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4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor
receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular
response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and
membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In
plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in
size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both
activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes
from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface.
The increase was accompanied by a 4-fold decrease in TNFa production by the 4-
1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients,
complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF
compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without
blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-
1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in
suppression of 4-1BBL’s bioactivity.

Keywords: checkpoint receptor, 4-1BB, Galectin-3, inflammation, rheumatoid arthritis
INTRODUCTION

Orchestration of immune checkpoints is central for the outcome of immune activation, especially in
patients with chronic inflammation and cancer. 4-1BB (CD137/TNFRSF9) plays a major role in
regulating the outcome of the adaptive immune system (1–3). 4-1BB is a promising interventional target
in severe autoinflammatory disease such as rheumatoid arthritis (RA). Despite the central role in shaping
an adaptive immune response, effective treatment strategies utilizing agonistic 4-1BB antibodies has been
org June 2022 | Volume 13 | Article 9158901
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challenging. As suggestive of that, complex local modulatory
mechanisms are important for the function of 4-1BB (4–7).

4-1BB is a glycosylated co-stimulatory transmembrane receptor
expressed on a range of immune cells (8), but predominantly
expressed on T cells upon antigen encounter (9). 4-1BB signaling
promotes clonal expansion, accumulation of antigen-
specific effector CD4+ and CD8+ T cells, and formation of
proinflammatory cytokines (10, 11). 4-1BB ligand (4-1BBL) is the
cognate ligand for 4-1BB and is mainly expressed by activated
antigen-presenting cells (APC) (12, 13). In humans, 4-1BB loss-of-
function mutations led to impaired T cell activation, proliferation,
and differentiation, highlighting the pivotal role of functional 4-1BB
for immune homeostasis (14). Additionally, it has become evident
that glycans and glycan-binding proteins are also of key importance
in 4-1BB signaling (15, 16), however the wider implications for
immune regulation are unclear.

Galectins are a family of widely expressed glycan-binding
proteins, defined by their shared carbohydrate recognition
domain (CRD) and their differential affinities for b-galactosides
and related glycans (17). Galectins are expressed by several immune
cells involved in inflammation includingmacrophages, lymphocytes
and stromal cells, where they modulate the inflammatory response
by interaction with multiple glycosylated receptors (18–21). Thus,
galectins are capable of modulating inflammation both locally
and systemically.

We, and other investigators, have shown that galectin-9 (Gal-
9) is important for 4-1BB signaling leading to production of pro-
inflammatory cytokines in RA. This occurs independent of Gal-9
interfering with the ability of ADAM-17 to cleave 4-1BB from
the cell membrane (15, 16). Apart from Gal-9, several other
galectins are also linked to RA pathology (22–25). Of the eleven
known members of the human galectin family, galectin-3 (Gal-3)
is structurally unique, since it is the only chimera-type galectin
which contains an N-terminal peptide domain that can form
oligomers upon interactions with ligands (26). However, the
mechanistic involvement of Gal-3 in chronic inflammation is
only partially understood (27).

Based on the above, we therefore hypotheses that Gal-3’s
could influence 4-1BB function in RA. We report that Gal-3 is a
novel carbohydrate-dependent binding partner of 4-1BB, and
through this interaction induces opposite reactions compared to
those observed by Gal-9 in the inflamed microenvironment. Gal-
3 forms complexes when engaging soluble 4-1BB (s4-1BB), such
complexes can be found in plasma from healthy controls (HC).
However, patients with RA have markedly reduced levels of these
circulating complexes. Thus, Gal-3 binding to 4-1BB facilitates
complex depletion leading to reassembly of s4-1BB to the cell
surface, acting as a decoy and resulting in shielding the
membrane bound 4-1BB (mem4-1BB) from signaling.
RESULTS

Galectin-3 Is a Binding Partner of 4-1BB
We examined 5 commonly expressed galectins (Gal-1,-2,-3,-8
and -9) associated with immune mediated inflammation
Frontiers in Immunology | www.frontiersin.org 2
and their ability to bind to 4-1BB by fluorescent anisotropy
(Table EV1). Gal-3 and Gal-9N showed the strongest affinity
towards 4-1BB, with KD-values between 1 and 2 mM (Table
EV1). We confirmed that these interactions required functional
CRDs, as binding could be blocked by lactose (Figure 1A) and
for Gal-3, a mutant (Gal-3 R186S), with severely reduced affinity
for endogenous glycans, did not bind 4-1BB (Table EV1). Gal-1,
-2 and -8N were all capable of binding 4-1BB, but with a lower
affinity. Because we used a 4-1BB : Fc construct, we also tested
the Fc part of the construct as a control, which did not bind any
of the galectins (Table EV1).

Galectin-3 Competes With Neither 4-1BBL
Nor Galectin-9 for the Binding to 4-1BB
The ability of 4-1BB to co-bind Gal-3 and 4-1BBL was examined
by ELISA and surface plasmon resonance (SPR) analyses. The
results demonstrate that 4-1BBL binds 4-1BB, as expected, but
that binding of Gal-3 to 4-1BB does not compete for binding by
4-1BBL (Figure 1B). As Gal-3 and both terminal domains of
Gal-9 are capable of binding 4-1BB, we examined if the two
galectins interfered with each other’s binding to 4-1BB. Gal-3
and the N- and C-terminal domain of Gal-9 both exhibited a
binding affinity to 4-1BB comparable with the fluorescent
anisotropy data (Table EV1). Addition of either Gal-9C or
Gal-9N to 4-1BB enhanced the subsequent binding of Gal-3 to
a degree that surpassed the sum of the individual proteins
(Figure EV1). This indicates a synergistic effect between these
two galectins and 4-1BB in which binding of one increases the
binding of the other. Collectively, Gal-9 binding to 4-1BB
enhanced and stabilized the subsequent binding of Gal-3.

