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Abstract: The main protease (Mpro) of the newly emerged severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) was subjected to hyphenated pharmacophoric-based and structural-based
virtual screenings using a library of microbial natural products (>24,000 compounds). Subsequent
filtering of the resulted hits according to the Lipinski’s rules was applied to select only the drug-like
molecules. Top-scoring hits were further filtered out depending on their ability to show constant good
binding affinities towards the molecular dynamic simulation (MDS)-derived enzyme’s conformers.
Final MDS experiments were performed on the ligand–protein complexes (compounds 1–12, Table S1)
to verify their binding modes and calculate their binding free energy. Consequently, a final selection
of six compounds (1–6) was proposed to possess high potential as anti-SARS-CoV-2 drug candidates.
Our study provides insight into the role of the Mpro structural flexibility during interactions with
the possible inhibitors and sheds light on the structure-based design of anti-coronavirus disease 2019
(COVID-19) therapeutics targeting SARS-CoV-2.

Keywords: SARS-CoV-2; Covid-19; Mpro; microbial natural products; docking; molecular
dynamic simulation
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1. Introduction

In 2002, the first spread of coronavirus associated with severe acute respiratory syndrome
coronavirus (SARS-CoV) emerged in southern China. This outbreak successfully subsided by
the summer of 2003 [1], with no more than 8500 confirmed infections and just over 900 deaths
worldwide [2]. Upon the spread of this outbreak, the global response was immediate to characterize
its causative agent as a novel coronavirus (SARS-CoV) [3]. The recurrence of SARS in the Guangdong
province of China in December 2003 [4] illustrated the need to continue efforts to study this virus and its
key molecular targets to develop appropriate therapeutics for its treatment. In 2012, another coronavirus
wave originating in Jeddah, Saudi Arabia emerged and spread within and beyond the Middle East.
The reported strain (MERS-CoV) was associated with severe pneumonia and multi-organ failure [5].
The limited number of infected cases during the previous coronaviruses waves did not encourage a
serious worldwide development of effective treatments.

Recently and until June 2020, the outbreak of a new coronavirus (SARS-CoV-2) that originated from
Wuhan, China, in late 2019, has led to more than 9.3 million infections and more than 479,000 deaths
throughout 216 countries without any proven antiviral agents or effective vaccine according to WHO
official updates. However, repurposing of previous medications has shown some reported clinical
improvements [6]. This time, worldwide efforts are being made to characterize molecular targets,
pivotal for the development of anti-coronavirus therapies. The term coronavirus was coined according
to its corona-like appearance in the electron microscope, due to its spikes that radiate outwards from
the viral envelope. The spherical capsid envelops a positive-strand RNA genome of about 30 kb, which
is considered the largest of its kind. The viral genome is predominated by two open reading frames that
are connected by a ribosomal frameshift site and encode the two replicase proteins, pp1a and pp1ab [7].
These polyproteins are cleaved by the viral main protease (Mpro), also called chymotrypsin-like protease,
3CLPro [8,9]. Mpro is considered a highly conserved molecular target across coronaviruses, and hence,
it was designated as a potential target for anti-coronavirus drug development [10]. Earlier reports
on viral protease inhibitors (i.e., the HIV protease inhibitor lopinavir) revealed significant in vitro
anti-SARS-CoV-2 activities [11].

Natural products along with natural product-inspired synthetic and semisynthetic compounds
are still an excellent structural motif for the discovery of new therapeutics, including antiviral
agents. Natural products derived from microbial sources are considered unique in their chemical
diversity in comparison with plant-derived ones. Approximately 53% of the FDA-approved natural
products-based drugs are of microbial origin, notably the antiviral ones [12]. For example, Ara-A (9)
(also known as vidarabine) is considered one of the earliest antiviral nucleoside analogues that
was reported from Streptomyces antibioticus [13]. Afterwards, several nucleoside-based antiviral
agents of microbial origin were developed [14]. Additionally, several ansamycins-based antibiotics
(e.g., rifamycin, 10) have shown interesting antiviral properties against a wide range of infectious
viruses [15]. Furthermore, the well-known immunomodulatory drug of fungal origin mycophenolic
acid (11) has also shown a broad antiviral activity [15]

