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A highly thermotolerant laccase produced 
by Cerrena unicolor strain CGMCC 5.1011 
for complete and stable malachite green 
decolorization
Yanhua Yao1, Guimei Zhou1, Yonghui Lin2, Xinqi Xu1* and Jie Yang1*

Abstract 

Laccases are a class of multi-copper oxidases with important industrial values. A thermotolerant laccase produced by 
a basidiomycete fungal strain Cerrena unicolor CGMCC 5.1011 was studied. With glycerin and peptone as the carbon 
and nitrogen sources, respectively, a maximal laccase activity of 121.7 U/mL was attained after cultivation in the shak-
ing flask for 15 days. Transcriptomics analysis revealed an expressed laccase gene family of 12 members in C. unicolor 
strain CGMCC 5.1011, and the gene and cDNA sequences were cloned. A glycosylated laccase was purified from the 
fermentation broth of Cerrena unicolor CGMCC 5.1011 and corresponded to Lac2 based on MALDI-TOF MS/MS iden-
tification. Lac2 was stable at pH 5.0 and above, and was resistant to organic solvents. Lac2 displayed remarkable ther-
mostability, with half-life time of 1.67 h at 70 ºC. Consistently, Lac2 was able to completely decolorize malachite green 
(MG) at high temperatures, whereas Lac7 from Cerrena sp. HYB07 resulted in accumulation of colored MG transfor-
mation intermediates. Molecular dynamics simulation of Lac2 was conducted, and possible mechanisms underlying 
Lac2 thermostability were discussed. The robustness of C. unicolor CGMCC 5.1011 laccase would not only be useful for 
industrial applications, but also provide a template for future work to develop thermostable laccases.
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Key points

1.	 C. unicolor strain CGMCC 5.1011 produced 122 U/
mL laccase.

2.	 The strain contained 12 expressed laccase isozymes.
3.	 A novel, thermostable laccase, Lac2, was purified and 

characterized.
4.	 Lac2 decolorized malachite green at 50 and 70 ºC 

whereas another laccase failed.

Introduction
Laccases (EC 1.10.3.2) are copper-containing oxidases 
catalyzing oxidation of phenolic/non-phenolic lignin-
related compounds and recalcitrant environmental 
pollutants (Baldrian 2006; Couto and Herrera 2006). 
Because laccases have low substrate specificity, utilize 
oxygen as final electron acceptor and produce water as 
only by-product, they find applications in paper pulping 
and bleaching, textile refining, dye decolorization, biore-
mediation, organic synthesis, juice and wine clarification, 
etc. (Ai et  al. 2015; Yang et  al. 2017a) Nonetheless, lac-
case applications are hampered by low production yields 
and reduced performance under industrial conditions 
such as high temperatures (Yang et al. 2017a).

Laccases are widespread in nature; they are found 
in microorganisms, plants and animals, and white-rot 
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fungi are considered the most efficient laccase producers 
(Arora and Sharma 2010; Couto and Toca-Herrera 2007). 
Although the Cerrena genus is not as intensively studied 
as Trametes, Cerrena species have gained attention as 
laccase producers (Chen et  al. 2012; Yang et  al. 2017a). 
We have previously reported a Cerrena sp. HYB07 with 
high laccase yields; Lac7 is the laccase predominantly 
produced by HYB07 (Yang et  al. 2014, 2015a, 2016b) 
and is active towards a wide range of substrates, includ-
ing dyestuffs and antibiotics (Yang et  al. 2015b, 2016a, 
2016c, 2016d). In the present work, we continued our 
quest for laccase-secreting Cerrena and investigated a 
C. unicolor strain CGMCC 5.1011. Transcriptomics and 
cloning revealed a laccase gene family of 12 members in 
C. unicolor CGMCC 5.1011. Lac2 was purified from the 
fermentation broth and displayed extraordinary ther-
mostability. Lac2 was able to decolorize the triphenyl-
methane dye malachite green (MG) despite incomplete 
decolorization by Lac7 from Cerrena sp. HYB07 due to 
heat inactivation. The research presented herein provided 
a novel laccase with thermotolerance and thermostability 
that would be desirable for industrial applications.