Galectin-3 and Galectin-9 Have Different
N-glycan Structural Binding Preferences
To define the potential differential binding of Gal-3 and Gal-9 to
N-glycans, which is common types of 4-1BB modifications, we
analyzed the binding of Gal-9 to a selection of 32 complex-type
naturally occurring N-glycans using an N-Glycan array, on
which Gal-3 was previously analyzed (28). The tetra-antennary
N-glycan with four LacNAc (Gal-GlcNAc) sequences showed the
strongest binding with Gal-9. By contrast, Gal-9 did not bind N-
glycans with either a2,3- nor a2,6-linked sialic acid, known to
bind Gal-3 (28). Gal-9 binding was observed toward biantennary
and the 2,2,6-form triantennary structures, which were not
bound by Gal-3 (Figure 1C). Gal-9 was also capable of
binding a small tetrasaccharide LSTc, a 2,6-sialylated
glycan that does not occur on N-glycan backbones. Taken
together, although Gal-3 and Gal-9 have overlapping glycan
ligands, they also have distinct separate structural preferences,
making it possible for Gal-3 and Gal-9 to co-bind glycoproteins.
In this vein, we modeled the protein structures of 4-1BB binding
to 4-1BBL, Gal-3 and Gal-9, generated by SWISS-MODEL and
superimposed N-glycans in the CRD4 region of 4-1BB
(Figure 1D). The model depicts the potential of these two
galectins to simultaneously bind 4-1BB.

Because Gal-3 is known to oligomerize after encountering a
binding-partner (29), we analyzed whether the interaction
June 2022 | Volume 13 | Article 915890
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between 4-1BB and Gal-3 was capable of forming larger
complexes by the use of nanoparticle tracking analysis (NTA).
In scatter detection mode (SDM), the NTA revealed the presence
of large complexes and their size distribution. Distinct
concentration peaks between 50 and 300 nm in hydrodynamic
radius (Rh) was detected (Figure 1E). The size separation
between the concentration peaks had a relatively fixed
increment of 20 nm, and major sizes of 90 and 110 nm in Rh.
Gal-3 did not oligomerise to form complexes without 4-1BB
present (Figure EV2). With these data, we focused on the
interactions between 4-1BB and Gal-3 and the implications of
complex formation.

Galectin-3 and 4-1BB Are Upregulated at
the Site of Pathology in RA
We continued by examining whether Gal-3 was elevated and
co-expressed with 4-1BB at a site of inflammation in patients
with RA, as a prototypic immune mediated inflammatory
disease. In RA synovial fluid, soluble Gal-3 was elevated by
4-fold and s4-1BB by 12-fold compared with paired plasma
control samples (Figure 2A). In the RA synovial membrane, co-
expression of 4-1BB and Gal-3 was predominantly observed in
the sub-lining layer of the inflamed synovial tissue (Figure 2B).
Co-expression of 4-1BB and Gal-3 was also detected at the
surface of purified CD3/CD28-activated human CD4 T cells
(Figure 2C). We further examined whether addition of Gal-3
Frontiers in Immunology | www.frontiersin.org 3
changed the membrane distribution of 4-1BB in these cells,
which was found not to be the case (Figure EV3). Addition of
Gal-3 to activated human CD4 T cells increased their shedding of
4-1BB (Figure 2D).

Gal-3 and 4-1BB Interaction Is Involved in
Complex-Depletion From Human Plasma
Since Gal-3 can form complexes, with 4-1BB, we examined if
these complexes were present in vivo and furthermore if
activated T-cells and 4-1BB+HEK293 cells would influence the
concentration of soluble Gal-3 complexes in solution. In normal
human plasma, we detected Gal-3 containing complexes with a
size of > 100 nm, suggesting that Gal-3 engages in complex
formation with glycoproteins (Figure 3A). Addition of activated
CD4+ T cells to normal human plasma led to a 1.6-fold decrease
in these Gal-3 complexes (Figure 3A, B).

Furthermore, addition of transfected HEK293 cells expressing
membrane bound 4-1BB, lead to a higher decrease of Gal-3
complexes from plasma than WT HEK293 cells, suggesting a role
of 4-1BB (Figure 3C). Both activated T cells, and 4-1BB+HEK293
cells led to a similar change in the distribution pattern of Gal-3
complexes in plasma with ablation of complexes primarily between
100-200 nm in size (Figure 3A, C).

Since activated T-cells and 4-1BB expressing HEK293 cells
could deplete Gal-3 complexes from plasma, we explored
whether plasma from RA patients exhibit signs of Gal-3
B C

D E

A

FIGURE 1 | Galectins are capable of glycan dependent binding to 4-1BB. (A) 4-1BB binding to galectin-3 (Blue) or galectin-9 (Green) and with added 0.1 M Beta-
lactose (L) measured by ELISA. Data are expressed as mean ± SEM (n=5 and n=3, respectively), Student’s paired t-test, *P<0.05, **P<0.01. (B) Surface plasmon
resonance analysis of the binding of 4-1BBL (yellow line), Gal-3 (blue line), and co-injection hereof (green line), flowing along a BIAcore CM5 sensor chip with
immobilized 4-1BB : Fc. (C) Glycan microarray analyses of human Galectin-9 using the N-Glycan array, Gal-9, was tested at 50 mg/mL. Binding with glycans 9 to 24
is depicted, the complete set of printed glycans and structural information can be found in Table EV3. Gal-9 binding is shown by green bars representing the mean
and the error bars represent the SD among the values of four replicate spots. Reported Gal-3 binding is marked by blue bars again as mean with SD. The probes
are grouped as indicated in the colored panels. Glycan structures bound specifically by Galectin-3 and Galectin-9 are displayed. (D) Proteins were modelled using
SWISS-MODEL licensed under the CC BY-SA 4.0 Creative Commons Attribution-ShareAlike 4.0 International License modified with glycans in the CRD4 part of 4-
1BB. Only the carbohydrate recognition domains of Gal-3 and Gal-9 are shown. (E) Detection of complexes generated by rh4-1BB and rhGal-3 (both 5 mg/ml)
measured by nanoparticle tracking analyses. Data expressed in a scatter-mode by 5 recordings of 60s (n=5). Dashed line represents intraassay variation. The curve
displayed are the difference between nanoparticle tracking analyses data obtained by rh4-1BB+rhGal-3 subtracted the sum of nanoparticle tracking analyses data
obtained by the two individual proteins.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nielsen et al. Gal-3 Inhibits 4-1BBL Bioactivity
B C