Recently, the microbial-derived FDA-approved anti-parasitic drug ivermectin (12), a semisynthetic
pentacyclic sixteen-membered lactone derived from the soil bacterium Streptomyces avermitilis, proved to
be an effective in vitro inhibitor of SARS-CoV-2 replication [16,17]. In this context, several in silico
techniques that have recently gained a lot of attention in drug discovery campaigns (e.g., structure
and ligand-based virtual screening, docking and molecular dynamics) [18,19]. Hence, we initiated
a virtual screening of a big library of microbial natural products (more than 24,000 compounds)
aimed at the discovery of potential drug candidates against the SARS-CoV-2 Mpro, taking into account
the drug-likeness properties to select only druggable candidates. Simple docking protocols do not
take into consideration the flexible nature of proteins; therefore, their success rates in most cases
are between 60–70% [20]. To increase the docking performance, top hits retrieved from the primary
pharmacophore-based screening were further docked on a series of receptor conformers (i.e., ensemble
docking) [21] taken from the molecular dynamic simulation (MDS) to consider the factor of the binding
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pockets’ flexibility. Finally, further MDS of the protein–ligand complexes were performed to verify
our docking experiments and calculate their binding free energy (∆G). Drug candidates proposed
in this study could provide a promising starting point for the in vitro and in vivo testing and further
development of potential drug leads against the newly emerged coronavirus disease 2019 (COVID-19).
The procedure of the current investigation is depicted in Figure 1.
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2. Materials and Methods

2.1. Preparation of SARS-CoV-2 Mpro and the Compounds Dataset

Crystal structures of Mpro (PDB code: 6LU7 and 6M2N) were obtained from the Protein Data Bank
(http://www.pdb.org), and all heteroatoms and water molecules were removed for MDS and molecular
docking studies. The chemical structures of the tested microbial specialized metabolites were retrieved
from the online dataset; The Natural Products Atlas (https://www.npatlas.org/joomla/index.php) [22]
with a final compiled dataset consisting of 24,581 compounds. Subsequently, this library of compounds
was subjected to LigandScout software [23] to select 9933 compounds that showed drug-like properties
(i.e., obey Lipinski’s role of five) [24].

http://www.pdb.org
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2.2. Molecular Dynamic Simulation

Molecular dynamic simulations (MDS) for the free Mpro enzyme and ligand–enzyme complexes
were performed using the Nanoscale Molecular Dynamics (NAMD) 2.6 software [25], employing
the CHARMM27 force field [26]. Hydrogen atoms were added to initial coordinates for Mpro using
the psfgen plugin included in the Visual Molecular Dynamic (VMD) 1.9 software [27]. Subsequently,
the protein system was solvated using TIP3P water particles and 0.15 M NaCl. The equilibration
procedure comprised 1500 minimization steps followed by 30 ps of MDS at 10 k with fixed protein atoms.
Then, the entire system was minimized over 1500 steps at 0 K, followed by gradual heating from
10 to 310 K using temperature reassignment during the initial 60 ps of the 100 ps equilibration
MDS. The final step involved NTP simulation (30 ps) using the Nose–Hoover Langevin piston
pressure control at 310 K and 1.01325 bars for density (volume) fitting [28]. Thereafter, the MDS
was continued for 25 ns for the entire system (20 ns for the enzyme–ligand complexes). The trajectory
was stored every 0.1 ns and further analyzed with the VMD 1.9 software. The MDS output over 25 ns
provided several structural conformers that were sampled every 0.1 ns to evaluate the conformational
changes of the entire protein structure to analyze the root mean square deviation (RMSD) and root
mean square fluctuation (RMSF). All parameters and topologies of the compounds selected for
MDS (1–12, Table S1) were prepared using the online software Ligand Reader & Modeler (http:
//www.charmm-gui.org/?doc=input/ligandrm) [29] and the VMD Force Field Toolkit (ffTK) [27].
Binding free energy calculations (∆G) were performed using the free energy perturbation (FEB)
method through the web-based software Absolute Ligand Binder [30] together with the MDS software
NAMD 2.6 [25]. Additionally, they were calculated using another web-based software, namely KDEEP

(https://www.playmolecule.org/Kdeep/), which applies a neural-networking algorithm during its
computations [31].