Materials and methods
Strain and media
C. unicolor strain CGMCC 5.1011 was purchased from 
China General Microbiological Culture Collection 
Center and maintained on potato dextrose agar (PDA) 
at 4 ºC. The fermentation medium for strain 5.1011 con-
tained (g/L): KH2PO4 6  g, MgSO4·7H2O 4.14  g, CaCl2 
0.3 g, NaCl 0.18 g, CuSO4·5H2O 0.0625 g, ZnSO4·7H2O 
0.018 g, VB1 0.15 g and respective carbon and nitrogen 
sources. The following carbon sources were tested at 
2.0% (w/v): Mannitol, glycerol, glucose, lactose, sucrose, 
cellulose, maltodextrin, corn dextrin, β-dextrin, soluble 
starch, corn starch, in combination with 1.5% (w/v) pep-
tone. Next, the following nitrogen source were tested at 
the level of 1.5% (w/v): ammonium nitrate, ammonium 
tartrate, peptone, yeast extract, beef extract, ammonium 
sulphate, and soybean cake powder. The concentrations 
of the nutrient sources were also optimized. Fermen-
tation of Cerrena sp. strain HYB07 was carried out as 
described (Yang et al. 2015a).

Transcriptomics analysis of C. unicolor CGMCC 5.1011
Mycelia were collected from 6-d-old C. unicolor CGMCC 
5.1011, and total RNA was extracted with a RNeasy Plant 
Mini Kit (Qiagen, Hilden, Germany). Transcriptomics 
analysis was performed by Novogene (Beijing, China). 
Briefly, after RNA quality check, 3 µg RNA was used as 
input material. Sequencing libraries were generated using 
NEBNext Ultr RNA Library Prep Kit for Illumina (NEB, 
Ipswich, MA, USA). After cluster generation, the library 

preparations were sequenced on an Illumina Hiseq plat-
form and paired-end reads were generated; then data 
analysis, gene function was annotated based on the fol-
lowing databases: Nr, Nt, Pfam, KOG/COG, Swiss-Prot, 
KO, and GO.

Cloning of laccase genes and cDNA
DNA was extracted with E.Z.N.A. HP Fungal DNA Kit 
(Omega, Norcross, GA, USA). TransScript One-Step 
Removal and cDNA Synthesis SuperMix (TransGen 
Biotech, Beijing, China) was used to synthesize the first 
strands of cDNA. PCR was carried out with 2 × EasyTaq 
PCR SuperMix (TransGen Biotech, Beijing, China). Ther-
mal asymmetric interlaced PCR (TAIL-PCR) was used to 
clone the flanking sequences of incomplete laccase genes. 
Primers used are listed in Supplementary Table S1. PCR 
products were inserted into pMD18-T vector (Takara, 
Dalian, China), and the recombinant vectors were trans-
formed into E. coli TOP10 competent cells (Life Tech-
nologies, Grand Island, NY, USA). Four clones of each 
PCR product were randomly selected and submitted to 
sequencing analysis.

Bioinformatic analysis
Sequences were analyzed by using BLAST (Altschul 
1990). Signal peptide was predicted with SignalP 3.0 
(Bendtsen et  al. 2004). Potential N-glycosylation sites 
(Asn-X-Ser/Thr) were identified with ScanProsite 
(Edouard et  al. 2006). Alignments of laccase proteins 
were generated with Clustal Omega (Sievers et al. 2011). 
Phylogeny tree of selected fungal laccases were calculated 
in MEGA version 7.0 (Tamura 2011). Hydrophobic inter-
action and salt bridges were predicted by Protein Inter-
actions Calculator (PIC) web server (Tina et  al. 2007). 
Three-dimensional structures were visualized and ana-
lyzed by using PyMOL Molecular Graphics System (Ver-
sion 1.80, Schrödinger, LLC) (Lam 2016).

Enzyme activity assay
Laccase activity was assayed with ABTS 
(ε = 36,000 M−1 cm−1), guaiacol (ε = 26,600 M−1 cm−1) or 
catechol (ε = 1260 M−1 cm−1) as the substrate by follow-
ing absorbance change at 420, 470 and 400 nm, respec-
tively. One unit of enzyme activity was defined as the 
amount of enzyme needed to oxidize 1 μmol substrate in 
1 min. All measurements were carried out in triplicate.