D E F

A

FIGURE 3 | 4-1BB positive T cells are involved in the depletion of soluble Gal-3 complexes. Normal human plasma was incubated with, or without, CD3/CD28-activated
CD4 T-cells for 30 minutes at 37°C, followed by detection of Gal-3 positive particles measured by nanoparticle tracking analyses. (A) Activated CD4 T-cells (n = 5)
resulted in a depletion of Gal-3 positive particles, especially with a diameter < 200nm. (B) CD3/CD28-activated CD4 T-cells (n = 5) incubated with plasma from healthy
controls (HC) resulted in a significant reduction of Gal-3 positive particles compared with plasma not encountering activated T cells. (A, B) Data are expressed as mean ±
SEM, Student’s paired t-test, **P < 0.01. (C) In a similar setup, plasma from HC were incubated for 30 minutes at 37°C, with 4-1BB transfected HEK293 cells (4-
1BB+HEK293) and wild type (HEK293) (n = 5, HC plasma samples). 4-1BB+HEK293 cells depleted Gal-3 particles from plasma, more than wild type cells, primarily of
complexes < 200 nm in size. (D) Comparing the distribution of Gal-3 positive particles in plasma from HC (Green, n = 10) and rheumatoid arthritis (Red, n = 10) the
number of Gal-3 particles were decreased in RA plasma. (E) RA synovial fluid (n = 10) showed a similar pattern of Gal-3 positive particles as seen in RA plasma. (F) The
total number of Gal-3 complexes were significantly decreased in RA plasma compared with HC plasma, **P < 0.01 (unpaired t-test). Data are expressed as mean ±
SEM, unpaired Student’s t-test.
B C

D

A

FIGURE 2 | Gal-3 and 4-1BB are increased in the rheumatoid inflamed microenvironment. (A) In patients with rheumatoid arthritis (RA), soluble levels of Gal-3 (blue,
n = 9) and soluble levels of 4-1BB (green, n = 5), were both increased in SF compared with P. Data are expressed as mean ± SEM, Student’s paired t-test, *P <
0.05, **P < 0.01, Bars represent mean (SEM). (B) Gal-3 (red) and 4-1BB (cyan) were co-expressed (orange) in the RA synovial membrane often localized to the
sublining layer of the membrane (n = 3). Cells were nuclear stained by DAPI (blue), imaged obtained at x40. (C) Co-expression of 4-1BB (red) and Gal-3 (yellow) was
also seen in the surface of CD3 and CD28 activated human CD4 T-cells by ImageStream. In the membrane of some 4-1BB+CD4 T-cells Gal-3 were found only in
very distinct condense areas in others more diffuse n = 4. (D) Cultured CD4 T-cells were activated by CD3 and CD28 antibodies, with or without, added Gal-3
(400ng/ml), overnight (n = 5). Addition of Gal-3 resulted in a significantly increase in soluble (s) 4-1BB. Data expressed as mean ± SEM, student’s paired t-test,
**P<0.01, Bars represent mean (SEM).
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complex depletion. In RA, the concentration of complexes
containing Gal-3 was significantly reduced. Gal-3 complexes in
RA plasma were reduced by about 4-fold (Figure 3D, E) and in
paired synovial fluid by about 3-fold (Figure 3F), compared with
plasma from HC (*P<0.05, P=0.05, respectively). The
concentration of complexes did neither correlate with the total
sGal-3 protein levels in synovial fluid nor in plasma from RA
(Figure EV4).

Functional Implications of 4-1BB/Gal-3
Complex Depletion
We continued by examine the cellular expression of Gal-3 and
4-1BB on activated CD4+ T-cells after incubation with plasma
from healthy controls. After co-incubation with plasma, only the
4-1BB+ fraction of CD4+ T-cells showed a 2-fold increase in
Gal-3 MFI and in addition, these cells also increased the surface
expression of 4-1BB MFI (Figure 4A).

Furthermore, after co-incubation and complex depletion from
plasma the 4-1BB MFI also increased significantly on HEK293
cells co-expressing both Gal-3+ and 4-1BB+ compared with
HEK293 cells only expressing 4-1BB (Figure 4B, EV5).
Moreover, the fraction of Gal-3+4-1BBhigh cells was reduced to
Frontiers in Immunology | www.frontiersin.org 5
levels of non-plasma treated cells after treatment with lactose or
by PNGase pre-treatment of the cells to decrease N-glycans
interacting with Gal-3 (Figure 4C). These results indicate that
the large, soluble 4-1BB/Gal-3 complexes from plasma can attach
to the cell surface of 4-1BB expressing cells.

Soluble Complexes of Gal-3 and 4-1BB
Inhibits Cytokine Production
We examined whether these soluble complexes containing both
Gal-3 and 4-1BB could bind to the cell surface and interfere with
4-1BB signaling. After pre-incubation activated CD4 T-cells with
plasma, the fraction of 4-1BB+CD4+ T cells that produced TNFa
was reduced by 3.8-fold upon 4-1BBL stimulation (P < 0.01)
(Figure 4D, EV5). We continued to examine if this process was
influenced by a highly glycosylated environment, observed in the
inflamed joint, with its high amount of exposed glycosylated
extracellular matrix (ECM) proteins and immunoglobulins. Gal-3
were capable of binding both laminin and fibronectin, but not
collagens, IgG and IgM (Figure EV6).

