of 15 mM and left to

adhere for 60 min. Samples were then washed with distilled water

and blow-dried under a flow of nitrogen. Optically clear regions

were chosen for the scanning analysis. The images were collected

at a line scan rate of 0.5 - 2 Hz in ambient conditions. The AFM

free oscillation amplitudes were ranging from 25 nm to 40 nm,

with characteristic set points ranging from 75% to 90% of these

free oscillation amplitudes.

TEM Analysis
The assay end product was analyzed on a Jeol 2010F UHR

TEM/STEM microscope operated at an accelerating voltage of

200 kV. Samples were absorbed to 300 mm holey formvar/carbon

coated grids for <1 minute before a brief rinse in water, and

negatively stained for 1 minute with 1% phosphotungstic acid.

Typical magnifications ranged from 20000-180000.

Image Analysis of AFM Scans and TEM Micrographs
AFM data were analyzed with Gwyddion (gwyddion.net) and

SPIPTM, (www.imagemet.com). TEM images were analyzed,

using the NIH Image processing program, Image J (rsbweb.nih.

gov/ij/).

Supporting Information

Supporting Information S1 Supporting information manu-

script including references.

Found at: doi:10.1371/journal.pone.0009234.s001 (0.04 MB

DOC)

Table S1 Molecules selected from the ligand.info database. Ten

molecules have been selected for each of the six compounds

reported in Figure 1. These are the molecules which feature the

largest shape and electrostatic similarity with dopamine, as

calculated using the Tanimoto’s definition. The compounds for

each set are listed in the order of the priority score. Five

commercially available ligands among these 60 molecules have

undergone the in vitro assay reported in this study. They are

highlighted in bold.

Found at: doi:10.1371/journal.pone.0009234.s002 (0.06 MB

DOC)

Table S2 Hydrogen bonds and hydrophobic contacts between

the ligands (as depicted in Figure 2) or the dopamine oxidation

products (Figure 1) and the target region of a-syn conforma-

tions. Column titles from left to right: (i) number of the

representative conformation of a-syn, (ii) ligand name, (iii)

hydrogen-bonds and distances, (iv) hydrophobic contacts and

distances. The contacts are listed for the adducts where the

ligands are bound to the target region for more than 50% of

their time. Highlighted in grey are the compounds used in the

experiments.

Found at: doi:10.1371/journal.pone.0009234.s003 (0.10 MB

DOC)

Table S3 Binding regions of ligands other than the target region.

Column titles from left to right: (i) The representative conforma-

tion of a-syn, (ii) ligand name, (iii) binding region. The contacts are

listed for those adducts in which the ligands bind to regions other

than the target region for more than 50% of their time.

Highlighted in grey are the compounds used in the experiments.

Found at: doi:10.1371/journal.pone.0009234.s004 (0.05 MB

DOC)

Figure S1 The average lag phase time of Î6-syn aggregation in

different concentrations of DMSO. Notice that above 2.5%

DMSO concentration, the lag phase time becomes extremely

variable.

Found at: doi:10.1371/journal.pone.0009234.s005 (0.45 MB TIF)

Figure S2 AFM images of the aggregation of Î6-syn. AFM

height images were acquired from assay end products after

100 hours of incubation which had been deposited onto freshly

cleaved mica surfaces. The height images (A, B, D) are displayed

using the same color scale as shown on the right hand side. (A)

Height image of long straight fibrils with occasional ‘putative’

looking oligomers. (B) Height image and (C) phase image (range

0–13 deg) of a cluster of fibrils. (D) Height image showing a high

degree of clustering of fibrils.

Found at: doi:10.1371/journal.pone.0009234.s006 (3.15 MB TIF)

Figure S3 AFM images of the aggregation of Î6-syn in 0.1%

DMSO. AFM height images were acquired from assay end

products after 100 hours of incubation which had been deposited

onto freshly cleaved mica surfaces. The height images (A, C, D)

are displayed using the same color scale as shown on the right

hand side. (A) Height image and (B) phase image (range: 0–40 deg)

of long straight fibrils with branching. (C–D) Height images of

long, straight and circular fibrils, fragments, and both clustered

and scattered ‘putative’ oligomers.

Found at: doi:10.1371/journal.pone.0009234.s007 (3.18 MB TIF)
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