Protein purification and characterization
The fermentation broth was harvested by centrifugation 
at 12,000g for 10  min and then filtered. The precipitate 
formed with 50% to 90% (NH4)2SO4 was collected by cen-
trifugation (20,000g, 20  min), resuspended in buffer A 
(50 mM Tris–HCl buffer, pH 8.0) and dialyzed in buffer 
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A. The dialyzed crude enzyme solution was applied at 
5  mL/min to a HiTrap DEAE column pre-equilibrated 
with buffer A. Adsorbed proteins were eluted with 0.15 
NaCl in buffer A. The purified protein was analyzed by 
SDS-PAGE for homogeneity and stained with Coomas-
sie Brilliant Blue R-250. Deglycosylation was carried out 
with Peptide N-glycosidase F (Takara, Dalian, China) 
according to manufacturer’s instructions. Protein iden-
tification with MALDI-TOF MS/MS was performed by 
APT SHANGHAI Applied Protein Technology (Shang-
hai, China).

Enzymatic characterization of the purified laccase
The effect of pH on laccase activity was determined 
between pH 2.5 to 6.5 at 40 ºC. pH stability was studied 
by incubating the enzyme at pH 2.5–9.0 at 30 ºC for 48 h. 
Residual laccase activity was quantified with ABTS as the 
substrate. Buffers used included citrate–phosphate buffer 
(pH 2.5–8.0), and glycine–NaOH buffer (pH 9.0).

For optimum temperature, laccase activity was meas-
ured at the optimum pH and temperatures from 20 
to 70  ºC. Thermostability was analyzed by incubating 
the enzyme at different temperatures (40–70  ºC), and 
residual activity was assayed with ABTS at optimum pH 
and temperature. All experiments were performed in 
triplicate.

Effect of metal ions on activity of the purified enzyme 
was investigated. Metal ions Al3+, Ca2+, Ce3+, Cu2+, Fe2+, 
K+, Li+, Mg2+, Mn2+ and Zn2+ were in form of sulfate, 
Cd2+, Hg2+, Ni2+ and Co2+ in form of nitrate, and Pb2+ 
in form of subacetate. Individual inhibitor or metal ion 
was incorporated in the enzyme assay, and activity was 
determined with ABTS at optimal temperature and pH. 
Enzyme activity in absence of metal ions was regarded as 
100%.

Organic solvents, namely methanol, ethanol, acetone, 
isopropanol, acetonitrile and dimethyl sulfoxide (DMSO), 
was added individually to the enzyme activity assay to the 
final concentration of 10% or 25%, and the laccase activity 
assay was carried out at the optimal temperature and pH 
with ABTS as the substrate. Enzyme activity in absence 
of organic solvents was regarded as 100%.

MG decolorization
Decolorization of MG was carried out at 30, 50 and 70 °C 
with laccase from C. unicolor strain CGMCC 5.1011 and 
Cerrena sp. HYB07, respectively. The decolorization 
mixture contained 50 mM citrate–phosphate buffer (pH 
6.0), 100  mg/L MG and 20 U/mL laccase. The mixture 
with heat-inactivated laccase was used as the negative 
control. After decolorization, the reaction mixtures were 
subjected to UV–visible analysis with a Hitachi U-2910 
UV–Vis spectrophotometer (Chiyoda, Tokyo, Japan). 

Decolorization efficiency was monitored at 618 nm and 
calculated with the following formula:

where A0 and A1 are the absorption of MG before and 
after laccase treatment, respectively.

Molecular dynamics (MD) simulation
Homologous modeling was conducted with Phyre2 
(Kelley et  al. 2015), and MD simulation was carried 
out with BIOVIA Discovery Studio software (BIOVIA 
2015). Solvation of the laccase protein was performed in 
CHARMm force field. Then standard dynamics cascade, 
including energy minimization for solvent, ions, protein 
and the whole system, heating, equilibration and MD 
production was done by the Discovery Studio software. 
The time for equilibration was 20  ps, and the time for 
MD production was 200 ps. The MD data was analyzed 
using Analyze Trajectory to obtain Root Mean Square 
Deviation (RMSD) and Root Mean Square Fluctuation 
(RMSF).