Since Gal-3 strongly bound to laminin, we evaluated if the
4-1BB/Gal-3 complexes could be removed from the surface of
activated CD4+ T cells by encountering a laminin coated surface.
B

C D

EA

FIGURE 4 | Gal-3 forms complexes with s4-1BB that can attach to the cell surface and shield cells from 4-1BBL induction of TNFa. (A) CD3/CD28-activated CD4
T-cells were incubated for 30 minutes at 37°C with (+P), or without, plasma (-P) from healthy controls (HC). Cells were then examined by flow cytometry for the
membrane median fluorescence intensity (MFI) of Gal-3 measured on 4-1BB+Gal-3+ CD4+ T cells (Blue) and MFI of 4-1BB measured on 4-1BB+ CD4+ T cells
(Green). Bars represent mean (SEM) as ratio of MFI on cells incubated +/- plasma (n = 5, *P < 0.05). (B) Expression of 4-1BB on 4-1BB transfected HEK293 cells
after incubation with plasma (+P) from healthy controls. Cells that were doublet positive for 4-1BB and Gal-3 showed a significant higher 4-1BB MFI compared with
single positives (n = 12). Data are expressed as mean ± SEM, Student’s paired t-test, ***P < 0.001. (C) The proportion of Gal-3+ and 4-1BB+ T cells were increased
after 30 minutes incubation in HC plasma. The proportion of the double positive Gal-3+4-1BB+ cells decreased by addition of Lactose or PNGase F, compared with
untreated (UT). Bars represent mean (SEM) as ratio of Gal-3+4-1BB+ cells with or without HC plasma (n = 3, *P < 0.05). (D) Activated CD4+, 4-1BB+ T cells
incubated with or without, plasma from healthy controls and subsequently stimulated with 4-1BBL. Plasma preincubation reduced CD4 T-cells ability to produce
TNFa upon 4-1BBL stimulation (n = 3). Bars represent mean (SEM) as ratio of TNFa producing 4-1BB+ CD4 T cells out of all 4-1BB+ CD4 T cells **P < 0.01. (E)
Based on our results, we suggest a model where 4-1BBL induce TNFa synthesis ① and Gal-3 increases shedding of 4-1BB ②. Gal-3 mediates complex formation
engaging with s4-1BB. These 4-1BB/Gal-3 complexes reassemble on the cell surface by binding to membrane expressed 4-1BB ③, creating a decoy mechanism
that blocks for further 4-1BBL stimulation.
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Furthermore, the 4-1BBL mediated TNFa production in CD4+
T-cells was not influenced after these had encountered a laminin
coated surface prior to 4-1BBL co-incubation (Figure EV7).

Our observations suggest that Gal-3 increases shedding of
4-1BB which subsequently leads to formation of large soluble
complexes between s4-1BB and Gal-3. These 4-1BB/Gal-3
complexes reassemble on the cell surface by binding to mem4-
1BB. This complex deposition onto themembrane of these 4-1BB+
CD4+ T cells limits further 4-1BBL stimulation (Figure 4E).
DISCUSSION

The present study provides novel insight into the
posttranslational regulation of the 4-1BB receptor, which is N-
glycosylated, mediating its ability to bind Gal-3 and hereby
promotes oligomerization. As a novel point, we observed that
Gal-3 can bind both the soluble and the membranous form of 4-
1BB, leading to inhibition of 4-1BBL stimulation. This finding
helps to explain the complicated nature of the 4-1BB
signalosome. Our results support the possibility that multiple
galectins are capable of binding to the glycosylated 4-1BB
receptor, but that Gal-3 and Gal-9 (N/C) binds to 4-1BB with
the highest affinity.

The binding of Gal-3 does not block the co-binding of 4-
1BBL, but mediates increased shedding of mem4-1BB. The
predicted binding sites of Gal-3 to 4-1BB is through its N-
glycans located in the cysteine rich domain 4 of human 4-1BB at
Asn-138 and Asn-149 (30, 31). Both amino acids are >35 amino
acids above the predicted ADAM-17 cleavage site located only
two amino acids from the transmembrane region (16). Thus,
shed 4-1BB retains its glycosylation, enabling both Gal-3 and
Gal-9 binding. Further, non-competitive binding of Gal-3 and
Gal-9 to 4-1BB is possible since both galectins have separate
structural preferences to complex N-glycans in large determined
by branching and sialyation. While Gal-9 binding to 4-1BB
increases the TNFa production (16), Gal-3 oppositely seems to
hinder TNFa production mediated by 4-1BBL. This mechanism
involves a series of events initiated by mem4-1BB expression,
then followed by shedding by ADAM17. In turn, secretion of
Gal-3 and the assembly of the 4-1BB/Gal-3 leads to the
formation of large complexes. The reassembly of 4-1BB/Gal-3
complexes on the cell surface is mediated through binding
between Gal-3 and mem4-1BB. An attractive explanation for
the enhanced binding by these large complexes derives from the
high avidity resulting from the polyvalent binding of the 4-1BB/
Gal-3 complexes to the membrane-tethered form of 4-1BB (32).
This phenomenon is also experimentally demonstrated for
polyvalent lectin complexes (33). The shielding of mem4-1BB
could ultimately lead to a situation whereby 4-1BBL can no
longer induce cytokine production. Further, Gal-3 can bind to
laminin and fibronectin as also previously demonstrated (34).
Laminin and fibronectin are glycosylated ECM proteins present
in the inflamed tissue, including the arthritic joint (35). However,
we detected no influence on the complex mediated shielding of
mem4-1BB after the cells encountered laminin. Thus, it is
Frontiers in Immunology | www.frontiersin.org 6
unlikely that the expression of laminin in the local inflamed
environment alters mem4-1BB shielding after assembly of 4-
1BB/Gal-3 complexes onto the cell surface.

Thus, Gal-3 and Gal-9 have opposite impacts on the ability of
4-1BBL to induce a 4-1BB signal, indicating that the function of
4-1BB+ T cells, is regulated by the balance of galectins in the
local microenvironment.

