
1/14https://jkms.org

ABSTRACT

Background: We performed this study to establish a prediction model for 1-year neurological 
outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of 
spontaneous circulation (ROSC) immediately after ROSC using machine learning methods.
Methods: We performed a retrospective analysis of an OHCA survivor registry. Patients 
aged ≥ 18 years were included. Study participants who had registered between March 31, 
2013 and December 31, 2018 were divided into a develop dataset (80% of total) and an 
internal validation dataset (20% of total), and those who had registered between January 1, 
2019 and December 31, 2019 were assigned to an external validation dataset. Four machine 
learning methods, including random forest, support vector machine, ElasticNet and extreme 
gradient boost, were implemented to establish prediction models with the develop dataset, 
and the ensemble technique was used to build the final prediction model. The prediction 
performance of the model in the internal validation and the external validation dataset was 
described with accuracy, area under the receiver-operating characteristic curve, area under 
the precision-recall curve, sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV). Futhermore, we established multivariable logistic regression models 
with the develop set and compared prediction performance with the ensemble models. The 
primary outcome was an unfavorable 1-year neurological outcome.
Results: A total of 1,207 patients were included in the study. Among them, 631, 139, and 153 
were assigned to the develop, the internal validation and the external validation datasets, 
respectively. Prediction performance metrics for the ensemble prediction model in the 
internal validation dataset were as follows: accuracy, 0.9620 (95% confidence interval [CI], 
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0.9352–0.9889); area under receiver-operator characteristics curve, 0.9800 (95% CI, 0.9612–
0.9988); area under precision-recall curve, 0.9950 (95% CI, 0.9860–1.0000); sensitivity, 
0.9594 (95% CI, 0.9245–0.9943); specificity, 0.9714 (95% CI, 0.9162–1.0000); PPV, 0.9916 
(95% CI, 0.9752–1.0000); NPV, 0.8718 (95% CI, 0.7669–0.9767). Prediction performance 
metrics for the model in the external validation dataset were as follows: accuracy, 0.8509 
(95% CI, 0.7825–0.9192); area under receiver-operator characteristics curve, 0.9301 (95% 
CI, 0.8845–0.9756); area under precision-recall curve, 0.9476 (95% CI, 0.9087–0.9867); 
sensitivity, 0.9595 (95% CI, 0.9145–1.0000); specificity, 0.6500 (95% CI, 0.5022–0.7978); 
PPV, 0.8353 (95% CI, 0.7564–0.9142); NPV, 0.8966 (95% CI, 0.7857–1.0000). All the 
prediction metrics were higher in the ensemble models, except NPVs in both the internal and 
the external validation datasets.
Conclusion: We established an ensemble prediction model for prediction of unfavorable 1-year 
neurological outcomes in OHCA survivors using four machine learning methods. The prediction 
performance of the ensemble model was higher than the multivariable logistic regression model, 
while its performance was slightly decreased in the external validation dataset.

Keywords: Heart Arrest; Cardiopulmonary Resuscitation; Machine Learning

INTRODUCTION

Out-of-hospital cardiac arrest (OHCA) is one of the major health issues worldwide.1 Less 
than one-third of OHCA victims achieve return of spontaneous circulation (ROSC), and less 
than ten percent remain neurologically favorable after OHCA.2,3

Current guidelines recommend evaluating neurological outcomes after cardiac arrest at 
least 72 hours after ROSC to minimize the rate of false-positive results.4-6 Despite the 
recommended guidelines, caregivers sometimes request early outcome predictions,7 which 
may allow the caregivers and the medical personnel enough time to share information and to 
discuss the care plan for cardiac arrest survivors.

Machine learning has been widely implemented in recent studies on cardiac arrest. Several 
studies have shown that prediction models developed with machine learning methods 
can predict neurological outcomes in cardiac arrest victims.8-10 These studies mainly used 
prehospital features for establishing outcome prediction models, except several hospital 
features such as initial electrocardiography rhythm at emergency department (ED), 
percutaneous coronary intervention, targeted temperature management and extracorporeal 
membrane oxygenation.

