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The presence of two intact lungs makes it challenging to reach a tumoricidal dose 
with hemithoracic pleural intensity-modulated radiation therapy (IMRT) in patients 
with malignant pleural mesothelioma (MPM) who underwent pleurectomy/decor-
tications or have unresectable disease. We developed an anatomy-based model to 
predict attainable prescription dose before starting optimization. Fifty-six clinically 
delivered IMRT plans were analyzed regarding correlation of prescription dose and 
individual and total lung volumes, planning target volume (PTV), ipsilateral normal 
lung volume and ratios: contralateral/ipsilateral lung (CIVR); contralateral lung/PTV 
(CPVR); ipsilateral lung /PTV (IPVR); ipsilateral normal lung /total lung (INTLVR); 
ipsilateral normal lung/PTV (INLPVR). Spearman’s rank correlation and Fisher’s 
exact test were used. Correlation between mean ipsilateral lung dose (MILD) and 
these volume ratios and between prescription dose and single lung mean doses were 
studied. The prediction models were validated in 23 subsequent MPM patients. CIVR 
showed the strongest correlation with dose (R = 0.603, p < 0.001) and accurately 
predicted prescription dose in the validation cases. INLPVR and MILD as well as 
MILD and prescription dose were significantly correlated (R = -0.784, p < 0.001 and 
R = 0.554, p < 0.001, respectively) in the training and validation cases. Parameters 
obtainable directly from planning scan anatomy predict achievable prescription doses 
for hemithoracic IMRT treatment of MPM patients with two intact lungs.
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I. INTRODUCTION

Intensity-modulated radiation therapy (IMRT) to the entire hemithoracic pleura is a promising 
new strategy for patients with unresectable malignant pleural mesothelioma (MPM) or after 
pleurectomy/decortication.(1,2) However, it is a complex treatment to plan and deliver, and 
several publications(3-6) document the potential for serious radiation-induced lung toxicity. 
We previously reported an unacceptably high rate of radiation pneumonitis after conventional 
radiation therapy to MPM patients with two intact lungs.(3) We therefore developed a novel 
IMRT technique targeting the entire hemithoracic pleura. Lung radiation tolerance is the main 
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limitation in planning these complex treatments, though other nearby normal tissues must also 
be protected. In our experience, the prescription goal of 50.4 Gy in 28 fractions is achieved in 
approximately 25% of patients, while another quarter can receive prescription dose of 48.6 Gy 
without exceeding normal tissue constraints. 

Planning these treatments is a time-consuming iterative cycle of optimization, plan evalu-
ation, and reoptimization. Before the start of optimization, several quantities are available: 
the planning computerized tomography (CT) scan, delineated target and organ-at-risk (OAR) 
volumes, the dose constraints, and the desired prescription dose. It would be helpful to identify 
the highest prescription (≤ 50.4 Gy) that meets OAR constraints from anatomical parameters 
among these quantities before beginning optimization. Therefore we analyzed the clinically 
delivered IMRT treatment plans from our institution and developed an anatomy-based predictive 
model to allow such estimation. As a further aid to planners, we developed a model based on 
the correlation between anatomical variables and mean total and ipsilateral lung doses (MLD, 
MILD). The mean lung doses are often optimization constraints which can be evaluated and 
changed during the optimization. Knowing what to expect helps the planner steer the optimiza-
tion toward the highest allowed prescription dose. 

 
II. MATERIALS AND METHODS

A.  Study design and patients
We reviewed treatment plans of all 56 MPM patients with unresectable or pleurectomy/decorti-
cation treated with definitive or adjuvant hemithoracic pleural IMRT at our institution between 
2005 and 2012. An Institutional Review Board/Privacy Board waiver was approved prior to 
conducting this study. All patients were positioned supine with their arms over the head and 
immobilized in a customized Alpha Cradle mold (Smithers Medical Products, Inc., North Canton, 
OH). The target delineation technique has been previously described.(6) Briefly, a planning CT 
scan was acquired with a slice thickness of 2.5–3 mm. Since 2008, a respiratory-correlated 
CT (RCCT) scan acquired at simulation was used to create an ITV. A recent positron emission 
tomography scan also aided the delineation of any potential gross disease. Typically the PTV 
extended from the thoracic inlet superiorly to the bottom of the L2 vertebral body inferiorly. It 
included all visualized gross disease and the CTV with an approximately 10 mm outer margin 
and a 6 mm inner margin with adjustments to accommodate respiratory motion. This resulted 
in an approximately 16 mm thick PTV rind completely surrounding the ipsilateral lung.(6)

