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Abstract

Precise identification of target sites of RNA-binding proteins (RBP) is important to under-

stand their biochemical and cellular functions. A large amount of experimental data is gener-

ated by in vivo and in vitro approaches. The binding preferences determined from these

platforms share similar patterns but there are discernable differences between these data-

sets. Computational methods trained on one dataset do not always work well on another

dataset. To address this problem which resembles the classic “domain shift” in deep learn-

ing, we adopted the adversarial domain adaptation (ADDA) technique and developed a

framework (RBP-ADDA) that can extract RBP binding preferences from an integration of in

vivo and vitro datasets. Compared with conventional methods, ADDA has the advantage of

working with two input datasets, as it trains the initial neural network for each dataset individ-

ually, projects the two datasets onto a feature space, and uses an adversarial framework to

derive an optimal network that achieves an optimal discriminative predictive power. In the

first step, for each RBP, we include only the in vitro data to pre-train a source network and a

task predictor. Next, for the same RBP, we initiate the target network by using the source

network and use adversarial domain adaptation to update the target network using both in

vitro and in vivo data. These two steps help leverage the in vitro data to improve the predic-

tion on in vivo data, which is typically challenging with a lower signal-to-noise ratio. Finally,

to further take the advantage of the fused source and target data, we fine-tune the task pre-

dictor using both data. We showed that RBP-ADDA achieved better performance in model-

ing in vivo RBP binding data than other existing methods as judged by Pearson correlations.

It also improved predictive performance on in vitro datasets. We further applied augmenta-

tion operations on RBPs with less in vivo data to expand the input data and showed that it

can improve prediction performances. Lastly, we explored the predictive interpretability of

RBP-ADDA, where we quantified the contribution of the input features by Integrated Gradi-

ents and identified nucleotide positions that are important for RBP recognition.
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Author summary

RNA binding proteins (RBPs) regulate every aspect of RNA biology, including splicing,

translation, transportation, and degradation. To fully understand the function of RBPs

and the mechanism of RBP-RNA recognition, an accurate knowledge of the RBP-RNA

binding preferences is essential. There are in vitro and in vivo experimental approaches

such as RNAcompete or eCLIP that can determine RBP-RNA binding preferences in a

high-through manner. However, because of the intrinsic differences between in vitro and

in vivo experimental conditions, the binding preferences determined from in vitro and in

vivo do not always agree with each other. To solve this problem and best utilize both types

of data, we have adopted the adversarial domain adaptation (ADDA) technique into the

analysis of RNA binding proteins and developed a framework (RBP-ADDA) that can

extract RBP binding preferences from an integration of in vivo and vitro datasets. We

showed that RBP-ADDA outperforms other contemporary methods in predicting RBA

binding preferences on both in vivo and in vitro data. To the best of our knowledge, this is

the first time that adversarial domain adaptation has been applied to the computational

study of gene regulations.

1. Introduction

RNA-binding proteins (RBPs) have important roles in all aspects of post-transcriptional gene

regulation including splicing, polyadenylation, transport, translation, and degradation of RNA

transcripts [1]. Dysregulation of RBPs as well as mutations in their protein sequences or their

RNA target sites can often result in diseases such as cancer [2,3]. Therefore, capturing the

intrinsic binding preferences of RBPs and identifying their binding targets in a precise and

high-throughput manner is essential to understand the regulatory roles of RBPs and reveal

their connections to pathogenesis of human diseases.

Several experimental and computational platforms had been developed over the years to

determine and model the binding preferences between RBPs and RNAs [4]. CLIP-seq and

related techniques can identify in vivo binding events by immunoprecipitating RBPs and

bound RNA molecules and identifying these bound RNAs through sequencing [5–9]. On the

other hand, in vitro methods such as RNAcompete incubate protein with synthesized RNA

fragments (typically 30–41 nucleotides long) and determine the identity of bound RNA

sequence motifs by sequencing or microarray [10–12]. With the success of these experimental

approaches, several computational methods had been developed with the goals of helping

understand the binding preference from a structural and sequence perspective and building an

accurate predictive model to infer binding affinities of other RBPs [13–19]. For example,

MEMERIS uses an expectation maximization (EM) algorithm to look for sequence motifs in

RNA regions that are more likely to be unpaired, and thus available for binding [13]. RNAcon-

text, an accompanying method with the RNAcompete technology, assigns secondary struc-

tures to RNA and learns a model simultaneously with sequence and structure features [14].