2.3. Pharmacophore-Based Virtual Screening and Molecular Docking

The pharmacophore-based screening was performed by the online sever Pharmit (http://pharmit.
csb.pitt.edu/) [32]. The pharmacophore models were constructed from the SARS-Mpro enzymes
co-crystallized with baicalein (7) and N3 (8). All the pre-installed Pharmit parameters remained
unchanged. The resulting two models were used for the virtual screening of the compounds filtered
from the prepared microbial natural products library (9933 compounds). Afterwards, compounds with
RMSD > 2Å were excluded. Docking experiments were performed using AutoDock Vina software [33].
All compounds that fitted into the predetermined pharmacophore models (57 compounds) were
then subjected to molecular docking against the Mpro’s active site conformers that were sampled
from the MDS every 5 ns (i.e., ensemble docking). We set an average docking score of −10 kcal/mol
(the average docking score of compound 7) as a cut-off to select the top-scoring hits. Afterwards,
the retrieved top hits (1–12, Table S1) were ranked according to their binding energies (Table 1
and Table S1). The generated docking poses were visualized and analyzed using Pymol software [34].

Table 1. Mpro top-scoring ligands alongside their binding energies using different calculation methods
and their molecular interactions inside the active site.

Ligand ∆GVina
(kcal/mol)

∆G * FEP
(kcal/mol)

∆G ** KDEEP
(kcal/mol)

∆Gaverage
(kcal/mol)

Hydrogen Bonding
Interactions

Hydrophobic
Interactions

Citriquinochroman (1) −14.7 −11.9 −10.5 −12.4

THR-26, ASN-142, GLY-143,
CYS-145, GLU-166, ASP-187,

ARG-188, GLN-189, THR-190,
GLN-192

HID-41,
MET-49,
PRO-168

Holyrine B (2) −14.5 −11.5 −10.9 −12.3

LEU-141, ASN-142, GLY-143,
SER-144, CYS-145, HID-163,
HIE-164, GLU-166, PRO-168,
ASP-187, ARG-188, GLN-189,

THR-190, GLN-192

HID-41,
MET-49,

MET-165,
PRO-168

http://www.charmm-gui.org/?doc=input/ligandrm
http://www.charmm-gui.org/?doc=input/ligandrm
https://www.playmolecule.org/Kdeep/
http://pharmit.csb.pitt.edu/
http://pharmit.csb.pitt.edu/
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Table 1. Cont.

Ligand ∆GVina
(kcal/mol)

∆G * FEP
(kcal/mol)

∆G ** KDEEP
(kcal/mol)

∆Gaverage
(kcal/mol)

Hydrogen Bonding
Interactions

Hydrophobic
Interactions

Proximicin C (3) −14.1 −12.1 −10.3 −12.2
GLY-143, SER-144, CYS-145,

GLU-166, PRO-168, ASP-187,
ARG-188, GLN-189, THR-190

Leu-27,
HID-41,
MET-49,

MET-165,
PRO-168

Pityriacitrin B (4) −13.4 −12.1 −11.1 −12.2

PHE-140, LEU-141, GLY-143,
SER-144, CYS-145, HID-163,
HIE-164, MET-165, GLU-166,

GLN-189

HID-41,
MET-49,
GLN-189

Anthrabenzoxocinone (5) −13.2 −10.3 −9.5 −11

THR-26, HID-41, CYS-44,
ASN-142, GLY-143, CYS-145,
HIE-164, HIE-164, MET-165,
GLU-166, VAL-186, ASP-187,

ARG-188, GLN-189, THR-190,
GLN-192

HID-41,
MET-49,

MET-165,
GLN-189

Penimethavone A (6) −12.1 −11.4 −8.9 −10.8

LEU-141, GLY-143, SER-144,
CYS-145, HIE-164, HIE-164,

MET-165, GLU-166, HID-172,
VAL-186, ASP-187, ARG-188,

GLN-189, GLN-192

HID-41,
MET-49,

MET-165,
GLN-189

Co-crystalized ligand (7) −10.1 −9.2 −8.9 −9.4 LEU-141, ASN-142, GLY-143,
GLU-166, GLN-189.