We observed a near-absence of soluble 4-1BB/Gal-3
complexes in the synovial fluid of RA patients. Although much
points to the binding of the complexes to activated T cells, we
cannot rule out that this absence is additionally affected by local
factors that influence glycosylation, or through depletion of Gal-
3 complexes due to binding between Gal-3 and extracellular
matrix proteins (36, 37). Also, our study does not take into
account that glycosylation is modified by the inflammatory
environment (38), potentially affecting cytokine stability and
receptor interactions (39). The ability of 4-1BB/Gal-3
complexes to bind to cell surfaces with an inhibition of 4-1BBL
signaling, is somewhat in contrast to reports of agonistic
antibodies towards 4-1BB ameliorating autoimmunity in a
mouse model (40). This paradoxical effect was speculated both
to be due to complement activation, as these antibodies are of the
IgG2 subtype, as well as activation-induced cell death (41).
Further, it is important to consider that mouse and human 4-
1BB likely differ in their glycosylation, which could also influence
the described mechanism (31). Although no studies have yet
reported association between 4-1BB expression and reactivity to
antibody treatments in human trials, it will likely follow the
pattern of other checkpoint molecules, with only weak
association to efficacy (42, 43).

We predict, based on the ability of Gal-3 to generate 4-1BB
decoy receptor complexes, that 4-1BB will also be an inconsistent
biomarker of agonistic 4-1BB efficacy. At the moment, urelumab
and utomilumab are the two lead molecules specifically targeting
4-1BB in oncology. As the binding affinity between galectins and
4-1BB are ~50-60 times weaker than the two reported
monoclonal antibodies, one may speculate that these could
disrupt Gal-3s binding to 4-1BB (31). However, it has been
reported that neither urelumab nor utomilumab interfere with
Gal-9 binding to 4-1BB (15) (31). Further, Gal-3 and Gal-9 both
bind to glycans on the cysteine-rich domain 4 part of 4-1BB,
which is structurally separated from that of both agonistic
antibodies. Additionally, since Gal-3 and Gal-9 have similar
binding affinities, we do not expect antibody therapies to block
co-binding of galectins that would modulate the resulting 4-1BB
signaling. The formation of 4-1BB/Gal-3 complexes in the
inflamed microenvironment, on the other hand, would likely
block subsequent binding of targeted antibodies to the mem4-
1BB. This points to a key role of Gal-3 levels for 4-1BB signaling
in the local inflamed environment. Indeed, the high-avidity
binding supported by the polyvalent interaction also suggest
that such complexes may be stable even in the presence of the
antibodies. Our results are also supported by previous studies
showing that in the tumor microenvironment Gal-3 causes
predominantly reduced T cell activation to some degree
reversible by Gal-3 blocking (27, 44, 45).
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In the present study,wedescribe onemember of theTNFRSF and
its ability to engage in complex formationwithGal-3.Wepredict that
other TNFRSFmembers will be subjected to a similarmechanism, as
the TNFRSF shares signaling properties, glycosylation, receptor
oligomerization and downstream signaling pathways (1, 6).
Further, altered Gal-3 and Gal-9 expression is found in several
inflammatory diseases (46) and in the tumor microenvironment of
several cancers (27). A recent study links the effectiveness of
checkpoint inhibitor-based immunotherapy to the local levels of
Gal-3 (47). Collectively, the mechanistic insight generated from our
studies clearly supports the possibility that the interaction observed
may be relevant to other diseases and glycosylated immunoreceptors
expressed by immune or stromal cells (46, 48).

In conclusion, Gal-3 binds 4-1BB without blocking for
subsequently 4-1BBL binding, Gal-3 increased shedding of
mem4-1BB, and mediated complex formation with s4-1BB.
These soluble 4-1BB/Gal-3 complexes may assemble on the cell
surface by binding to mem4-1BB, thus creating a decoy
mechanism weakening 4-1BBL stimulation.
MATERIALS AND METHODS

Study Participants
A cross-sectional, paired set of peripheral blood mononuclear
cells (PBMCs) and SF mononuclear cells (SFMCs) were obtained
from patients with chronic RA and at least one swollen joint (n =
20) at the outpatient clinic at Aarhus University Hospital at the
time of therapeutic arthrocentesis (Table 1). Synovial tissues
were obtained from joints at arthroplasty from 3 patients with
chronic RA. Plasma and PBMC’s from healthy controls (HC)
(n = 10), were obtained from the Danish Blood Bank, Aarhus
University Hospital.

Ethics
The studies were approved by the Regional Ethics Committee
(2012-291-12) and the subjects’ written informed consents were
obtained according to the Declaration of Helsinki.

Cell Culture
The SFMCs cultured in RPMI medium supplemented with 10%
fetal calf serum (FCS), penicillin, streptomycin, and glutamine at a
density of 2x106 cells/ml. For the stimulation experiments, a
combination of recombinant human (rh)4-1BB.Fc chimera
(100ng/ml) (cat. no. 838-4B) and rh4-1BBL (100ng/ml), rhGal-3
(400ng/ml) (R&D Systems, USA). The cells were cultured as
previously described (16). Transfected human embryonic kidney
293 (HEK293) cells continually expressing 4-1BB were established
using the FlpIn system (Life Technologies) as described (16). 4-1BB
+HEK293 cells were incubated with either 0.1 M Lactose (Sigma-
Aldrich) or PNGase F 100 mg/ml (R&D Systems, USA) prior to
plasma addition, before processed for flow cytometry.

Activation of Activated Human CD4 T Cells
CD4+ T cells were isolated by negative selection fromHC PBMCs
(n=6) by a Human CD4+ T cell isolation kit following the
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instructions of the manufacturer (Stemcell). The T cells were
subsequently stimulated with anti-CD3, anti-CD28 (BD
Pharmingen) and IL-2 (Sigma-Aldrich) as previously described
(49). The activated CD4+ T cells were used in two set-ups A.
cultured with or without rhGal-9 (400ng/ml), rhGal-3 (400ng/ml)
(R&D Systems, USA) analysis by ImageStream. B. Cells were
cultured with, or without, 20% plasma from HCs (n=5) for
30 min. For the intracellular CD4 T cell analyses, cells were
cultured under serum free conditions and activated with anti-
CD3, anti-CD28 (BD Pharmingen) for 16 hours. Cells were then
washed and media was added containing 20% HC plasma and
Brefeldin A (10 mg/ml) for 30 min before cells were cultured on
either a laminin coated (2 ug/ml) or uncoated surface for 30 min.
Hereafter the CD4+ T cells were stimulated with rh4-1BBL
(400ng/ml) for 4 hours. The samples were directly processed
for further NanoSight, Flow cytometry or ImageStream analyses.

