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RANDGAN: Randomized 
generative adversarial network 
for detection of COVID‑19 in chest 
X‑ray
Saman Motamed  1,2*, Patrik Rogalla4 & Farzad Khalvati1,2,3

COVID-19 spread across the globe at an immense rate and has left healthcare systems incapacitated 
to diagnose and test patients at the needed rate. Studies have shown promising results for detection 
of COVID-19 from viral bacterial pneumonia in chest X-rays. Automation of COVID-19 testing using 
medical images can speed up the testing process of patients where health care systems lack sufficient 
numbers of the reverse-transcription polymerase chain reaction tests. Supervised deep learning 
models such as convolutional neural networks need enough labeled data for all classes to correctly 
learn the task of detection. Gathering labeled data is a cumbersome task and requires time and 
resources which could further strain health care systems and radiologists at the early stages of a 
pandemic such as COVID-19. In this study, we propose a randomized generative adversarial network 
(RANDGAN) that detects images of an unknown class (COVID-19) from known and labelled classes 
(Normal and Viral Pneumonia) without the need for labels and training data from the unknown class 
of images (COVID-19). We used the largest publicly available COVID-19 chest X-ray dataset, COVIDx, 
which is comprised of Normal, Pneumonia, and COVID-19 images from multiple public databases. 
In this work, we use transfer learning to segment the lungs in the COVIDx dataset. Next, we show 
why segmentation of the region of interest (lungs) is vital to correctly learn the task of classification, 
specifically in datasets that contain images from different resources as it is the case for the COVIDx 
dataset. Finally, we show improved results in detection of COVID-19 cases using our generative model 
(RANDGAN) compared to conventional generative adversarial networks for anomaly detection in 
medical images, improving the area under the ROC curve from 0.71 to 0.77.

COVID-19 spread globally over a short period of time and became a deadly pandemic1. Early diagnosis and 
detection of pneumonia can minimize the risk factors of the illness2 and help break the transmission chain. The 
standard test for diagnosis of COVID-19 is reverse transcriptase polymerase chain reaction (RT-PCR)3. The 
lack of accessibility and slowness of RT-PCR, along with its high false negative rate (39–61%), drew attention to 
diagnosis of COVID-19 using chest radiographs4,5. Automation of COVID-19 diagnosis using chest X-rays can 
help healthcare systems keep up with demands for patients testing as X-rays are more readily available than RT-
PCR and reduce strain from radiologists and healthcare systems. Medical imaging based diagnosis can also help 
control the high false negative rate of RT-PCR tests by acting as a secondary control. Computer-aided disease 
diagnosis using medical imaging techniques have accelerated over the past decade due to the breakthroughs 
in the field of machine learning and the development of detection and classification models that are based on 
convolutional neural networks (CNNs)6–8. CNNs, which are mainly used in supervised frameworks, require 
large amounts of labeled data to learn the task of anomaly detection, such as detecting COVID-19 in chest 
X-rays. Supervised architectures require training data with complete labels for all image classes (e.g., normal and 
COVID-19). Nevertheless, this requires accurate labeling of the data for all cases and the cumbersome annota-
tion effort, and the diagnosis variation amongst expert radiologists limits the performance of these supervised 
models on new data. Specially, in pandemics such as COVID-19, at the beginning, there is limited COVID-19 
data (if any data at all) available for training a supervised classification model. In contrast, solutions based on 
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semi-supervised learning only require partial labels for the training data9. Semi-supervised learning significantly 
reduces the cost of creating training data and, thus, opens new opportunities for automated disease detection 
using training data with only single class labels.

In this study, we propose a semi-supervised generative model (randomized generative adversarial network-
RANDGAN) for detection of COVID-19 positive chest X-ray images. The idea behind anomaly detection using 
generative adversarial networks (GANs) comes from the great ability of generative models in learning the image-
space manifold where training images lie on, and being able to generate never-before-seen images that lie on 
the learned image-space10. Anomaly detection may be seen as only detecting abnormality in medical images 
such as a tumour or pneumonia. We extend the definition of anomaly in medical images as the deviation from 
the image-space manifold of training data. In other words, if the training data only includes COVID-19 nega-
tive cases (i.e., healthy or viral pneumonia), the anomaly detected in test cases is indeed an abnormality such 
as COVID-19. On the other hand, if the training data only includes COVID-19 positive cases, the “anomaly” 
detected in the test cases are the deviation from COVID-19 cases, meaning that the test case does not contain the 
abnormality in the training class (i.e., healthy or viral pneumonia). We show our proposed RANDGAN model is 
able to differentiate between COVID-19 positive and negative images. To the best of our knowledge, this study 
is the first of its kind, using semi-supervised learning for detection of COVID-19 in medical images and report-
ing performance accuracy on the entire cohort of COVID-19 positive images without the need to use any of the 
COVID-19 positive images to train our model. The code for our RANDGAN along with instructions to create 
the datasets used in this study can be found here; https://​github.​com/​samxm​ot/​RANDG​AN.