The clinical treatment plans for the training set and the first 10 validation cases were per-
formed on a previously described in-house treatment planning system(7) in which a radiological 
path-length-corrected, pencil-beam algorithm accounted for tissue inhomogeneity. The later 13 
validation cases were planned with the Eclipse v.11.0 treatment planning system (Varian Medical 
Systems, Palo Alto, CA) using the AAA (anisotropic analytical algorithm) dose calculation 
algorithm. All patients were treated with coplanar 6 MV photon beams using six to nine beam 
angles, approximately equispaced between 200° and 240° to encompass the ipsilateral lung. 
A sliding-window IMRT technique(8) on Varian linear accelerators (Varian Medical Systems) 
was used. Department guidelines regarding beam directions, optimization starting points, and 
target coverage and normal tissue planning goals were applied for all cases. Figure 1 shows 
axial and coronal views of a typical PTV, beam arrangement, and absolute dose distribution.

Ideally, we aim to deliver 50.4 Gy in 28 fractions, with prescription covering ≥ 95% of the 
PTV, dose to the hottest 5% of the PTV below 115% of prescription, and hot spots restricted to 
within the PTV. Lung constraints are Lyman-Kutcher-Burman (LKB) normal tissue complica-
tion probability (NTCP) ≤ 25%(9) (approximately equivalent to total lung mean dose below 
20–21 Gy) and V20Gy < 37%–40%. Other constraints and the sources from which they are 
derived are provided in Table 1.(10-14) The attending physician either approved deviations from 
these or decreased the prescribed number of fractions until constraints were satisfied. Since 
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two most serious complications are radiation pneumonitis and radiation myelitis, our two most 
strictly followed normal tissue limits are NTCP ≤ 25% and maximum spinal cord dose ≤ 50 Gy.

Fig. 1. Typical hemithoracic pleural IMRT plan for MPM. PTV is represented by thick red lines: (a) beam arrangements 
and isodose distribution on axial view, (b) isodose distribution on coronal view.

(a)

(b)

Table 1. Institutional planning criteria for hemithoracic IMRT for MPM. Quantities in parentheses are the highest 
permitted without special physician consideration.

 Target Criteria Note

 PTV D95% ≥	 94% 
  V95% ≥	 94% 
  D05% ≤	 115% 
   Hot spots are inside the PTV

 Normal tissue Criteria

 Lung    
 Total Lungs Mean dose ≤	 21Gy  (10)

  V20 Gy ≤	 37% (11)

   NTCP ≤	 25% (12) 

 Cord Maximum point dose ≤	 50Gy (10)

 Bowel (upper abdomen) Maximum point dose ≤	 55Gy 
   D05% ≤	 50Gy 
 Heart V30 Gy ≤	 50% (13)

   Mean Dose ≤	 30Gy (13) 

 Kidney V18Gy ≤	 33%  
 Liver Mean Dose ≤	 30Gy  (10)

   V30 Gy ≤	 50% 
 Stomach Mean Dose ≤	 30Gy Stomach not PTV

 Esophagus Mean Dose ≤	 34Gy (10)

   V60Gy ≤	 17%  (14)
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B.  Design and statistical methods 
Five volumes were recorded for each patient: the ipsilateral lung (IL), contralateral lung (CL), 
total lung, PTV, and ipsilateral normal lung (ipsilateral lung volume excluding overlap with 
PTV). These volumes and their ratios were all obtainable from the planning CT scan without 
requiring a treatment plan. We analyzed these volumes and five volume ratios: contralateral/
ipsilateral lung volumes (CIVR), contralateral lung volume/PTV (CPVR), ipsilateral lung vol-
ume/PTV (IPVR), ipsilateral normal lung volume/total lung volume (INTLVR), and ipsilateral 
normal lung/PTV volume (INLPVR). We also recorded the prescription dose and the mean 
doses to total lung (MLD), ipsilateral lung (MILD), and contralateral lung (MCLD) from each 
treatment plan. 