Results
Laccase production by C. unicolor CGMCC 5.1011
C. unicolor strain CGMCC 5.1011 was verified by 18  s 
rDNA sequencing. Among 11 carbon sources, glycerin 
was found to be the optimal carbon source, with the 
highest laccase activity of 121.7 U/mL at day 15 (Fig. 1a). 
Next, different concentrations of glycerin was used, and 
laccase production was followed (Fig.  1b). With 1.0% 
glycerin, the peak of 40.4 U/ml was reached at day 11. At 
higher glycerin concentrations of 3.0% and 5.0%, greatest 
laccase yields of 63.7 and 29.8 U/ml, respectively, were 
observed at day 17. Therefore, 2.0% was determined as 
the optimal glycerin concentration. Among the nitrogen 
sources tested, organic nitrogen sources were more effec-
tive than inorganic nitrogen sources. Peptone resulted 
in the highest activity, followed by beef extract, soybean 
cake powder, ammonium tartrate (Fig. 1c). Furthermore, 
1.5% peptone resulted in the highest activity, followed by 
1.0% (Fig. 1d).

The laccase gene family of C. unicolor CGMCC 5.1011
Information on the transcriptome of C. unicolor 
CGMCC 5.1011 could be found in Additional file  1: 
Tables S2 and S3, and Fig. S1. A total of 12 laccase 
genes were identified and confirmed by the DNA and 
cDNA sequences (Table  1). The length of the nucleo-
tide sequences for the twelve laccase genes ranged from 
1652 (for Lac12) to 2406  bp (for Lac9). The deduced 
protein sequences of the 12 laccases were of length 
typical of fungal laccases (from 371 aa for Lac12 to 627 
aa for Lac9), and all were predicted to contain a signal 

Decolorization efficiency (%) = (A0 − A1)/A0 × 100,
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peptide. The intron numbers of the laccase isozymes 
varied between 6 and 12. A phylogenetic tree was 
constructed to show the evolutionary relationship of 
CGMCC 5.1011 laccases with reported laccases (Fig. 2).

Laccase purification and characterization
A laccase was purified from CGMCC 5.1011 fermen-
tation broth after (NH4)2SO4 precipitation and anion 
exchange chromatography. The protein appeared as a 
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Fig. 1  Laccase production by C. unicolor CGMCC 5.1011. a Effect of carbon sources on laccase production. b Effect of glycerol concentration on 
laccase production. c Effect of nitrogen sources on laccase production. d Effect of peptone concentration on laccase production

Table 1  The C. unicolor CGMCC 5.1011 laccase gene family

Laccase GenBank 
Accession No

DNA length (bp) cDNA length 
(bp)

Intron 
number

Signal peptide 
(aa)

Mature protein 
(aa)

Glycosylation 
sites

Lac1 MT210509 2173 1554 11 20 497 3

Lac2 MT066188 2265 1599 12 20 512 13

Lac3 MT210510 1858 1509 6 20 482 8

Lac4 MT210511 2174 1548 11 19 496 4

Lac5 MT386937 2223 1599 11 27 505 9

Lac6 MT210513 2191 1551 11 21 495 3

Lac7 MT210514 2202 1551 11 21 495 11

Lac8 MT210515 2170 1551 11 21 495 5

Lac9 MT246201 2406 1884 9 17 610 13

Lac10 MT210516 2255 1596 12 20 511 12

Lac11 MT246202 1836 1323 9 20 419 4

Lac12 MT246203 1652 1116 8 14 357 9
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smear on SDS-PAGE between 58.4 and 74.0 kDa. After 
deglycosylation with peptide N-glycosidase F, a single 
band was shown around 50 kDa, indicating the laccase 
was heterogeneously glycosylated (Fig.  3). The glyco-
sylation extent was estimated to be 16.8%-48.0%. The 
deglycosylated protein was subjected to MALDI-TOF 
MS/MS and was identified as Lac2 (Additional file  1: 
Fig. S2). The amino acid sequence of Lac2 was most 
similar to Lac4 from Cerrena sp. HYB07, sharing a 66% 
identity (Additional file 1: Table S4).

Enzymatic properties of Lac2
The pH optimum was 3.0 for ABTS and 5.5 for catechol 
and 5.0 for guaiacol (Fig.  4a). Optimal temperature was 
55 ºC with ABTS, 45 ºC with catechol and 60 ºC with 
guaiacol. The enzyme displayed wide ranges of reacting 
temperatures, with > 50% of the maximal activity at 70 ºC 
against the three substrates (Fig. 4b).

At pH 5.0 or higher, > 80% activity remained after 48 h. 
In contrast, Lac2 was less stable at pH 2.5–4 (Fig.  4c). 
Lac2 was also stable at different temperatures. After 
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incubation for 11 h at 40, 50 and 60 ºC, approximately 80, 
70% and 50% of the original enzyme activity was retained, 
respectively (Fig.  4d). Heat inactivation rate k increased 
with temperatures, accompanied by reduced half-life 
time (t1/2) (Table 2).