Dataset
Covid-chestxray dataset11 is an effort by Cohen et al. to make a public COVID-19 dataset of chest X-ray images 
with COVID-19 radiological readings. Wang et al. used covid-chestxray dataset, along with four other publicly 
available datasets and compiled the COVIDx12 dataset. With the number of images growing, many deep learning 
models are trained and tested on this public dataset12–14. Figure 1 shows the class distribution of the COVIDx 
dataset. The images are in RGB format, with pixel range of [0, 255] and have various sizes. To train the genera-
tive models in this study, all images were converted to gray scale, resized to 128× 128 pixels and normalized to 
have pixel intensities in the [− 1, 1] range.

Related work
Using the covid-chestxray and COVIDx datasets, multiple studies have utilized supervised deep learning models 
to detect COVID-19 in chest X-rays12–17. Wang et al.’s CNN based COVID-NET12 achieved a 93.3% test accuracy 
for multi-class classification on a test cohort of 100 Normal, 100 Pneumonia and 100 COVID-19 images from the 
COVIDx dataset with the rest of the images of each class being used to train their model. Hemdan et al.’s COV-
IDX-Net16, comprised of multiple architectures such as VGG19, DenseNet121 and InceptionV3, was tested on a 
small set of 50 X-ray images from the covid-chestxray dataset; 25 COVID-19 positive and 25 COVID-19 negative. 
They reported accuracies of anywhere between 50% (InceptionV3) to 90% (VGG19 and DenseNet201) for each 
investigated architecture. Ozturk et al.’s DarkNet13 experimented with both binary classification (COVID-19 
vs. No Findings) and multi-class classification (Pneumonia vs. COVID-19 vs. No Findings). They reported a 
binary classification accuracy of 98.08% and multi-class classification with accuracy of 87% on 25 COVID-19, 
100 Normal and 100 Pneumonia images. Afshar et al. proposed using capsule networks for binary classification 
of COVID-19 positive and negative cases using COVIDx dataset, pre-trained on non-COVID chest X-ray images 
from other datasets. They reported an accuracy of 95.7% , sensitivity of 90% , specificity of 95.8% , and the area 
under the ROC curve (AUC) of 0.97. The number of test images from each class is not disclosed in their paper.

The high accuracy achieved in these models, despite the imbalanced dataset with only 4% of the images 
belonging to COVID-19 and the multi-centric nature of the dataset which could cause images from different 

Figure 1.   Class distribution of COVIDx dataset.
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scanners and health centres to have inherent characteristic differences, put the robustness of these models under 
question.

DeGrave et al.18 conducted a few experiments to test the generalizability and robustness of these models 
trained on the COVIDx dataset. Replicating the same underlying supervised model structure such as COVID-
NET12 and training the model on COVIDx dataset, they achieved high test accuracy when tested on COVIDx 
data. Their predictive performance, however, dropped by 50% when they validated their model on an external 
COVID and Non-COVID dataset19 where the images were from a single institution. Furthermore, using saliency 
maps, which highlight the region of each X-ray image that contributed most to the classification decision of the 
CNNs, they found non-COVID markers such as image edges, diaphragm and cardiac silhouette have contributed 
to the classification of COVID-19; markers that do not have a predictive value for detection of COVID-1920. This 
confirms that using the full images from a dataset that comes from different scanners can be problematic where 
non-disease specific markers could act as a shortcut21 and help CNNs achieve high accuracy on a particular 
dataset yet fail to generalize to any other dataset. To minimize the effect of shortcuts, we created a segmented 
COVIDx dataset that includes only the lungs where the true markers of COVID-19 and Pneumonia appear.