In recent studies, initial laboratory results at hospital arrival after OHCA, such as arterial 
pH,11,12 serum potassium level,13,14 and serum creatinine level,15,16 have been reported to 
be associated with neurological outcomes after cardiac arrest. Machine learning is a crucial 
component in the establishment of prediction models that include laboratory test results 
as features since a variety of laboratory tests are performed and conventional statistical 
techniques have difficulty handling them. Previous machine learning studies did not include 
laboratory results in their prediction models, which have an important association with 
neurological outcomes in cardiac arrest survivors.
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Few studies have evaluated the prediction of neurological outcomes with machine learning 
methods in OHCA survivors immediately after ROSC. We performed this study to investigate 
the long-term neurological outcome prediction performance of several models using 
machine learning methods in OHCA survivors immediately after ROSC.

METHODS

Study setting and design
We performed a retrospective analysis of prospectively collected data archived in a 
multicenter registry of OHCA survivors. The registry consists of the data collected from 
adult OHCA survivors who had visited the EDs of three university hospitals in the Republic 
of Korea. We analyzed data from patients who had visited the EDs from March 31, 2013, 
to December 31, 2019. We included all adult (age ≥ 18 years) OHCA patients registered in 
the registry during the study period. Patients were excluded if their cerebral performance 
category (CPC) scales before OHCA were between three and five or their 1-year neurological 
outcomes were missing.

Outcome measures
The primary outcome was neurological status at one year according to the CPC scale. A 
favorable neurological outcome was defined as a CPC score of one or two, and an unfavorable 
neurological outcome was defined as a CPC score higher than two (i.e., three to five).

Statistical analysis for demographics
Continuous variables are presented as the mean ± standard deviation and were compared 
using Student's t-test or the Mann-Whitney test as appropriate. Categorical variables are 
presented as numbers (percentages) and compared using the χ2 test or Fisher's exact test as 
appropriate. Two-sided P values < 0.05 were statistically significant.

Dataset
After selection of study participants, we first split the whole dataset into two separate 
datasets: data acquired from March 31, 2013 to December 31, 2018 (dataset 1) and data from 
January 1, 2019 to December 31, 2019 (dataset 2). Dataset 1 was split again into a develop 
dataset and an internal validation dataset with an 80:20 ratio, and dataset 2 was reserved as 
an external validation dataset. Missing values were imputed with means for continuous data 
and with modes for categorical data. As missing data were not considered missing completely 
at random, we made new binary variables indicating the missingness of specific variables.

Machine learning models
We implemented four machine learning methods for the prediction of unfavorable 
neurological outcomes in the develop dataset: random forest (RF), support vector machine, 
elastic net, and extreme gradient boost. To obtain the best hyperparameters, a grid search 
was performed for each classifier. After optimization of the hyperparameters, we calculated 
the following parameters in each model on the develop and the internal validation datasets: 
accuracy, areas under the receiver operating characteristics curve (AUROCs), areas under 
the precision-recall curve (AUPRCs), sensitivity, specificity, negative predictive values 
(NPVs), positive predictive values (PPVs) and F1 scores. We also calculated 95% confidence 
intervals (CIs) for each value if possible. Five-fold cross validation was implemented to 
calculate the average prediction performance of each model on the develop dataset. After 
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model establishment, we implemented the ensemble method with soft voting with the four 
prediction models and tested the prediction performance of the ensemble prediction model 
on the internal validation dataset. The cutoff probability score of the ensemble model was 
selected with which the F1 score was maximized. The F1 score is one of the measures of the 
overall performance of a prediction model, and it is defined as a harmonic mean of sensitivity 
and PPV of the prediction model at a certain cutoff probability score. Finally, we tested the 
prediction performance of the ensemble model in the external validation dataset with the 
same cutoff probability score and calculated the same prediction performance parameters as 
in the develop and the internal validation datasets.