HID-41,
MET-49,
GLN-189

Co-crystalized ligand (8) −10.9 −11.4 −9.4 −10.6
PHE-140, GLY-143, CYS-145,
HIE-164, GLU-166, GLN-189,

THR-190.

HID-41,
MET-49,
GLN-189

* Binding free energy calculated by the free energy perturbation (FEB) method [30], ** Binding free energy calculated
by a neural networking method (KDEEP) [31].

3. Results and Discussion

3.1. Structure and Dynamics of the SARS-CoV-2 Mpro

The catalytic site of the SARS-CoV-2 Mpro was found to be the largest cavity on the whole
protein (static volume = 385.56 Å3) and is located in domains I and II (residues 11 to 99 and 100
to 182, respectively, Figure 2A). Additionally, it is smaller than the earlier SARS-CoV Mpro (static
volume = 447.7 Å3) [35]. It is worth noting that the enzyme’s domain III, which consists of a globular
cluster of five helices, is present only in coronaviruses and is responsible for the regulation of Mpro

dimerization [36]. MDS of the reported SARS-CoV-2 Mpro (PDB: 6LU7) [10] was performed to study
the conformational changes in the active site using clustering analysis (conformation was sampled
every 0.1 ns). The carbon alpha (Cα) root main square deviation (RMSD) values with respect to
the initial structure were calculated for 25 ns of the simulation and were found to oscillate from 0.78
to 2.78 Å with a median value of (2.51 Å), reaching equilibrium (i.e., plateau) at 4.8 ns (Figure 2D).
Regarding root mean square fluctuation (RMSF) values, they demonstrated that Mpro had moderate
flexibility (average RMSF = 2.43 Å, Figure 2E), where the active site showed the highest conformational
changes (average RMSF = 3.1 Å), particularly at the THR-45 to ILE-59 loop (Figure 2B), which showed
high fluctuations (i.e., RMSF values ranged from 5.2 to 8.9 Å, Figure 2E).

The volume of the active site was 399.56 Å3 at the beginning of the simulation (Figure 2C),
and during the MDS, it gradually increased to reach 479.65 Å3 at 10 ns, and then began to decrease to
reach 314.63 Å3 at the end of the MDS. Docking and virtual screening studies on such flexible catalytic
active sites using only their crystalized static form would lead to poor prediction results. Hence,
considering multiple structural conformations (i.e., ensemble docking) derived from the MDS study
for our virtual screening in the present investigation could significantly improve the predicted results.
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Figure 2. (A): The main domains (Mpro) in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) (Brick red: Domain I, Golden yellow: Domain II, Cyan: Domain III), (B): Heat-map
illustrating the flexible regions on SARS-CoV-2 Mpro, (C): The active site volume changes during
the course of molecular dynamic simulation (MDS) (D and E): root main square deviation (RMSD)
and root main square fluctuation (RMSF) of SARS-CoV-2 Mpro after 25 ns of MDS.

3.2. Pharmacophore-Based Modeling and Screening

To discover potential naturally occurring ligands that could block the Mpro active site, an extensive
specialized microbial natural product database (The Natural Product Atlas) containing more than
24,000 different compounds was utilized for. Firstly, the database was filtered according to drug-likeness
(Lipinski’s rules [24]) to get 9933 drug-like candidates.

The crystal structure of SARS-CoV-2 Mpro (PDB id: 6LU7) was reported earlier, along with its
co-crystallized peptide inhibitor N3 [10]. N3 (8) is fitted inside the Mpro active site through multiple
strong H-bonds (e.g., GLY-143, HIS-164, GLU-166, GLN-189, and THR-190) alongside a covalent bond
with CYS-145. Additionally, its isopropyl group is imbedded inside a hydrophobic pocket that consists
of HIS-41, MET-49, and GLN-189 (Figure 3A, Table 1).
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Figure 3. Generated pharmacophore models (B and D) according to the previously reported
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residues represent the S1 pocket, blue amino acid residues represent the S2 pocket, yellow amino acid
residues represent the S3 and S4 pockets in the Mpro active site (A and C).