Segmentation of lung in COVIDx images
To mitigate the issue of deep learning models picking non-disease related markers from the images, we created a 
new dataset by segmenting lungs in COVIDx dataset. For the training set, we used the Montgomery County chest 
X-ray set22, which contains 138 frontal chest X-rays from Montgomery County’s Tuberculosis screening program 
with corresponding masks manually annotated by radiologists. We resized the images to 256× 256 pixels and 
normalized them to have pixel intensities between 0 and 1. We trained a U-NET23 based model, that has been 
augmented with inception and residual architectures, with these normalized images24,25. Transfer learning26 has 
shown promise in adapting tasks from one domain (source) to another (target). For the task of lung segmenta-
tion for the COVIDx dataset, the Montgomery dataset was used as the source and COVIDx dataset was used as 
the target domain. For the task of transfer learning, Sefexa27, an image segmentation tool, was used for manual 
segmentation of 900 randomly selected images (300 from each class) of the COVIDx dataset. All segmentation 
masks were corrected by an experienced radiologist and intentionally over-segmented to ensure no region of 
lung is excluded. Thus, these masks are best to be used for classification algorithms for detection of COVID-
19 and pneumonia, and not for precise segmentation of lung boundaries. 850 segmented X-ray images from 
COVIDx were used for performing transfer learning24 from the Montgomery dataset to COVIDx. We kept 50 
manual segmentations to evaluate our model’s accuracy. Since source domain is smaller than our target domain, 
we fine-tuned 75% of the pre-trained model’s layers (encoder part), and trained on the Montgomery dataset 
images. We froze the first 25% layers of the pre-trained U-NET and fine-tuned the rest of the encoder and decoder 
components based on our manual segmentation for COVIDX images. We used open and close operations as a 
post-processing step to fill any holes in the masks and reduce noise in the predicted masks. We tested the accuracy 
of our model using Sørensen–Dice coefficient (DSC). We achieved a DSC of 0.83 on our test set of 50 images.

Figure 2 shows the output of our segmentation model. We include some of the failed segmentation attempts 
of the model as well. Accurate segmentation of lung images are a limitation of using automated segmentation 
models.

Random input generative adversarial networks
Generative adversarial networks (GANs)10 revolutionized the field of deep learning by allowing generation of 
never-before-seen data that follows the distribution of real data. Applications of GANs have expanded from 
generating human-like faces, to image style transfer and detection of anomalies in images28. In the following, we 
describe the components of our proposed random input generative adversarial network (RANDGAN).

Generator network.  The Generator (G) (Fig. 3) learns a distribution Pg over the input data x via mapping 
of input noise z, to 2D images by function G(z). The trained Generator learns the mapping G(z) : z �−→ x from 
latent space representations z to realistic, 2D, X-ray images. Our Generator model follows DCGAN’s architecture 
(named AnoGAN for anomaly detection GAN in the study)28 (used for anomaly detection for retina) with three 
main modifications; the use of randomized 2D image inputs to the generator, inception layers, and residual con-
nections as shown in Fig. 4. 

Feeding real training images as an input to the generator has shown improvement in using GANs for aug-
menting images29,30. Real images are encoded into a lower dimensional space before being concatenated with 
the noise input vector z. To improve generalizability of our generator, specially due to the multi-centric nature of 
COVIDx data, we randomly select batches of 32 images from the cohort of our training class and encode them 
to a lower-representation space using inception layers. This helps in adding variability to each iteration of the 
generator’s training by not only using a random noise vector, but also real, random image representations of the 
training class. Doing so shows improved results when using the trained GAN to classify images of an unknown 
class from other known classes. The idea behind the inception and residual architecture31 is being able to increase 
GAN’s ability to capture more details from training image-space without losing spatial information after each 
convolution and pooling layer. Although making the Generator deeper is theoretically a valid way to capture 
more long-range details in the image, deep GANs are unstable and hard to train28,32.

Discriminator.  The discriminator (D) (Fig. 5) is a 4-layer CNN that maps a 2D image to a scalar output that 
can be interpreted as the probability of the given input being a real chest X-ray images sampled from training 
data or generated image G(z) by the Generator G.
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Optimization of D and G can be thought of as the following game of minimax10 with the value function 
V(G, D):

 
During training, Generator G is trained to minimize the accuracy of Discriminator D’s ability in distinguish-

ing between real and generated images while the Discriminator is trying to maximize the probability of assigning 
real training images the “real” and generated images from G, “fake” labels. The Generator improves at generating 
more realistic images while Discriminator gets better at correctly identifying between real and generated images.

(1)min
G

max
D

V(D,G) = Ex∼Pdata(x)
[logD(x)] + Ez∼Pz(z)

[log(1− D(G(z)))]

Figure 2.   Output samples of our segmentation model on COVIDx images.