Variable selection
Since we aimed to establish prediction models that can be applied immediately after ROSC 
using machine learning techniques, we selected variables widely available at the time 
of ROSC. As for the laboratory variables, we used most of initial laboratory test results 
for model develop. However, we discarded variables 1) that are thought to have strong 
correlation with other included variables (e.g., total carbon dioxide level, pH, arterial 
oxygen saturation), 2) that are associated with organ function but represented by other 
included variables (e.g., aspartate aminotransferase, alanine aminotransferase, alkaline 
phosphatase, activated partial thromboplastin time, creatinine kinase, creatinine kinase MB 
isoenzyme, pro-B-natriuretic peptide), 3) that are non-classic anion or cation (e.g. ionized 
calcium, phosphorus), 4) that are not thought to be widely used in general EDs (e.g., red cell 
distribution width, neuron-specific enolase, S100 protein, central venous oxygen saturation, 
cortisol, adrenocorticotropic hormone, antidiuretic hormone), and 5) that are not available 
immediately after ROSC (data from laboratory tests performed at 24 hours and 72 hours after 
ROSC). We finally used 46 variables for the analysis, including baseline variables, prehospital 
variables, ED resuscitation variables and laboratory variables. Details of the variables used are 
described in Supplementary Table 1.

Subgroup analysis
We selected patients whose cardiac arrest was presumed to be of cardiac origin as a cardiac 
subgroup. We performed the same analysis as we performed in the main analysis with the 
cardiac subgroup dataset, including data splitting, implementation of the four machine 
learning methods and ensemble technique, selection of cutoff probability scores and 
calculation of prediction parameters.

Logistic regression analysis
To explain the variable importance indirectly and to compare performance metrics of the 
ensemble models with that of classic prediction models, we established multivariable logistic 
regression models for unfavorable neurological outcomes with the same variables used in the 
machine learning analysis. We set the cutoff probability score of 0.5 for logistic regression 
analyses. Same performance metrics used in the machine learning analysis, such as accuracy, 
AUROC, AUPRC, sensitivity, specificity, PPV, NPV, and F1 scores were calculated.

Tools for analysis
All statistical analyses for demographics, data splitting and logistic regression analysis were 
performed with R version 4.0.2 (R Foundation, Vienna, Austria). All codes for machine 
learning analyses and calculation of performance metrics were written in Python 3.7 (Python 
Software Foundation, Wilmington, DE, USA).
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Ethics statement
Study protocols for collecting data for the registry and for the main analyses were approved 
by the Institutional Review Boards (IRBs) of participating hospitals (Seoul National 
University Hospital, IRB No. 1408-012-599; Seoul Metropolitan Government-Seoul National 
University Boramae Hospital, IRB No. 16-2013-157; Seoul National University Bundang 
Hospital, IRB No. B-1401/234-402) and the IRB of Seoul National University Hospital (IRB 
No. 2012-016-117), respectively. Informed consent was waivered by the IRB of Seoul National 
University Hospital, according to the retrospective nature of the study.

RESULTS

Patient selection and baseline demographics
During the study period, 1,214 patients were registered in the registry of which 1,061 
comprised dataset 1 and 153 comprised dataset 2 (Fig. 1). A total of 1,054 of the 1,061 patients 
in dataset 1 met the inclusion criteria. After excluding patients meeting the prespecified 
exclusion criteria, 789 patients were included in the final analysis. Six hundred thirty-one 
patients were assigned to the develop dataset, and the rest were assigned to the internal 
validation dataset. Four hundred ninety-two (78.0%) patients in the develop dataset 
remained with unfavorable neurological outcomes at the 1-year follow-up. Thirty-nine 
patients from dataset 2 were excluded, and the remaining 114 patients were included in the 
external validation dataset. The baseline characteristics of the develop dataset are described 
in Table 1.
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Patients screened
(N = 1,214)

Training dataset
(n = 631)

Test dataset
(n = 158)

Dataset 1:
Mar 1, 2013– Dec 31, 2018

(n = 1,061)

Unfavorable 1-year
neurological outcome

(n = 492)

Favorable 1-year
neurological outcome

(n = 139)

Dataset 2:
Jan 1, 2019– Dec 31, 2019

(n = 153)