Recently, a novel flavonoid-based non-covalent inhibitor (baicalein, 7) (PDB code: 6M2N)
was found to accept seven H-bonds from LEU-141, ASN-142, GLY-143, Glu-166, and GLN-189.
Moreover, its phenyl moiety was also fitted inside the hydrophobic pocket of HIS-41, MET-49,
and GLN-189 (Figure 3C, Table 1). The predetermination of pharmacophoric characteristics prior to
structure-based virtual screening would help in selecting the best hits with the best interaction inside
the binding pocket [37].

To define the essential features of the interaction inside the Mpro’s active site [32],
two structure-based pharmacophore models were constructed depending on the two previously
described inhibitors. The N3 (8)-based-pharmacophore model had the following features: four H-bond
donors derived from four amide groups, one carboxyl group-derived oxygen atom as an H-bond
acceptor, and the isopropyl group to represent a hydrophobic center (Figure 3B). On the other hand,
the baicalein (7)-based pharmacophore model showed the following features: two H-bond acceptors
derived from one hydroxyl group and the ketonic oxygen, one H-bond donor derived from another
hydroxyl group, and the phenyl group to represent a hydrophobic center (Figure 3D).

Subsequently, these binding site-derived pharmacophore models were used in our virtual screening
against the MND-selected compounds (the 9933 compounds that obey Lipinski’s rules) using the online
server Pharmit [32]. This allowed us to select the compounds with predetermined pharmacophoric
features capable of interacting with the reported key residues. This filtration step led to the recognition
of 363 compounds that met the predetermined model features, of which we selected only 57 compounds
(i.e., showed RMSD values lower than 2 Å with respect to the co-crystalized ligands 7 and 8) to undergo
a subsequent docking-based virtual screening.
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3.3. Molecular Docking and Binding Mode Investigation

Docking of the selected compounds inside the Mpro active site was performed on AutoDock Vina,
which was able to reproduce the binding mode of the co-crystalized ligands [37], N3 (8) and baicalein (7),
with an RMSD values of 1.22 and 0.51 Å, respectively. Fifty seven compounds were filtered according
to the predetermined pharmacophoric features and drug-likeness properties, and thereafter docked
separately on the SARS-CoV-2 Mpro active site using several snapshots (every 5 ns) derived from
the MDS (i.e., ensemble docking). This allowed us to further select the best binding compounds taking
into consideration the flexibility of the active site. Top-scoring hits (those with an average binding
energy score > −10 kcal/mol, Table S1 and Figure S1) with binding modes comparable with both N3
(8) and baicalein (7), were then subjected to MDS and binding free energy computation to further
verify the suggested pharmacophore models, docking-derived binding poses, and binding affinities.
Only compounds 1–6 (Figure 4 and Table 1) exhibited stable binding orientations inside the enzyme
binding pocket throughout the MDS (Figures S2–S13) and constant binding energies higher than that
of the co-crystallized inhibitors, i.e., compounds 7 and 8.
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Our Mpro top-scoring ligands indicated that the best hit was citriquinochroman (1).
This N-containing polyketide was first isolated from the endophytic fungus Penicillium citrinum
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in 2013 and showed moderate anticancer activity [38]. It showed the least binding energy
(∆Gaverage = −12.4 kcal/ mol), with perfect fitting inside the enzyme active site in the crystallized form,
where it anchored itself via a network of H-bond interactions with the reported key binding residues
(7 H-bonds) [10]. Despite the flexibility of the enzyme active site, citriquinochroman (1) was able to
keep its orientation during the course of MDS (Figure 5 and Figure S2) with a transient drop in its
binding affinity at 3–5.5 ns (∆GVina = −8.9 kcal/mol). Afterwards, both THR-26 and GLN-192 stabilized
compound 1 with additional H-bond interactions until the end of the MDS (Figure 5).Microorganisms 2020, 8, 970 12 of 17 
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The second most promising hit was holyrine B (2), an indolocarbazole alkaloid that was previously
isolated from a marine-derived actinomycete [39]. Holyrine B (2) exhibited binding modes similar to
that of citriquinochroman (1), where it also interacted through H-bonding or hydrophobic interactions
with the reported key amino acid residues [10]. Additionally, it was able to keep these strong
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interactions throughout the MDS and form additional H-bonds and hydrophobic interactions with
extra amino acid residues like HID-163, HIE-164, PRO-168, and MET-165 (Figure 5 and Table 1).