Spearman’s rank correlation was used to investigate the correlation between the prescription 
dose, the volume parameters, and the five volume ratios. Fisher’s exact test was used to assess 
correlations between prescription dose and the categorical variables formed by above or below 
the median for the most significant volume ratio. We also used the Spearman’s rank correlation 
to investigate correlation between MILD and the three ratios of lung volumes to PTV: CPVR, 
IPVR, and INLPVR, and between the prescription dose and the mean doses MILD and MCLD. 
Linear models were constructed for the most significant correlations. 

Twenty-three MPM patients with two lungs were treated with IMRT or volumetric-modulated 
arc therapy (VMAT) in our clinic after 2012 with treatment plans that were designed without 
input from this study. Ten were planned in the in-house planning system and 13 in Eclipse. 
The parameters which showed the most significant correlation in the training set were used to 
validate the models by comparing the predicted and attained prescription dose and MILD for 
these patients. 

 
III. RESULTS 

A.  Plan characteristics
The prescription doses for the 56 patient training set were 50.4 Gy for 14 patients (25%), 48.6 Gy 
for 15 patients (27%), 46.8 Gy for 9 patients (16%), and 45.0 Gy or less for 18 patients (32%). 
Table 2 gives the patient characteristics and averages and ranges of the five examined volumes. 

Table 2. Patient characteristics.

 Characteristic  Number of Patients (%)

Surgery   
 P/D or P  48 (86)
 Nonoperative  8 (14)
Laterality   
 Right  34 (61)
 Left  22 (39)
Prescription Dose   
 5040  14 (25)
 4860  15 (27)
 4680  9 (16)
 ≤4500  18 (32)

 Volume Average± SD Range

 PTV 2924.8.±908.6 cc 1091.8 cc – 6675.4 cc
 Ipsilateral Lung 1208.2±425.4 cc 477.1 cc – 2340.7 cc
 Ipsilateral Normal Lung 606.8±269.5 cc 155.2 cc – 1595.0 cc
 Contralateral Lung 1677.3±469.8 cc 763.1 cc – 2756.3 cc
 Total Lung 2911.0±790.3 cc 1360.5 cc – 5030.1 cc
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The medians and ranges for the volume ratios were 1.33 for CIVR (0.83–3.70), 0.58 for 
CPVR (0.31–1.09), 0.43 for IPVR (0.08–0.89), 0.22 for INTLVR (0.05–0.42), and 0.21 for 
INLPVR (0.05–0.60).

The average mean dose, standard deviation and range over all patients for the ipsilateral 
lung was 40.1 ± 4.4 Gy (33.5 Gy–49.9 Gy), for the contralateral lung was 5.7 ± 1.9 Gy 
(1.8 Gy–10.8 Gy), and for the total lung was 19.9 ± 1.0 Gy (16.2 Gy–20.7 Gy).

B.  Correlations
Table 3 shows the correlations of the variables discussed below with achieved prescription 
dose. Correlation with CIVR was most significant, with R = 0.603 (p < 0.001). Figure 2(a) 
shows the linear regression line for this correlation. Prescription dose had a weaker correla-
tion with IPVR and with the ipsilateral lung volume (IL) than CIVR; these two correlations 
were negative. Correlation with the other ratios and volumes tested did not reach statistical 
significance and hence are not mentioned in Table 3. To further investigate the correlation of 
CIVR and prescription dose, we divided patients into two groups, split at the median CIVR 
value, 1.33. The median split was significant (p < 0.001) by Fisher’s exact test. Figure 2(b) 
shows the distribution of these two CIVR groups among the different prescription doses. For 

Table 3. Spearman’s correlation coefficient (R) and p value (p) for prescription dose and significantly correlated variables.