External validation dataset
(n = 114)

Met inclusion criteria
(n = 1,054)

Patients analyzed
(n = 789)

Met inclusion criteria
(n = 153)

Excluded (n = 39)
• Baseline CPC 3–5 (n = 33)
• Unknown 1-year outcome (n = 6)

Excluded (n = 265)
• Baseline CPC 3–5 (n = 243)
• Unknown 1-year outcome (n = 22)

Fig. 1. Study flow chart. 
CPC = cerebral performance category.
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Table 1. Baseline characteristics of the original develop dataset
Variables One-year neurological outcome P value

Unfavorable (n = 492) Favorable (n = 139)
Baseline variables

Age 63.4 ± 16.5 53.6 ± 13.2 < 0.001
Male, sex 317 (64.4) 111 (79.9) 0.001
Antiplatelet 90 (19.7) 27 (20.6) 0.914
Anticoagulant 28 (6.1) 10 (7.6) 0.681
Antihypertensive agent 155 (34.1) 57 (42.9) 0.079
Diabetes mellitus 148 (30.5) 21 (15.2) 0.001
Hypertension 210 (43.3) 55 (39.9) 0.532
Dyslipidemia 29 (6.0) 14 (10.1) 0.130

Prehospital variables
Witnessed 328 (66.7) 116 (83.5) < 0.001
Bystander CPR 197 (40.2) 89 (65.0) < 0.001
Bystander AED use 6 (1.2) 6 (4.3) 0.043
Prehospital initial rhythm < 0.001

Shockable 87 (20.7) 91 (82.0)
Asystole 206 (48.9) 7 (6.3)
PEA 122 (29.0) 13 (11.7)
Unknown 6 (1.4) 0 (0.0)

Prehospital defibrillation by EMS 91 (18.8) 99 (72.3) < 0.001
EMS CPR 440 (89.6) 119 (86.9) 0.450
EMS airway 0.020

Endotracheal tube 31 (7.2) 4 (3.6)
Supraglottic airway 155 (36.0) 29 (26.4)
Oral airway 102 (23.7) 24 (21.8)
None 142 (33.0) 53 (48.2)

ROSC before EMS arrival 13 (2.6) 6 (4.3) 0.451
ROSC by EMS 64 (13.0) 94 (68.6) < 0.001

Hospital variables
ED airway 398 (99.5) 71 (97.3) 0.220
Initial GCS, eye 1.2 ± 0.7 2.3 ± 1.4 < 0.001
Initial GCS, verbal 0.2 ± 0.6 1.5 ± 2.1 < 0.001
Initial GCS, motor 1.5 ± 1.2 3.6 ± 2.1 < 0.001
Initial light reflex, right < 0.001

Prompt 107 (24.9) 105 (82.7) < 0.001
Sluggish 28 (6.5) 14 (11.0)
Fixed 295 (68.6) 8 (6.3)

Initial light reflex, Left < 0.001
Prompt 105 (24.4) 104 (81.9)
Sluggish 33 (7.7) 13 (10.2)
Fixed 292 (67.9) 10 (7.9)

Initial pupil size, right, mm 4.5 ± 1.9 3.6 ± 1.3 < 0.001
Initial pupil size, left, mm 4.5 ± 1.9 3.6 ± 1.3 < 0.001
Initial corneal reflex, left < 0.001

Yes 3 (0.6) 11 (7.9)
No 20 (4.1) 3 (2.2)
Not checked 469 (95.3) 125 (89.9)

Etiology < 0.001
Medical (cardiac) 137 (27.8) 113 (81.3)
Medical (noncardiac) 180 (36.6) 15 (10.8)
Medical (unknown) 33 (6.7) 5 (3.6)
Nonmedical 142 (28.9) 6 (4.3)

Laboratory variables
White blood cells, 1,000/μL 13.7 ± 6.7 14.4 ± 8.0 0.378
Hemoglobin, g/dL 11.9 ± 3.7 14.1 ± 2.7 < 0.001
Platelets, 1,000/μL 185.0 ± 90.9 227.8 ± 74.9 < 0.001
Na, mmol/L 139.2 ± 7.0 138.7 ± 4.2 0.322
K, mmol/L 5.1 ± 2.0 3.9 ± 1.0 < 0.001