ELISA for 4-1BB
Soluble 4-1BB levels were measured as earlier publish (18). The
galectin+4-1BB-binding assay were coated with either rhGal-3 or
rhGal-9 (R&D Systems, USA) at 1 mg/ml with, or without, 0.1 M
Beta-lactose (Sigma, L3750-100G) followed by addition of rh4-
1BB 1 mg/ml (R&D Systems, USA). Finally, the inhibition-
binding assays were evaluated by adding a biotinylated anti-4-
1BB antibody 0.5 mg/ml (R&D Systems, USA) followed by
Streptavidin HRP. The inhibition assays were incubating O.N
at 4°C.

Flow Cytometry and ImageStream
Analyses
CD4+ T cells were surface stained for 30 min using the following
murine monoclonal antibodies: APC-anti 4-1BB (Cat. 309810),
PE-anti Gal-3 (Cat. 126706), FITC-anti CD3 (BioLegend) and
LIVE/DEAD (Life Technologies). Intracellularly staining were
preceded by blocking with 50 μg/ml mouse IgG for 15 min before
staining with an anti-TNFa antibody (Franklin Lakes, USA).
Cells were washed, fixed and analyzed on a NovoCyte
Quanteon™ or Amnis® ImageStream® Imagine Flow
Cytometer. Spectral overlap was compensated using antibody-
coated beads (eBioscience). Gating was done on live cells using
fluorescence minus one (FMO). Data were analyzed using
IDEAS for windows version 6.2 and/or FlowJo for Mac
software version 10.1.

Imagestream gating included cells in focus, single cells and
CD3 positive cells. A membrane mask was defined based on the
CD3 stain using morphology mask and erode. Membrane mask
included the outer three pixels. Within this mask the aggregation
of 4-1BB was calculated and the surface specific MFI
values determined.

Nanoparticle Tracking Analyses of Gal-3
Complexes
Quantum dot antibody coupling was done using SiteClick™

Qdot™ 655 Antibody Labeling Kit (Molecular Probes, S10453)
according to manufactures instructions. The conjugation can be
summarized as follows: anti-Gal-3 monoclonal antibody
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(Thermo Fischer #A3A12) was concentrated in antibody
preparation buffer to ensure a concentration of 2mg/ml or
above. Next, antibody carbohydrate domain was modified by
incubation with b-galactosidase for 4 hours at 37°C. Azide
modification was achieved through incubation with UDP-GalT
enzyme overnight at 30°C. Carbohydrate modified antibody was
purified and concentrated through a series of centrifugation steps
using a membrane concentrator and buffer is changed to Tris pH
7.0. Finally, DIBO modified quantum dot nanocrystals were
attached overnight at 25°C and labelled antibody was stored
at 4°C.

NTA was performed using a NanoSight NS300 system
(Malvern Panalytical). System was configured with a 405-nm
laser, a high-sensitivity scientific complementary metal–oxide–
semiconductor camera (OrcaFlash2.8, Hamamatsu C11440;
Malvern Panalytical), a syringe pump and for fluorescence
detection mode (FDM) a 650 nm long pass filter. For samples
analyzed in SDM such as recombinant proteins, the sample
chamber was washed twice before each measurement. Samples
were diluted to a concentration of 5 μg/ml and thoroughly mixed
before injection into the sample chamber using 1-ml syringes.
Recordings were made with temperature control fixed at 23°C.
Recordings were captured continuously during a steady flow at
flowrate 10 mL/min with 5 recordings of 60s duration separated
by a 5s lag time in between each recording. Videos were collected
and analyzed using NanoSight software (version 3.3 and 3.4 with
concentration upgrade). Automatic settings were used for
minimal expected particle size, minimum track length, and
blur setting. SDM Camera level (CL) 13 and detection
threshold (DT) 5 was kept constant for all samples to be
directly compared. FDM CL was set to maximum (level 16)
and DT was set close to minimum (level 3). Sample buffer was
PBS 1 mM EDTA. Human plasma samples were analyzed at a
1:10 dilution in PBS 1 mM EDTA with a 1:20,000 dilution of
specific antibody conjugates. A 100nm cut-off was established for
all samples including Quantum dot coupled antibodies to
exclude free quantum dot conjugates.

Fluorescent Anisotropy Assay
Recombinant human galectins were produced as previously
described (50). A fluorescence anisotropy (FA) assay was used to
determine the affinity of (rh)4-1BB Fc chimera protein (R&D
Systems, USA) or (rh)IgG1 Fc protein (R&D Systems, USA) to a
panel of (rh)galectins in solution, as described previously (51, 52).
Fixed concentrations of 0.3, 1.2, 0.2, 0.3, 0.2, 0.6, and 0.6 μM was
used for (rh)galectin-1 (C3S), -2, -3, -8C, -8N, -9C, and -9N,
respectively, and fluorescent probes were as previously described
(51). For (rh)galectin-3 (R186S) a fixed concentration of 2.5 μMwas
used and the fluorescent probe was as described before (52).
Calculations of average KD-values was as previously described (51).

Surface Plasmon Resonance
Surface plasmon resonance analysis was performed using a
Biacore 3000 instrument (Biacore, Uppsala, Sweden). The
Biacore sensor chip (type CM5) was activated with a 1:2
mixture of 0.2 M N-ethyl-N’-(3- dimethylaminopropyl)
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carbodiimide and 0.05 M N-hydroxysuccimide in water. Next,
rh4-1BB.Fc (cat. no. 838-4B; R&D Systems) and rhGal-3 (E. Coli
produced as described (50)) was immobilized in 10 mM sodium
acetate (pH 4.0) and the remaining binding sites were blocked
with 1 M ethanolamine (pH 8.5). The resulting density was
approximately 90fmol protein/mm2. Sensorgrams were
generated using protein at 50 nM and CaHBS with 2 mM free
Ca2Cl2 (10 mM Hepes, 150 mM NaCl, 1.5 mM CaCl2, 1.0 mM
EGTA, +0.005% P20, pH 7.4) as running buffer (16). The
analyses were performed with the following recombinant
human proteins: 4-1BBL (50 mM), Gal-3 (50mM), 4-1BB : Fc
(3-200 nM), Gal-9C (200 nM), and Gal-9N (200nM).