Effect of metal ions and organic solvents on Lac2 activ-
ity was also studied. At 10  mM, Fe2+ and Hg2+ exerted 
the strongest inhibition on Lac2 activity, followed by 
Ce3+. On the other hand, Ca2+, K+, Mn2+, Pb2+ and Zn2+ 
were stimulatory, and the rest metal ions showed no sig-
nificant effect (Fig. 5a).

When individual water-miscible organic solvent was 
added to the final concentration of 10%, Lac2 activity 
was similar to that in the absence of the organic solvents. 
Activity of Lac2 was compromised to different extents 
when the concentration was raised to 25%; > 80% activ-
ity was retained in methanol and ethanol, followed by 
DMSO, isopropanol and acetone, whereas acetonitrile 
resulted in lowest activity of approximately 50% (Fig. 5b).

Fig. 3  SDS-PAGE analysis of purified Lac2. Lac2 was purified from 
the fermentation broth of C. unicolor CGMCC 5.1011. Lane M, protein 
marker. Lane 1, fermentation broth of C. unicolor CGMCC 5.1011. Lane 
2, purified Lac2. Lane 3, deglycosylated Lac2
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MG decolorization
To exemplify the operation stability offered by Lac2 
thermostability, we compared Lac2 (from C. unicolor 
CGMCC 5.1011) and Lac7 (from Cerrena sp. HYB07) 
in MG decolorization, both in the absence of a redox 
mediator. We have previously shown MG is sequentially 

demethylated by laccase to colored intermediates des-
methyl MG, didesmethyl MG, tridesmethyl MG and tet-
radesmethyl MG (Yang et al. 2015b).

At 30 ºC, two laccases performed similarly in MG 
decolorization (Fig. 6a–c). At 50 ºC, despite similar decol-
orization efficiencies calculated by absorbance decreases 
at 618 nm (Fig. 6a), HYB07 Lac7 resulted in a recalcitrant 
pink color, accompanied by a shift of the absorbance peak 
from 618 to 560 nm (Fig. 6b–c). This was caused by accu-
mulation of a stable, colored intermediate tetradesmethyl 
MG due to instability of the HYB07 Lac7 and thus per-
turbation of the MG demethylation pathway (Yang et al. 
2017b). This phenomenon was not observed with C. uni-
color CGMCC 5.1011 Lac2.

At 70 ºC, CGMCC 5.1011 Lac2 still accomplished 
MG decolorization without intermediate accumulation. 
HYB07 Lac7, on the contrary, was quickly inactivated 
and barely decolorized MG (Fig.  6b and e). In fact, the 
shift of the absorbance peak to 590 nm was characteristic 
of a MG transformation product didesmethyl MG (Cho 
et al. 2003).

Discussion
In this study, C. unicolor CGMCC 5.1011 could produce 
high activity laccase and probably secreted the enzyme by 
secondary metabolism. This is thought to be an energy-
saving response common in laccase-producing fungi 
(Piscitelli et  al. 2011; Yang et  al. 2016b). Glycerin was 
the best carbon source for strain CGMCC 5.1011, and 
it also allowed for significant accumulation of laccase by 
Cerrena maxima, Fomes fomentarius and Pseudotram-
etes gibbosa. Some fungal strains prefer readily utilizable 
carbon sources. For example, HYB07 laccase expression 

Table 2  Thermal inactivation of Cerrena laccases

ABTS was used as the substrate

Strain Laccase Temperature (°C) t1/2 (h) K (h−1) Reference

Cerrena unicolor CGMCC 5.1011 Lac2 40
50
60
70

22.02
16.85
7.79
1.67

0.032
0.041
0.089
0.414

This study

Cerrena sp. HYB07 Lac7 70 0.13 5.42 (Yang et al. 2017b)

Cerrena unicolor strain 137 Lacc I
Lacc II

70  < 0.17
 < 0.33

NR (Michniewicz et al. 2006)

Cerrena unicolor C-139 70 0.25 NR (Songulashvili et al. 2012)

Cerrena unicolor VKMF-3196 LacC1
LacC2

70 0.5
0.05

NR (Zoya Alexandrovna et al. 2010)

Cerrena sp. WR1 Lcc3 50
60
70

2.0
0.67
0.13

NR (Chen et al. 2012)

Cerrena unicolor BBP6 LacA 60
70

 < 2.0
 < 1.0

NR (Ji et al. 2018)

Cerrena sp. RSD1 DLac 70  < 0.17 NR (Wu et al. 2018)
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is nearly abolished in the presence of glycerin as the sole 
carbon source (Yang et al. 2015a).