GraphProt encodes nucleotide sequence and RNA secondary structure by using graph encod-

ing, which is then fed into support vector machines (SVMs) to classify bound sites from

unbound sites [15]. Notably, the developers of GraphProt have constructed a representative

dataset by extending 150 nucleotides in both directions on the binding sites determined in

CLIP-seq; this positive dataset has been widely used to train deep learning (DL) based models

such as iDeepE [20]. Ghanbari and Ohler recently proposed a multi-task and multimodal deep

neural network to infer RBP binding sites by considering region types of the binding sites [19].
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One of the earlier methods, DeepBind, learns a CNN model to predict protein-DNA and pro-

tein-RNA binding from several datasets, including RNAcompete and CLIP-seq[17]. Another

deep learning-based method, DLPRB, performs joint analysis on both RNA sequence and

structure by leveraging CNN and RNN [18].

There are intrinsic differences between in vivo and in vitro experimental approaches. Bind-

ing events determined by CLIP-seq and other in vivo methods tend to have lower signal-to-

noise ratios and are influenced by cell-type specific effect, cooperation or competition between

RBPs and other trans regulators [21]. RNA secondary structure and the choice of CLIP-seq

peak callers are also known to introduce complexity and confounding effects [22,23]. Unlike

in vivo methods, in vitro platforms measure protein-RNA binding affinities in a controlled set-

ting thus the results typically have higher signal-to-noise ratio. However, it is often not clear

whether the in vitro experimental conditions can mimic the complex conditions inside a cell

and whether the in vitro determined binding affinities and sequence motifs can be readily

extrapolated to in vivo situations [8,9,18]. It results in overall similarity but discernable differ-

ences between in vivo and in vitro data, thus existing methods designed on one dataset often

do not perform well on other datasets. We note that this problem closely resembles the classic

“domain shift” problem in deep learning, therefore we adapted the domain adaption principle

onto the RBP recognition problem and describe our approach below.

In the realm of deep learning, domain adaptation methods attempt to mitigate the negative

effect of domain shift when attempting to learn from multiple domains [24,25]. Domain adap-

tation methods learn deep neural transformations after mapping both domains onto a com-

mon feature space. This is generally achieved by optimizing representation of two domains in

order to minimize a specific measure of domain shift such as maximum mean discrepancy

[26,27] or correlation distances [28,29]. In addition to optimizing representation in these

domains individually, an alternative approach is to reconstruct the target domain from the

source representation [30], which can encode useful information from both domains and pre-

serve discriminability. Commonly referred to as “adversarial adaptation methods” (ADDA),

these methods seek to minimize an approximate domain discrepancy distance through an

adversarial objective with respect to a domain discriminator [31]. These methods have been

increasingly implemented in situations where information generated from two distinct

domains share similarities, yet direct pooling of these data often introduce noises and contami-

nations. In the biological realm, adaptive approaches have been successfully implemented in

biomedical image processing [32,33], gene expression analysis [34,35], and biological network

reconstruction [36].

In this work, we describe RBP-ADDA, a deep neural network approach based on Adversar-

ial Discriminative Domain Adaptation for learning RBP binding preferences. RBP-ADDA

consists of three steps (see Fig 1). In Step 1, we use in vitro RBP binding data to pre-train a

source network model and a task predictor model. In Step 2, we perform adversarial domain

adaptation by learning a target network from in vivo data. In Step 3, we fine-tune the task pre-

dictor model based on both source data and target data. Since the in vitro RBP binding data

has higher signal-to-noise ratio, a quality feature space can be learned from them. Projecting

in vivo data into this space can help learn a better representation to improve the prediction

performance of in vivo data. The fine-tuning step can make use of the complementarity

between in vitro and in vivo data to improve their performance. Our experimental results

demonstrated that the RBP-ADDA model not only improves the performance on modeling in

vivo data but also improves the performance on in vitro data.