The third best hit was the aminofuran antibiotic proximicin C (3), which was isolated from
the marine actinomycete Verrucosispora MG-37 [40]. Proximicin C (3) showed an interesting binding
pose inside the enzyme active site in the crystalized form where it interacted with several amino acid
residues including the reported ones (9 H-bonds and 2 hydrophobic interactions, Figure 6). During
the MDS and in contrast to the previous candidates (1 and 2), proximicin C’s (3) binding affinity
remained constant for 5 ns and started to increase afterwards until the end of the simulation. Such stable
fitting inside the binding site could be attributed to the molecular flexibility of this compound that
enabled it to accommodate itself well inside the changing active site of SARS-CoV-2 Mpro (Figure 6).
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Pityriacitrin B (4) showed excellent fitting inside the Mpro active site, where the phenyl moiety
of the β-carboline part was impeded inside the hydrophobic pocket (HID-41, MET-94, GLN-189),
while the other indole arm together with the β-carboline’s pyridine moiety interacted with the key
binding amino acid residues (PHE-140, LEU-141, GLY-143, and GLU-166, Figure 6). Moreover,
it was able to not only keep these interactions throughout the MDS, but also to form additional strong
H-bonds with THR-26, SER-144, and CYS-145. Pityriacitrin B (4) was first isolated from the human
pathogenic yeast Malassezia furfur [41]. Later on, it was identified as an efficient UV absorbing agent [42].

Coming to our next hit, (+)-anthrabenzoxocinone (5), it showed an interaction pattern similar
to the previous candidates (1–4, and 7, 8) inside the crystallized form of the enzyme active site.
However, from the beginning of the MDS, this compound gradually detached itself from the binding
site, and starting from 7.2 ns, it took a different orientation with better interactions (Figure 7
and Table 1). At the end of the MDS, (+)-anthrabenzoxocinone (5) was able to form a wide network
of H-bonds (10 H-bonds) and hydrophobic interactions (4 hydrophobic interactions) (Figure 7).
Anthrabenzoxocinone (5) was isolated from a soil-derived Streptomyces sp. in 2014 [43].
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Finally, penimethavone A (6), which has a flavone structure similar to the co-crystalized
ligand (baicalein, 7), was able to form molecular interactions almost identical to those of
the co-crystalized ligand (7) (Figures 3C and 7, Table 1). Additionally, it adopted a stable binding mode
during the MDS, particularly near the end of simulation when it expanded its H-bonds network to
involve extra binding residues like HIE-164 and HID-172. Penimethavone A (6) is an unusual flavone
derivative with a methylated B-ring that was isolated from the gorgonian marine soft coral-derived
Penicillium chrysogenum [44].

4. Conclusions

The SARS-CoV-2 pandemic crisis has inspired scientists with diverse backgrounds to help with a
speedy discovery of potential treatments or vaccines. In the present virtual screening and molecular
modelling study, we suggested that the active site of the newly emerged SARS-CoV-2 Mpro is quite
flexible. Thus, its utilization in just simple docking experiments could lead to inaccurate results.
Consequently, this catalytic active site was utilized in a combination of ligand-based followed by
structural-based virtual screening against a big library of microbial-derived specialized metabolites,
which was initially filtered according to the drug-likeness of its molecules. Top-scoring hits were
further subjected to an ensemble docking protocol depending on the enzyme-generated conformers
during the MDS. This step allowed us to select only ligands with stable binding affinity and modes for
considering the flexibility of the active binding site. MDS, together with binding energy and affinity
computations were performed for the selected hits as a final validation step to nominate six molecules
with possible high potential to modulate/inhibit the SARS-CoV-2 Mpro active site. This study
emphasized the power of computer-aided drug design and modelling in speeding up the process of
drug discovery, which is currently an urgent need under the spread of COVID-19. It also highlighted
the ability of natural products, particularly those of high structural diversity like microbial-derived
metabolites, to provide potential drug-leads. Further in vitro testing of the drug candidates retrieved
from our study is highly recommended as a promising starting point for the rapid development of
drug leads against newly emerged COVID-19.
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