Fungal laccases exist in gene families, which may be 
derived from duplication-divergence events of a small 
set of ancestral enzymes. Laccase gene families have 
been analyzed in Pleurotus ostreatus, Lentinula edodes, 

Coprinopsis cinerea, etc.; the family size varies from 5 to 
17 (Yang et al. 2017a). The laccase family of Cerrena sp. 
HYB07 is composed of 13 laccase genes (Li 2017). Lac-
case genes of these two Cerrena species were similar in 
terms of size, intron number, and presence of signal pep-
tide. However, the amino acid sequences of CGMCC 
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respectively
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5.1011 laccases seemed to contain more putative gly-
cosylation sites (Asn-X-Ser/Thr, where X stands for any 
amino acid except for proline) than HYB07 laccases. 
CGMCC 5.1011 laccases were predicted to have 3–13 
glycosylation sites per protein, with Lac2 having 13, while 
HYB07 laccases were predicted to contain 0–6 glycosyla-
tion sites per protein.

The major laccase secreted by CGMCC 5.1011, Lac2, 
was purified, and the enzymatic properties of purified 
Lac2 were studied. The optimal pH and pH stability of 
Lac2 were similar to those of reported fungal laccases, 
including Lac7 from Cerrena sp. HYB07 (Yang et  al. 
2014). On the other hand, the optimal reacting temper-
ature of Lac2 was higher than that of Lac7. Hg2+, Fe2+, 
and Ce3+ inhibit activity of both CGMCC 5.1011 Lac2 
and HYB07 Lac7; however, Pb2+ and Li+ did not suppress 
Lac2 activity as they do to Lac7 (Xu et al. 2018; Yang et al. 
2014). Lac2 was more tolerant of organic solvents com-
pared with a thermo-active and thermostable laccase, 
Lac37 II, from Trametes trogii. In particular, approxi-
mately only 40% activity of Lac 37 II remains in the pres-
ence of 10% methanol (Yang et al. 2020).

Most remarkably, at 70 ºC, t1/2 of Lac2 was 1.67  h, 
which was longer than many reported laccases (Chen 
et  al. 2012; Ji et  al. 2018; Michniewicz et  al. 2006; Son-
gulashvili et al. 2012; Wu et al. 2018; Zoya Alexandrovna 
et  al. 2010) and comparable to a thermostable laccase 
Lac37 II from T. trogii (Yang et al. 2020). A comparison 
of thermal inactivation of Cerrena laccases is provided 
in Table  2. The predominant laccase from Cerrena sp. 
HYB07, Lac7, was stable at 60 ºC and below, but was 
completely inactivated in 20  min at 70 ºC (Yang et  al. 
2014). The differences in thermostability of Lac2 from 
C. unicolor CGMCC 5.1011 and Lac7 from Cerrena sp. 
HYB07 could also be seen in their fluorescence spectra 
collected after incubating the respective proteins for 1 h 
at 30, 40, 50, 60, and 70 ºC (Additional file  1: Fig. S3). 
With increased incubation temperatures, fluorescence 
spectra of Lac7 demonstrated significant decreases and 
red shift in fluorescence intensity at the emission peak, 
suggesting the protein was prone to lose its natural 
conformation at higher temperatures. In contrast, the 
fluorescent emission peaks of Lac2 remained relatively 
constant at different temperatures, consistent with its 
higher thermostability.