  IL CIVR IPVR MILD MCLD

 R -0.445 0.603 -0.351 0.554 0.240
 p 0.001 <0.001 0.008 <0.001 0.075

Fig. 2. Correlation between CIVR and prescription dose; each circle is a patient: (a) linear regression fit for ratio of CIVR) 
versus prescription dose (slope = 1.98, intercept = 44.3 Gy); (b) distribution of patients above and below the median 
CIVR among the different prescription levels. Lower prescriptions of two cases with high CIVR (1.684 and 3.699 were 
limited by other OARs’ dose.

(a)

(b)
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CIVR ≥ 1.33, 79% of cases received 48.6 Gy or 50.4 Gy (46% received 50.4 Gy). For CIVR 
< 1.33, only 25% of cases received 48.6–50.4 Gy (4% received 50.4 Gy). The sensitivity and 
specificity of median CIVR for predicting prescription dose above 48.6 Gy were 0.759 and 
0.778, respectively. For predicting prescription dose of 50.4 Gy the sensitivity and specificity 
of the median CIVR were 0.929 and 0.643, respectively.

Mean ipsilateral lung dose (MILD), which we routinely use as a constraint in the optimization 
process, was negatively correlated with the volume ratios IPVR (R = -0.658; p < 0.001) and 
INLPVR (R = -0.784; p < 0.001). Because these two volume ratios were also strongly correlated 
with each other (R = 0.870; p < 0.001) we created a linear model (Fig. 3(a)) to predict the low-
est achievable MILD from INLPVR which had the higher correlation with MILD. MILD was 
also significantly correlated with prescription dose (Table 3 and Fig. 3(b)) although INLPVR 
was not (R = -0.113; p = 0.406). Use of INLPVR for an anatomy-based estimate of MILD to 
use at an intermediate stage of optimization can help to more efficiently drive the optimization 
toward the highest achievable prescription dose consistent with the constraints.

C.  Validation patients
According to the predictive model, if CIVR ≥ 1.33, the prescription dose that satisfies the lung 
OAR constraints should be 48.6 Gy or higher, while if CIVR is < 1.33, the prescription dose 
should be less than 48.6 Gy. We applied this model to the next 23 patients who were consecutively 
treated in our department. The median CIVR of the validation patients was 1.27. Nine patients 
had CIVR ≥ 1.33 (range 1.33–2.58) and prescription doses of eight of these were ≥ 48.6 Gy 
while one was 46.8 Gy due to the heart constraint. Fourteen patients had CIVR < 1.33 (range 
0.67–1.32) and prescription doses of eleven of these were ≤ 46.8 Gy while three were ≥ 48.6 Gy; 
these had CIVR between 1.27 and 1.32. Although the training set median CIVR was lower, the 

Fig. 3. The correlation and linear regression fit (a) for MILD versus INLPVR (slope = -23.6; intercept = 45.4 Gy); and 
(b) for prescription dose versus MILD (slope = 0.33; intercept = 34.1 Gy).

(a)

(b)
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training set median split of CIVR remained highly significant for the validation set (p < 0.003) 
by Fisher’s exact test. The MILD for these patients’ plans was also well predicted by the linear 
relation with INLPVR (Fig. 3(b)) as shown in Fig. 4 (R = 0.768; p = 0.01).

 

IV. DISCUSSION

Adjuvant hemithoracic pleural IMRT is a promising technique to treat MPM patients with 
two intact lungs.(6,15) Because plan optimization is complex and lung dosimetric constraints 
often limit the achieved prescription dose, we developed a simple anatomy-based method to 
estimate a realistic prescription goal before starting optimization, thus providing both physi-
cian and planner with a “heads up” regarding the difficulty of the case. This is the first study 
to evaluate the relationship between patient anatomy and achievable prescribed dose in IMRT 
plans for these patients.