Figure 3.   RANDGAN’s generator architecture.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8602  | https://doi.org/10.1038/s41598-021-87994-2

www.nature.com/scientificreports/

Experiments
Data and pre‑processing.  We used both full images from COVIDx dataset and our segmentation of the 
COVIDx data to train separate models and compare the results. One of the advantages of our semi-supervised 
model compared to supervised models is the ability to test our model on not only a subset, but all of COVID-
19 positive images as we do not use any of these images to train our model. While studies such as Wang et. al’s 
COVID-NET use 100 images of COVID-19, Hedman et al.16 and Ozturk et al.13 using 25 COVID-19 positive 
images to test their models, we used 573 images of each class; the entire dataset for COVID-19 was used and for 
normal and pneumonia classes, 573 images were randomly selected for each class. All images, converted from 
RGB to grayscale, were resized to 128× 128 pixels, with pixel intensities normalized to have values between − 1 
and 1. The models were trained using an NVIDIA GeForce RTX 2080 Ti with 11 GB of memory.

Table 1 shows the Train and Test split of our COVIDx and Segmented COVIDx images.

Evaluation.  We trained two instances of our RANDGAN. For comparison, we repeated the same training 
using the GAN model (AnoGAN) used in Radford et al.’s28 anomaly detection study. One RANDGAN/AnoGAN 
was trained using Normal images and the other RANDGAN/AnoGAN was trained using Pneumonia images. 
When the model’s training is done, the generator has learned the mapping G(z) : z �−→ x from latent space 
representation z to realistic images. Given a query image x in test, we want to find a point z from the latent 
space such that, given the Generator’s output on that point (G(z)), that is most similar to the query image x. The 
expected behaviour after successful training is that the query image x, if affected by pneumonia, will result in 
finding an image G(z), which is visually closer to image x than if the query image was a normal case (given the 
GAN was trained on Pneumonia images).

Figure 4.   Inception and residual block architecture.

Figure 5.   RANDGAN’s discriminator architecture.

Table 1.   Train and test class distribution of COVIDx and COVIDx segmentation dataset.

Label Train Test

Normal 7493 573

Pneumonia 4986 573

COVID-19 N/A 573
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To find latent variable z that generates the most similar image G(z) to the query image x, we used back propa-
gation with a predefined number of steps. The loss function defined to find such z through back-propagation is 
comprised of two components; residual loss and discrimination loss. Residual loss ( LR ) calculates the L1 distance 
between G(z) and the query image x and enforces visual similarity between the query image and generated image.

Schlegl et al.33 proposed a discrimination loss ( LD ) inspired by the concept of feature matching34 that enforces 
generated images G(zi) to follow the statistical characteristics of the training images. LR is defined below where 
the output of an intermediate layer of the discriminator, f(.), is used to represent the statistical characteristics 
of the input image.

The overall loss used to back-propagate and find the best z is a weighted sum of residual and discrimination loss;

The Anomaly score A(x) for the query image x is defined as;

where R(x) and D(x) are respectively the residual and discrimination loss of the best zi found through back-
propagation. � adjusts the weighted sum of the overall loss and anomaly score. We used � = 0.2 to train our 
proposed RANDGAN and AnoGAN33. Both architectures were trained with the same initial conditions for 
performance comparison.

With two trained models, one on Normal and one on Pneumonia images, we calculate two anomaly scores 
for each test image. One anomaly score from inputting the test image into Normal trained GAN and one from 
Pneumonia trained GAN. The anomaly score generated from the Normal trained GAN will be lower for Normal 
test images compared to Pneumonia and COVID-19 images. Respectively, the anomaly score generated from 
Pneumonia trained GAN will be lower for Pneumonia test images compared to Normal and COVID-19 images. 
For each test image and the corresponding two anomaly scores, we generate a single anomaly score by summing 
the two scores together. The idea is that COVID-19 (unknown) images would score high anomalies from both 
networks while Normal and Pneumonia images score low in one model and high in the other. This should lead 
to the COVID-19 (unknown) images to score higher overall than the two other (known) classes.