(continued to the next page)



Prediction performance
The average prediction performance of each model in the original develop dataset calculated 
by five-fold cross validation for each model with cutoff probability scores of 0.5 is described 
in Supplementary Table 2. The cutoff probability score of the ensemble model was set as 
0.605, and the prediction performance of the ensemble model in the internal validation 
dataset is described in Table 2, Fig. 2A and B. When the ensemble model was implemented 
in the external validation dataset, overall prediction performance metrics such as accuracy, 
AUROC, AUPRC, and F1 score were all decreased by certain degrees compared with those in 
the internal validation dataset (Table 2, Fig. 2C and D). The average prediction performance 
of each model in the cardiac subgroup develop dataset calculated by five-fold cross validation 
for each model with cutoff probability scores of 0.5 is described in Supplementary Table 3. 
In the cardiac subgroup analysis, the cutoff probability score of the ensemble model was set 
as 0.525. Prediction performance was decreased in the cardiac subgroup internal validation 
dataset compared with that in the original internal validation dataset (Table 2, Fig. 2E and F),  
and prediction performance in the cardiac subgroup external validation dataset was also 
decreased (Table 2, Fig. 2G and H).
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Table 2. Accuracy, AUROC, AUPRC, sensitivity, specificity, PPVs, NPVs, and F1 scores for the ensemble model in the internal validation dataset, the external 
validation dataset and the cardiac subgroups of the internal validation and the external validation datasets
Population Dataset Accuracy  

(95% CI)
AUROC  

(95% CI)
AUPRC  

(95% CI)
Sensitivity  
(95% CI)

Specificity  
(95% CI)

PPV  
(95% CI)

NPV  
(95% CI)

F1 score

Original 
analysis

Internal 
validation

0.9620  
(0.9352–0.9889)

0.9800  
(0.9612–0.9988)

0.9950  
(0.9860–1.0000)

0.9594  
(0.9245–0.9943)

0.9714  
(0.9162–1.0000)

0.9916  
(0.9752–1.0000)

0.8718  
(0.7669–0.9767)

0.9752

External 
validation

0.8509  
(0.7825–0.9192)

0.9301  
(0.8845–0.9756)

0.9476  
(0.9087–0.9867)

0.9595  
(0.9145–1.0000)

0.6500  
(0.5022–0.7978)

0.8353  
(0.7564–0.9142)

0.8966  
(0.7857–1.0000)

0.8931

Cardiac 
subgroup 
analysis

Internal 
validation

0.9661  
(0.9191–1.0000)

0.9954  
(0.9781–1.0000)

0.9959  
(0.9797–1.0000)

1.0000  
(1.0000–1.0000)

0.9286  
(0.8332–1.0000)

0.9394  
(0.8580–1.0000)

1.0000  
(1.0000–1.0000)

0.9688

External 
validation

0.6600  
(0.5021–0.8179)

0.8917  
(0.7906–0.9928)

0.8968  
(0.7980–0.9956)

0.9000  
(0.7685–1.0000)

0.5000  
(0.3211–0.6789)

0.5455  
(0.3756–0.7153)

0.8824  
(0.7292–1.0000)

0.6792

The cutoff probability scores for unfavorable neurological outcomes were set at 0.605 and 0.525 for the ensemble models in the original and the cardiac 
subgroup analyses, respectively.
AUROC = area under the receiver operating characteristic curve, AUPRC = area under the precision-recall curve, PPV = positive predictive value, NPV = negative 
predictive value, CI = confidence interval.