Several studies have used a combination of the geometry of patient anatomy and their clinical 
treatment plans to estimate achievable dosimetric limits before starting to plan. Hunt et al.(16) 
analyzed delivered IMRT plans of 51 head-and-neck patients and showed that the ability to limit 
the parotid gland mean dose to the desired 26 Gy could be predicted by the percent of volume 
overlap of the gland with the PTV. Moore et al.(17) analyzed the OAR doses delivered by 42 
clinical IMRT head-and-neck or prostate cancer treatment plans and showed that the ratio of 
a minimum OAR dose to the prescription dose could be predicted by the fraction of the OAR 
volume overlapping the PTV. Wu et al.(18) first focused on the overlap of parotid glands with 
PTV in a database of 32 head-and-neck patients and identified 13 patients where the parotid 
DVH could be improved by replanning. Subsequently, this group generated overlap volume 
histograms (OVH) for other organs and used this methodology to generate starting optimiza-
tion objectives to improve the efficiency of IMRT optimization for head-and-neck patients.(19)

Our study investigated five volumes that are easily measured in the planning scan prior 
to optimization and five ratios that could limit the attainable prescription dose subject to our 
lung constraints. Other volume ratios were investigated but were found to provide redundant 
information. For example, the contralateral to total lung volume ratio and the CIVR are highly 
correlated (R = 0.957) and provide essentially the same predictive information (data not shown).

The strongest correlation was with the ratio of contralateral to ipsilateral lung volumes 
(CIVR). For the 23 validation patients, CIVR was confirmed as an excellent predictor of the 
attained prescription. Also, for both sets of patients, INLPVR predicted MILD, which our plan-
ners often use as an optimization constraint. Although these correlations were derived from 
a training set planned in the in-house planning system, they remained predictive for patients 
planned in Eclipse.

Fig. 4. Validation of prediction model in 23 test cases: actual MILD vs. MILD predicted by the previously derived linear 
relation with measured INLPVR.
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With any dataset of “real-world” plans, anatomic variations and inherently associated varia-
tions in CIVR values are expected and unavoidable. CIVR is not an absolute determinant of 
prescription dose, but rather one source of guidance as to how realistic the planning goal might 
be for a specific patient. Factors such as protection of other OARs, planner skill, or allotted 
time and patient-specific physician’s goals may limit the prescription dose despite high CIVR. 
Anatomical factors, such as a PTV that crosses the mediastinal midline, may lead to higher 
contralateral and total lung mean doses than anticipated. Similarly, patients with lower CIVRs 
may have other anatomic features that allow higher doses. Especially when CIVR is slightly 
below the chosen cutpoint, a persistent and skilful planner may achieve the prescription goal.

A limitation of this study is that the input comes from a particular IMRT technique (Fig. 1) 
and set of plan evaluation metrics, an experienced group of treatment planners, and two particular 
treatment planning systems’ dose calculation and optimization algorithms. While we expect 
that CIVR would remain a significant predictor of achievable prescription dose for IMRT MPM 
cases planned on different treatment planning systems and with different techniques, details 
of the correlation, such as those shown in Fig. 2, and the chosen predictive value, could well 
be different. No geometric predictor would be needed if the desired prescription dose is much 
lower than ours. Therefore, planners in other departments should evaluate the applicability of 
this geometric predictor to their cases before putting it into use. 

 
V. CONCLUSIONS

For MPM patients with two intact lungs, a higher ratio of contralateral to ipsilateral lung volume 
(CIVR) predicts the ability of an IMRT plan to achieve a prescription dose of at least 48.6 Gy 
while maintaining an LKB model lung NTCP ≤ 25%. For patients with high CIVR, other normal 
tissue constraints may be more dose-limiting than the lungs. However, if the contralateral lung 
is small and CIVR is low, the prescription for the resulting plan will likely be lower than what 
was originally desired. Whether other anatomical factors are also significantly associated with 
the highest achievable prescription dose requires further investigation.
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