Immunofluorescence of RA Synovial
Tissue
Paraffin embedded RA synovial tissue slides were deparaffinized
and subjected to antigen retrieval. Non-specific binding was
blocked by incubating in PBS with 0.5% BSA and 10% donkey
serum for 30 minutes at RT and avidin and biotin block (Dako,
Denmark) for 10 min. Slides were stained using a combination of
biotinylated mice anti-4-1BB, unconjugated rabbit anti-Gal-3, or
anti-Gal-9 antibodies (All from ThermoFisher) followed by
streptavidin Alexa 546 and donkey anti-rabbit Alexa 647
(Jackson ImmunoResearch).

Microarray Analysis
Extracellular matrix microarray; The glycosylated extracellular
matrix proteins (ECM) were printed on Oncyte® nitrocellulose
film slides (Grace Bio-Labs) using a sciFLEXARRAYER S11
(Scienion). Collagen I (234138, Sigma-Aldrich), Elastin
(324751, Sigma-Aldrich), Collagen II (CC052, Sigma-Aldrich),
Laminin (AG56P, Sigma-Aldrich), Thrombospondin (605225,
Sigma-Aldrich), Fibronectin (341635, Sigma-Aldrich), Collagen
IV (CC076, Sigma-Aldrich), Collagen III (CC054, Sigma-
Aldrich), Vitronectin (CC080, Sigma-Aldrich), IgM bulk, IgG
bulk, IgG FC (Sigma-Aldrich), and Chicken collagen II (C9301,
Sigma-Aldrich) were purchased from various vendors
mentioned. Collagen II was solubilized by digestion in 0.25%
acetic acid (pH 3.1) over several hours at 2-8°C, with occasional
vortexing and sonicating. All proteins were then dissolved in
PBS, printed at a concentration of 100 mg/ml in replicates of 4
spots/protein. After printing, the slides were incubated overnight
at 4°C in a cold room. The next day, the slides were treated using
Super G Plus™ Protein Preservative (Grace Bio-Labs) as per
manufacturers recommendation to block the slides from non-
specific binding and storage. The slides were stored at -20°C in
an airtight tube container until use. The printed proteins were
verified independently with corresponding antibodies
against them.

For the assay with Gal-3, after rehydration using TSM buffer
(20 mM Tris–HCl, 150 mM sodium chloride, 0.2 mM calcium
chloride, and 0.2 mM magnesium chloride), the microarray
slides were probed with or without 20 mg/ml biotinylated
rhGal-3 [Laboratory stock (52)]. The bound Gal-3 were
detected with cyanine 5-streptavidin at 1 mg/mL (Invitrogen).
After incubation, the binding signals were directly quantified.
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Slides were scanned with a Genepix 4300A microarray scanner
(Molecular Devices, Sunnyvale, CA), photomultiplier (PMT):
450, Laser Power (LP): 25).

The N-glycan microarray construction was as described
previously (28). After rehydration using TSM buffer (20 mM
Tris–HCl, 150 mM sodium chloride, 0.2 mM calcium chloride,
and 0.2 mM magnesium chloride), the microarray slides were
probed with recombinant human Gal-9 (50 mg/ml) (9064-GA,
R&D Systems) at room temperature for 1 h. After washing with
TSM washing buffer (TSM buffer with 0.05% Tween-20), the
slides were incubated with anti-human Gal-9 (50 mg/ml) at room
temperature for 1 h. In both array setups the bound anti-Gal-9
was detected with Alexa Fluor 633-labelled anti-goat IgG (H+L)
at 5 mg/ml (A21086, Thermo Fischer). After incubation, the
binding signals were directly quantified. Slides were scanned with
a Genepix 4300A, microarray scanner from Molecular Devices
(Sunnyvale, CA).

Regarding both microarrays spot-based signal intensities were
quantified using GenePix Pro 7 (Molecular Devices). The raw
data from the software was further processed using Microsoft
Excel to obtain the background subtracted mean relative
fluorescence intensity for the four replicates of each glycan
along with the standard deviation.

Statistics
Statistical analyses and graphs were done using GraphPad Prism
7 for Mac (GraphPad Software). Normally distributed data are
represented as mean ± SEM and were analyzed by Student’s
paired t-test if not otherwise stated. A two-sided P value < 0.05
was considered statistically significant.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Regional Ethics Committee. The patients/
participants provided their written informed consent to
participate in this study.
AUTHOR CONTRIBUTIONS

MN conceived the project, helped to collect the samples,
performed experiments, analyzed data, and wrote the
manuscript. JS, TK, CG, AM, SG, and KJ-M helped to collect
the samples, performed experiments and analyzed data. TW, HL
and BD conceived the project, supervised the work, analyzed
data, and co-wrote the manuscript. All authors discussed the
results and commented on the manuscript.
Frontiers in Immunology | www.frontiersin.org 9
FUNDING

KJ-M and TV-J kindly acknowledge a generous grant from
Aarhus University Research Foundation (NOVA, AUFF-E-
2015-FLS-9-6). MN was also supported by a grant from
Aarhus University Research Foundation (NOVA, AUFF-E-
2016-9-27) and the Danish Rheumatoid Association (R188-
A6589). We acknowledge the resources and training of the
Microarray Resource of the National Center for Functional
Glycomics (NCFG) at Beth Israel Deaconess Medical Center,
Harvard Medical School (supporting grants P41GM103694
and R24GM137763).
ACKNOWLEDGMENTS

The authors would like to thank Gitte Fynbo Biller and Karin
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Supplementary Figure 1 | Co-binding of 4-1BB (cyan) and the Gal-9C (Green)
and Gal-9N (Green) terminal to immobilized Gal-3. Binding of Gal-9N and C to
4-1BB enhanced the subsequent binding to Gal-3 and also the stability of the
interaction. At fixed concentrations, Gal-9N showed a stronger binding to 4-1BB
compared to Gal-9C.