Variables One-year neurological outcome P value
Unfavorable (n = 492) Favorable (n = 139)

Cl, mmol/L 102.6 ± 11.2 103.8 ± 4.9 0.076
Blood urea nitrogen, mg/dL 28.1 ± 21.6 20.6 ± 13.9 < 0.001
Creatinine, mg/dL 2.0 ± 1.8 1.6 ± 1.9 0.015
Total bilirubin, mg/dL 1.1 ± 2.3 0.7 ± 0.4 0.001
Glucose, mg/dL 267.2 ± 165.2 219.2 ± 95.3 < 0.001
Albumin, g/dL 3.1 ± 0.7 3.8 ± 0.5 < 0.001
PT INR 2.1 ± 7.3 1.2 ± 0.4 0.015
Troponin I, ng/mL 1.7 ± 5.9 8.2 ± 50.3 0.139
D-dimer, μg/dL 18.6 ± 22.7 8.9 ± 15.7 < 0.001
pH 6.9 ± 0.2 7.2 ± 0.2 < 0.001
PCO2, mmHg 75.7 ± 28.0 49.4 ± 23.6 < 0.001
PO2, mmHg 73.9 ± 79.0 108.8 ± 110.4 0.057
HCO3

−, mmol/L 23.4 ± 30.0 25.0 ± 26.6 0.745
Lactate, mmol/L 13.3 ± 6.3 10.5 ± 5.2 0.005

CPR = cardiopulmonary resuscitation, AED = automated external defibrillator, PEA = pulseless electrical activity, 
EMS = emergency medical service, ROSC = return of spontaneous circulation, ED = emergency department, GCS = 
glasgow coma scale, PT INR = prothrombin time international normalized ratio, PCO2 = partial pressure of carbon 
dioxide, PO2 = partial pressure of oxygen, HCO3

− = bicarbonate ion.

Table 1. (Continued) Baseline characteristics of the original develop dataset



Multivariable logistic regression models derived from the original develop dataset and 
the cardiac subgroup develop dataset are described in the Supplementary Tables 4 and 5, 
respectively. Most of the performance metrics were decreased in the logistic regression 
models compared with that in the ensemble models (Table 3). Only following metrics were 
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Fig. 2. Receiver operating characteristic curves and precision-recall curves for the ensemble prediction model in various datasets. (A) and (B) in the original 
internal validation dataset, (C) and (D) in the external validation dataset, (E) and (F) in the cardiac subgroup internal validation dataset, (G) and (H) in the 
cardiac subgroup external validation dataset.



better in the logistic regression models: NPV in the original internal validation dataset, 
NPV in the original external validation dataset, accuracy, specificity, PPV and F1 score in the 
cardiac subgroup external validation dataset. Receiver operating characteristics curves and 
precision-recall curves for the multivariable logistic regression models in each dataset are 
presented in the Supplementary Fig. 1.

DISCUSSION

In the present study, we established and validated a prediction model using an ensemble 
technique with four machine learning methods for the prediction of unfavorable 1-year 
neurological outcomes in OHCA survivors. The overall prediction performance of the ensemble 
model in the external validation set was favorable, with an AUROC of 0.9301 (95% CI, 0.8845–
0.9756) and an AUPRC of 0.9476 (95% CI, 0.9087–0.9867). The prediction performance of 
the ensemble model in the cardiac subgroup external validation set was also good but not 
comparable with that in the original external validation set, with an AUROC of 0.8917 (95% CI, 
0.7906–0.9928) and an AUPRC of 0.8968 (0.7980–0.9956). Performance metrics of the ensemble 
models were higher than that of the multivariable logistic regression models in general.

The prediction performance of certain machine learning methods is decreased when class 
imbalance is present in the develop dataset.17 In the develop dataset of our cardiac subgroup, 
the number of patients with favorable 1-year neurological outcomes was 114 (48.3%) 
among 236, which means that the classes in the cardiac subgroup develop dataset were 
more balanced than those in the original develop dataset. In the present study, however, 
prediction performance in terms of the AUPRC was decreased in general in the cardiac 
subgroup compared with the original group. Despite relatively balanced classes in the cardiac 
subgroup, a smaller sample size might have carried a higher risk of model overfitting, which 
might have resulted in slightly decreased prediction performance.