Results
We generated a single anomaly score, comprised of two anomaly scores from the two trained models (Normal, 
Pneumonia), for the images in our test set. 573 anomaly scores were computed for each class (Normal, Pneu-
monia and COVID-19) of our COVIDx and segmented COVIDx dataset. To evaluate the performance of our 
COVID-19 positive detection model on a balanced test set, we randomly selected 286 Normal labeled and 287 
Pneumonia labeled images and combined them into a COVID-19 negative test set with corresponding anomaly 
scores. We repeated the random selection of images from Normal and Pneumonia test cohorts 5 times in order 
to achieve an average performance metric of our models. The experiments were performed using AnoGAN 
trained on full COVIDx images, AnoGAN trained on segmented COVIDx images and RANDGAN trained on 
segmented COVIDx images. Table 2 shows the average AUC of our models for the 5 calculations. We also report 
the AUC on the unbalanced test set, using 573 COVID-19 positive and 1146 COVID-19 negative (573 normal 
and 573 Pneumonia) images.

Figure 6 shows the ROC curve of the 3 trained models. With an AUC of 0.54, the AnoGAN model fails to 
classify COVID-19 positive and negative cases in full images. The same model performs significantly better when 
trained on lung segmented COVIDx dataset and achieves an AUC of 0.71. This shows the markers outside of the 
lung that were irrelevant to the disease, hindered the performance of the GAN. The same markers were shown 
by DeGrave et al.18 to act as shortcuts in wrongfully helping CNNs classify the classes of COVID-19, Normal 
and Pneumonia images. Our RANDGAN model achieved an AUC of 0.77, a 6% improvement compared to that 
of the AnoGAN model on the segmented dataset, showing the effectiveness of our down-sampling and feeding 
randomly selected images to the Generator during the training.

The false negative rate (FNR) of the RT-PCR test5 varies depending on the time of test in comparison with 
the time of contracting the COVID-19 virus. It has been shown that at specificity of 90%, on the day of symp-
tom onset, the median FNR for RT-PCR test was 38% with Confidence Interval (CI) 18–65%. On day 8, the 

(2)LR(zi) =
∑

|x − G(zi)|

(3)LD(zi) =
∑

|f (x)− f (G(zi))|

(4)L(zi) = (1− �)× LR(zi)+ �× LD(zi)

(5)A(x) = (1− �)× R(x)+ �× D(x)

Table 2.   Performance comparison of RANDGAN and AnoGAN.

Model Dataset AUC​

AnoGAN COVIDx (balanced test set) 0.54

AnoGAN Segmented COVIDx (balanced test set) 0.71

RANDGAN Segmented COVIDx (balanced test set) 0.77

RANDGAN Segmented COVIDx (imbalanced test set) 0.76
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median FNR for RT-PCR test is 20% with CI 12–30% and on day 21 from symptom onset, the FNR increases 
to median of 66% with CI 54–77%. Although we do not have the information for the date of symptom onset 
and the date of X-ray acquisition from symptom onset in the COVIDx dataset, Table 3 shows the sensitivity 
and FNR of our proposed RANDGAN model and AnoGAN at specificity of 90%, 85% and 80%. With the wide 
confidence interval for RT-PCR test’s FNR at the early (18–65%) and later (54–77%) stages of contracting the 
virus, our model matches the upper bound of the RT-PCR’s FNR early on (65%) and outperforms the median 
FNR of RT-PCR at later stages of the disease (65% vs. 66%). The joint use of both tests (RT-PCR and imaging) 
could lower the overall FNR given that while one test’s result is False Negative result for a patient, the other test 
may call the patient positive.

Figure 7 shows the normalized average anomaly score of the 5 runs of each of our three models; RANDGAN 
trained on segmented X-ray images, AnoGAN trained on segmented images and AnoGAN trained on full 
images. The highest score of each trained GAN, among the 3 classes of Normal, Pneumonia and COVID-19 is 
normalized to anomaly score of 10. Other anomalies are normalized accordingly by dividing the score by highest 
anomaly score and multiplying by 10. Despite the ROC curve that combines a balanced number of Normal and 
Pneumonia images in comparison to COVID-19 images, we present the anomaly scores in their entirety (573 
Normal, 573 Pneumonia and 573 COVID-19 images). The desired anomaly score for the purpose of detecting 
COVID-19 positive and negative images is achieving higher anomaly score for COVID-19 positive images 
and lower scores for COVID-19 negative (Normal and Pneumonia) images. Figure 7 shows the AnoGAN and 
RANDGAN trained on both the full and segmented COVIDx datasets satisfy this characteristic. However, the 
gap between COVID-19 positive and negative scores defines the accuracy of each model. The bigger the anomaly 
score gap is between the two classes, the higher our classification confidence becomes. RANDGAN shows the 
biggest gap of normalized mean anomaly score (MAS) between COVID-19 (MAS = 4.48) and Pneumonia (3.01) 
and COVID-19 and Normal (3.56) images which are 1.47 and 0.92 respectively. AnoGAN trained on segmented 
COVIDx dataset shows 1.36 as the gap between COVID-19 (MAS = 4.42) and 0.91 between COVID-19 and 
Normal (3.51). AnoGAN trained on full COVIDx images shows a small gap between COVID-19, Pneumonia 
and Normal images (0.36 between COVID-19 and Pneumonia and 0.12 between COVID-19 and Normal).