There are several putative molecular mechanisms 
underlying protein thermotolerance or thermostabil-
ity (Hilden et  al. 2009). An amino acid alignment of C. 
unicolor CGMCC 5.1011 Lac2 and Cerrena sp. HYB07 
Lac7 showing the four conserved fungal laccase copper-
binding signature domains (L1–L4) and six substrate-
binding loops (B1–B2, B4–B5, B7–B8, C1–C2, C4–C5, 
and C7–C8) is provided in Additional file 1: Fig. S5. We 

speculated that the thermostability of Lac2 can at least 
be partially attributed to its high glycosylation content. 
Glycosylation is suggested to have a general nonspecific 
effect on enzyme stabilization (Manuel et al. 2015; Shen-
tal-Bechor and Levy 2008; Vite-Vallejo et al. 2009). It has 
been reported that the high carbohydrate level (49%) pro-
tected a Botrytis cinerea laccase from high-temperature 
denaturation (Slomczynski et  al. 1995). Increased ther-
mostability of a recombinant laccase (rLac) produced 
by Pichia pastoris compared to the native laccase (nLac) 
is also attributed to higher glycosylation, and the gly-
can moieties played a crucial role in the laccase activity 
(Garg et al. 2012). In this study, among the 13 potential 
glycosylation sites identified in CGMCC 5.1011 Lac2, 12 
were found on the protein surface except for N71, which 
was near the protein surface and at the back of the active 
center (Additional file  1: Fig. S4). In contrast, only one 
putative glycosylation site was found on the surface of 
Lac7 from Cerrena sp. HYB07, which has a 7.2% carbo-
hydrate content (Yang et al. 2014), and Lac7 was inferior 
to Lac2 in CGMCC 5.1011 with regards to stability and 
performance at higher temperatures.

Hydrophobic interactions play a governing role in sta-
bilizing the protein 3D structure (Christensen and Kepp 
2012). Pace et  al. argued that hydrophobic interactions 
made the most contribution to protein stability through 
his study of 22 proteins (Pace et al. 2011). Hydrophobic 
interaction is also presumably a basis for the disparate 
thermostability between two adenylate kinases sharing 
78% sequence identity (Criswell et al. 2003). More hydro-
phobic interactions (within 5 Å) were found in Lac2 com-
pared with Lac7 (438 vs. 396), which might lead to higher 
thermostability of Lac2.

The MD simulation of the two laccases also shined 
light on the molecular determinants of Lac2 thermosta-
bility. The overall RMSD value of Lac2 were lower than 
that of Lac7, indicating the whole flexibility of Lac2 was 
smaller than Lac7 (Fig.  7a). Comparison of the RMSF 
values of the two laccases revealed regions with signifi-
cantly higher RMSF values in Lac7 than in Lac2 (Fig. 7b), 
especially the 180th residue near the substrate-binding 
loop B1–B2, 267th residue in B7–B8 and 334th residue 
in C1–C2, corroborating the lower flexibility and higher 
stability of Lac2. Residues 98–102, upstream to the fun-
gal laccase signature domain L2, were associated with 
lower RMSF values in Lac2, meaning they might help 
maintain the rigidity of the L2. Regions 262–273 and 
331–342 corresponded to substrate-binding loops B7–B8 
and C1–C2, respectively, they showed higher RMSF val-
ues in Lac7 than in Lac2. A unique salt bridge in Lac2, 
His326-Asp340, flanking the substrate-binding loop 
C1–C2, might contribute to lower the flexibility around 
loop C1–C2 in Lac2, whereas the majority of other salt 
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bridges in the two proteins were conserved (Additional 
file  1: Table  S5). Meanwhile, region 366–389 in Lac7 
overlapped with the substrate-binding loop C4–C5 and 
neighbored the conserved laccase signature domain L3, 
with residues 384–389 in loop C4–C5 (Additional file 1: 
Fig. S5). The RMSF values, 1.9009 for Leu389 in Lac7 
and 0.9833 for Ile393 in Lac2 (Fig. 7b), indicated that the 
region might also offer rigidity to protect the Lac2 active 
site against heat. The above findings suggested higher 
rigidity in various substrate-binding loops as well as con-
served laccase signature domains in Lac2 allows it to 
retain more activity under high temperatures.

In summary, a white-rot fungal strain C. unicolor 
CGMCC 5.1011 achieved a maximum activity of 121.7 
U/mL after fermentation for 15 d. Strain CGMCC 5.1011 
contained 12 laccase isozymes, and a major laccase, Lac2, 
was purified from the fermentation broth. Lac2 was reac-
tive over a wide range of temperatures, was pH- and 
temperature-stable and tolerant of organic solvents. Lac2 

decolorized MG whereas a less thermostable laccase 
failed, corroborating the thermostability and operational 
stability of this novel laccase. High-level glycosylation 
and structural rigidity might account for the high stabil-
ity of Lac2.
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