Early neurologic prognostication after cardiac arrest is important to avoid obvious 
futile treatment or inappropriate withdrawal of postcardiac arrest care. Current 
international guidelines recommend that neurologic prognostication be performed using 
multiple modalities, including clinical examination findings, serum biomarkers and 
electrophysiological tests.4-6 It is also recommended that the timing of prognostication be 
delayed for at least 72 hours after ROSC.4-6
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Table 3. Accuracy, AUROC, AUPRC, sensitivity, specificity, PPVs, NPVs, and F1 scores for the multivariable logistic regression model in the internal validation 
dataset, the external validation dataset and the cardiac subgroups of the internal validation and the external validation datasets
Population Dataset Accuracy  

(95% CI)
AUROC  

(95% CI)
AUPRC  

(95% CI)
Sensitivity  
(95% CI)

Specificity  
(95% CI)

PPV  
(95% CI)

NPV  
(95% CI)

F1 score

Original 
analysis

Internal 
validation

0.9051  
(0.8590–0.9512)

0.8777  
(0.8239–0.9315)

0.9374  
(0.9015–0.9734)

0.7632  
(0.6280–0.8983)

0.9500  
(0.9110–0.9890)

0.8286  
(0.7037–0.9534)

0.9268  
(0.8808–0.9729)

0.9383

External 
validation

0.8421  
(0.7716–0.9126)

0.8095  
(0.7318–0.8871)

0.8337  
(0.7613–0.9061)

0.8235  
(0.6954–0.9517)

0.8500  
(0.7718–0.9283)

0.7000  
(0.5580–0.8420)

0.9189  
(0.8567–0.9811)

0.8831

Cardiac 
subgroup 
analysis

Internal 
validation

0.8305  
(0.7258–0.9352)

0.8318  
(0.7275–0.9361)

0.7969  
(0.6832–0.9106)

0.8000  
(0.6569–0.9431)

0.8621  
(0.7366–0.9876)

0.8571  
(0.7275–0.9868)

0.8065  
(0.6674–0.9455)

0.8333

External 
validation

0.8000  
(0.6678–0.9322)

0.8083  
(0.6784–0.9383)

0.6621  
(0.5044–0.8197)

0.8846  
(0.7618–1.0000)

0.7083  
(0.5265–0.8902)

0.7667  
(0.6153–0.9180)

0.8500  
(0.6935–1.0000)

0.7727

The cutoff probability scores for unfavorable neurological outcomes were set at 0.5 for the logistic regression model.
AUROC = area under the receiver operating characteristic curve, AUPRC = area under the precision-recall curve, PPV = positive predictive value, NPV = negative 
predictive value, CI = confidence interval.



Several studies have evaluated the prediction performance of machine learning-based models 
for neurological outcomes after OHCA. Kwon et al.9 used national OHCA registry data to 
develop a deep learning-based prediction model, the prediction performance of which was 
better than conventional machine learning-based models. These authors' model did not 
include hospital variables except the ED visit to ROSC time, and the study endpoints were 
short-term neurological outcome and survival discharge. Seki et al.8 used the RF model to 
predict 1-year survival in OHCA patients with presumed cardiac etiology without predicting 
long-term functional outcomes. Park et al.10 also developed machine learning-based 
prediction models for neurological outcomes at discharge in OHCA patients; however, long-
term neurological outcome was not the scope of the study.

Aside from the overall performance of the prediction models, one of the most important 
issues is minimizing false positive prediction for unfavorable neurological outcomes when 
predicting neurological outcomes of cardiac arrest survivors. False positive prediction can 
lead to withdrawal of intensive postcardiac arrest care from patients who otherwise may 
fully or nearly fully recover and return to daily life. To exclude the possibility of false positive 
prediction, recent guidelines recommended the use of prognostic measures with false 
positive rates lower than or equal to 1%, i.e., with specificity higher than 99%.4-6,18 We set 
cutoff probability scores in each prediction model with which the F1 score is maximized. 
Although the specificity of the ensemble model in the original internal validation dataset 
scored 0.9714 (0.9162–1.0000) with a cutoff probability score of 0.605, which is not over 
99% but is acceptable, the specificity was significantly reduced (0.6500 [95% CI, 0.5022–
0.7978]) when it was implemented in the external validation dataset. Although we trained 
the prediction models comprising the ensemble model in a separate develop dataset, the 
prediction performance was different in the internal validation and external validation 
datasets. Both datasets were hold-out datasets, which had never been involved in model 
training. However, the internal validation dataset was collected in the same period in which 
the develop dataset was acquired, and the external validation dataset was collected thereafter. 
The internal validation dataset was more likely to be similar to the develop dataset than the 
external validation dataset, and the difference in similarity between the two datasets might 
have resulted in different prediction performances.