Discussion
In this study, we introduced RANDGAN, a novel generative adversarial network for semi-supervised detection 
of an unknown (COVID-19) class in chest X-ray images from a pool of known (Normal and Pneumonia) and 
unknown classes (COVID-19) by only using the known classes for training. With this model, unknown cases 
can be screened and flagged for further investigations by radiologists increasing the probability of catching such 
cases early on. Using semi-supervised approaches for a problem such as detection of COVID-19, specially at 
the beginning of a pandemic are preferred over supervised approaches for they allow faster training of models 
without the need for gathering and annotation of data from the spreading disease. The result of semi-supervised 
models are more reliable where number of images are limited for the unknown (COVID-19) class. Where our 
semi-supervised model uses all COVID-19 images to test the model’s performance, supervised models have to 
use majority of the images ( ∼ 90% ) for training the model and test the model on a small subset of the images.

Figure 6.   ROC curve of the trained generative models.

Table 3.   Sensitivity, specificity and false negative rate for AnoGAN and RANDGAN model.

Model Specificity (%) Sensitivity (%) False negative rate (%)

RANDGAN 90 34 65

AnoGAN 90 30 69

RANDGAN 85 49 50

AnoGAN 85 48 51

RANDGAN 80 57 42

AnoGAN 80 57 42
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We demonstrated the importance of segmentation of lungs for the COVIDx dataset. DeGrave et al.18 showed 
non-disease markers outside the lung act as shortcuts21 in helping CNNs performance on specific datasets on 
which the model is trained. By using transfer learning and segmenting the lung, we observed that using lung 
only images boosts the performance of generative models in detecting COVID-19 from Pneumonia and Nor-
mal images. AnoGAN28 achieved an average AUC of 0.54 when using full images from COVIDx images while 
using segmented COVIDx images achieved an average AUC of 0.71. While the semi-supervised RANDGAN 
approach for detection of COVID-19 in chest X-ray results in overall AUC of 77%, which is lower compared 
to supervised counterpart models, the main advantages of our proposed RANDGAN model is that it requires 
no COVID-19 X-ray images for training. This is crucial in dealing with a pandemic such as COVID-19 when 
there is virtually no data or very little data at the onset. This is in contrast to supervised detection models that 
require a large COVID-19 dataset for training. Our model can be trained and used as soon as a new disease 
emerges without the need for the cumbersome process of acquiring enough images and annotating the images 
by radiologists. This could take months to compete as it is seen with the COVIDx dataset, in which after months 
of emergence of COVID-19 and becoming a pandemic, only 4% of the dataset is made up of COVID-19 cases. 
Another advantage of our model is that since it does not require COVID-19 data for training, we are able to test 
our model on all available COVID-19 X-ray images and report the AUC on the complete dataset (573 images) 
making it immediately more reliable although reporting a lower AUC. In contrast, supervised detection mod-
els report their results on around 25–100 COVID-19 X-ray images14,16,35 (10–20% of the available COVID-19 
images). Future directions will focus on improving the performance of our proposed RANDGAN (AUC of 0.77) 
model by performing data augmentation, and as more data is collected, it is important to validate the model on 
external data sources (different scanners/health care systems).

Limitations
One limitation of working with data of relatively early stages of a disease such as COVID-19 is dataset size. Even 
though our semi-supervised model is able to use all COVID-19 images to evaluate the performance of the model, 
while supervised models have to use majority of the already small COVID-19 cohort to train their images, more 
images would allow for a better understanding of the true performance of both supervised and semi-supervised 
models. Segmentation accuracy of the lungs is another limiting factor. Although the performance of the base 
model greatly improves (AUC of 0.54–0.71), segmentation model fails in some cases (Fig. 2). As more data gets 
collected and becomes available from different health care systems, any model trained for detection of COVID-
19 needs validation from external sources. Without validation, these models need to be used as a secondary 
measure for detection of COVID-19.

Figure 7.   Normalized average anomaly score of the trained generative models.
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