Supplementary Figure 2 | (A) Detection of complexes generated by rhGal-3
(5 mg/ml), (B) rh4-1BB (5 mg/ml) and (C) a combination hereof, measured by
nanoparticle tracking analyses. Data obtained in scatter-mode by 5 separate
recordings of 60s. Dashed line represents intraassay variation. The differences
between these curves and the combined curve are depicted in Figure 1E.

Supplementary Figure 3 | (A) CD3/CD28-activated CD4 T-cells were gated on
ImageStream and evaluated on their membrane distribution of 4-1BB, divided in
4-1BB aggregated or homogeneous distributedmembrane 4-1BB on CD4+ T Cells. (B)
Representative images of Gal-9 (Yellow) and 4-1BB (Red) co-expressing CD4+ T Cells.
(C) Activated T cells were incubated for 30 minutes at 4°C with, or without, Gal-3 or Gal-
9. Cells were then examined by ImageStream for their membrane distribution of 4-1BB.
Ratio of aggregated (Grey) and homogeneous (Orange) with or without Gal-3 or Gal-9
(n=4). Upon Gal-9 stimulation significant more 4-1BB were homogeneous distributed in
the membrane compared with untreated cells, P<0.05. (D) Activated CD4+ T Cells with
homogeneously expressed membrane 4-1BB (Orange) had a significant higher 4-1BB
MFI compared with cells on which 4-1BB was aggregated in the membrane (Grey),
P < 0.0001.

Supplementary Figure 4 | The soluble (s) levels of Gal-3 were measured by
ELISA and the particle form of Gal-3 by nanoparticle tracking analyses in patients
with RA (n=8) did not show any correlation. (A) Neither between sGal-3 levels in the
synovial fluid (SF) patients and the concentration of complexes or particles, (B) nor
between sGal-3 levels found in plasma (P) and the concentration of complexes
measured also in plasma.
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Supplementary Figure 5 | Gating strategy for permeabilized human CD3/CD28-
activated CD4 T cells intracellularly stained for TNFa. (A) Live, single cells were
tested for co-expression of 4-1BB and TNFa, gates based on FMOs, evaluated
with, or without, incubation in HC plasma for 30 min. (B) 4-1BB+ HEK293 cells
were stained for Gal-3 expression after incubation in in HC plasma for 30 min. Live,
single cells were evaluated for 4-1BB and Gal-3 expression, gates were again
based on FMOs. Gal-3+ were only seen on 4-1BB+ HEK293 cells (Blue).

Supplementary Figure 6 | (A) The glycosylated extracellular matrix proteins (ECM)
were printed on microarray slides coated with nitrocellulose. Human Galectin-3 were
tested with 20 mg/mL. The error bars (Black) represent the SD among the values of
four replicate spots. Reported Gal-3 binding is marked by transparent bars. The
probes are grouped as indicated in the colored panels. The binding signals were
directly quantified and displayed as mean relative fluorescence intensity (RFU).

Supplementary Figure 7 | Co-incubation of CD4+, 4-1BB+ T cells with plasma
from healthy controls on a laminin coated or uncoated surface for 30 min. before
being stimulated with or without 4-1BBL. Encountering a laminin coated surface did
not led to increased TNFa production in the 4-1BB+ CD4+ T cells. Further laminin
did not indirectly inhibit the effect of 4-1BBL stimulation on 4-1BB+ CD4+ T cells.
(A) In the first and second bar, activated CD4+, 4-1BB+ T cells with plasma from
healthy controls were cultured on a laminin coated or uncoated surface for 30 min.
before being stimulated with 4-1BBL (n = 5). In the third bar, co-incubation of CD4+,
4-1BB+ T cells with plasma from healthy controls on a laminin coated surface with
or without 4-1BBL stimulation (n = 4). Bars represent mean (SEM) as the fraction of
TNFa producing 4-1BB+ CD4 T cells. Second bar represents a ratio of cells
cultured with laminin compared to without laminin prior to 4-1BBL stimulation.
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Second bar represents a ratio of cells cultured with laminin but without 4-1BBL
stimulation. *P < 0.05.

Supplementary Table 1 | Average calculated KD-values (µM) for 4-1BB toward
different galectins measured with fluorescence anisotropy. Two experimental
replicates were used for calculating the average Kd-values. Between 0.2 and 2.5 µM
of each galectin with 0.02 µM of corresponding fluorescence probe was tested in
the presence of a range of concentrations (0.07-4.75 µM) of (rh)4-1BB or (rh)IgG1
Fc; anisotropy was measured and average Kd-values were calculated (in total 6-20
(rh)4-1BB concentration measuring points generating ≥ 15% inhibition were used to
calculate the average Kd-values). All galectins were tested against the same
production batch of (rh)4-1BB or (rh)IgG1 Fc. NB; Not binding (i.e. < 15% inhibition
or no inhibition at highest concentration tested). NT; Not tested. N/A; Not
applicable.

Supplementary Table 2 | Characteristics of included patients with rheumatoid
arthritis (RA). Data are expressed as % or median (IQR). DAS28CRP, disease
activity score 28 based on CRP; RA, rheumatoid arthritis. Seropositive: Presence of
IgM-rheumatoid factor or anti-citrullinated protein antibodies. DAS28CRP: Disease
Activity Score-28 for Rheumatoid Arthritis with CRP.

Supplementary Table 3 | Related to Figure 1C. The raw data of the microarray
analysis of galectin-3 and galectin-9 at 50 mg/ml in the N-glycan array, mean and SD
among the values of four replicate spots. Gal-3 data were previously published (27).
The structures specifically-bound by Gal-3 and Gal-9 are highlighted in Blue and
Green, respectively.
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