The previously reported specificity of machine learning methods for the prediction of 
unfavorable outcomes in cardiac arrest victims ranged from 66.7% to 95.3%.9,10 and the 
ensemble prediction models in the present study outperformed the previous models in terms 
of specificity in the internal validation dataset. The major difference between our study and 
previous studies is that we included laboratory variables to train and to establish prediction 
models. Initial laboratory data immediately after ROSC have a significant association with 
neurological outcomes in cardiac arrest survivors.11-16 Establishing prediction models by 
adding widely available laboratory data might have contributed to the improvement of model 
performance, despite a smaller sample size than those of previous studies.

One of the strengths of our study is that we developed a neurological outcome prediction 
model that can be implemented immediately after ROSC in OHCA survivors. Earlier timing 
of prognostication than currently recommended by guidelines4-6 may aid medical personnel 
and the guardians of the OHCA victims in shared decision on implementation of intensive 
care or withdrawal of life-sustaining treatment. We used laboratory variables that had 
been initially obtained at the timing of ED arrival. Previous studies using machine learning 
models for neurological outcomes in OHCA patients did not include laboratory values in the 
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prediction models,8-10 which might have improved prediction performance if they had been 
included. We defined 1-year neurological outcomes as the primary outcome, which was not 
focused on previous studies.8-10 As the hospital cost of caring for cardiac arrest survivors is 
considerable.19-21 our study may have a role in reducing the socioeconomic burden associated 
with potentially futile treatment.

There are a couple of factors to consider before implementation of our prediction model in 
clinical field to aid clinical decisions. First, prognostic measures that are considered reasonable 
for neuroprognostication in the guidelines showed specificity higher than or equal to 99%.4-

6,18 As our prognostic model could not reach such high specificity for unfavorable neurological 
outcomes, performance improvement is essential before clinical implementation, especially 
in terms of specificity. We hope organizing dataset with a large number of medical centers 
may improve specificity of the prediction model, without compromising sensitivity. Second, 
prognostic measures that are available immediately after ROSC, such as gray-white matter 
ratio,22 may improve prognostic performance of the model when added. Furthermore, as 
guidelines recommend multimodal approach for neuroprognostication, our prediction model 
may help clinical decision by providing outcome probability as one of the prognostic measures, 
not by simply discriminating the prognosis into favorable outcomes or unfavorable outcomes.

Our study has several limitations. First, the small sample size compared with previous studies 
reduced the statistical power of the results.8-10 Considering that the rate of survival to ED arrival 
in OHCA patients is approximately one-fourth,2,3 the number of participants in our study 
may be larger than it was thought needed to be. Second, although we performed an external 
validation with the ensemble prediction model, the external validation dataset was too small. 
Moreover, the prediction performance of the model in the external validation set showed 
a potential risk of overfitting, which may impede the generalizability of the study results. 
However, we performed the analyses with a multicenter registry, and the multicenter nature 
of the study may attenuate this weakness. Finally, we did not include several prognostic tools 
that are suggested in the current guidelines, such as neuron-specific enolase or quantitative 
pupillometry. These tests are not always routinely performed in small centers; therefore, the 
exclusion of those variables from the models is reasonable in view of practical use.

In conclusion, we established an ensemble prediction model for prediction of unfavorable 1-year 
neurological outcomes in OHCA survivors using four machine learning methods. The prediction 
performance of the ensemble model was higher than the multivariable logistic regression model, 
while its performance was slightly decreased in the external validation dataset.
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