Furthermore, motivated by the success of data augmentation techniques in natural lan-

guage processing (NLP), we applied three augmentation operators to improve the general per-

formance of our model. Finally, to further explore the biological interpretability of our
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RBP-ADDA model, we used Integrated Gradients (IG) [37] to quantify the contribution of the

input features to the predictive score of each RBP. We found that these critical features

obtained from our model are consistent with the reported motifs and motifs derived from

eCLIP and RNAcompete experiments. This illustrates the biological interpretability of our

RBP-ADDA model.

To the best of our knowledge, we believe the RBP-ADDA model is the first method to apply

adversarial domain adaptation to the analysis of interactions between RBPs and RNAs. This

approach has the advantage of being able to learn from both in vitro and in vivo data which is oth-

erwise not easy to achieve. We expect the adversarial domain adaptation approach can be

extended to other relevant biological realms where both in vivo and in vitro datasets are available.

2. Materials and methods

2.1. Data collection and processing

We downloaded the vitro binding affinity data as determined by RNAcompete in July 2020

[12]. This dataset included 244 experiments, each experiment generating binding affinities of

an RBP and more than 240,000 RNA fragments (30–41 nt in length). Among them, there were

102 experiments on 80 human RBPs. In RNAcompete experiments, the enrichment of each

unique RNA fragment in the pulldown portion is calculated against the entire pool and the

binding affinities are calculated as log ratios. We downloaded the in vivo eCLIP data generated

by the ENCODE project [38], which had data from 150 RBPs (120 RBPs in K562 cells, 103 in

HepG2 cells and 73 in both cell types). The signal value for each binding site was calculated as

log2 (fold-enrichment).

Fig 1. Flowchart of the RBP-ADDA method. During Data Encoding, each sequence in the sample (in vitro and in vivo) is represented

as a concatenation of a one-hot encoding vector representing the nucleotides. Step 1. Pre-training. We use in vitro data to pre-train a

source network and task predictor. Step 2.1. Initialize the target network. Target network is initialized by sharing the same parameters

and architecture with source network. Step 2.2. ADDA. We apply adversarial learning to train the target network on in vivo data and

train the domain discriminator. Step 3. Fine-tuning. We use both the source and target network to fine-tune the task predictor. Solid

lines indicate steps in which the network parameters are fixed.

https://doi.org/10.1371/journal.pcbi.1009863.g001
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In summary, there were 25 RBPs that had both in vivo and in vitro datasets. Among the

RBPs that were studied by both RNAcompete and eCLIP via ENCODE, 19 RBPs had eCLIP

data in K562 cell line and 19 RBPs had eCLIP data in HepG2 cell lines. The detail of each RBP

dataset is shown in S1 Table. For each RBP, we randomly took an 80%/20% split as the train-

ing and testing sets without overlap. Further, to investigate whether there is significant

sequence overlap between in vivo data and in vitro data, we conducted an all against all blastn

search between in vivo data (10,921,666 sequences, 26~41nt in length) and in vitro data

(241,357 sequences, 30~41nt in length). The detailed results are shown in S3 Table. Not sur-

prisingly, there were noticeable overlap between the sequences from the in vivo and in vitro

datasets since after all sequence motifs are the major determinant of the recognition process

between RBP and RNAs. However, it is also clear that that the overlap is minimal since only a

very small fraction of the sequences has any blastn matches (the last column in S3 Table).

To facilitate representation learning, we standardized the input data by scaling the labeled

values to the range of [–1,1]. Since the in vivo CLIP-seq peaks are of various lengths, we pro-

cessed them according to the following rules. If the peak fragments are shorter than 26 nt, we

expand the fragment in both directions to the full-length of 26 nt; if the fragment is between 26

and 41 nt long, the original sequence is kept. If the fragment is longer than 41 nt, we evenly

split this fragment into equal length with the overlap of 10 nt. The RNA fragments in the RNA-

compete experiments have length ranging between 30 and 41, which was the reason we chose

41 nt as the cutoff.

2.2. Comparison with other methods

DeepBind. DeepBind combines multiple types of high-throughput data, including Pro-

tein Binding Array (PBM), RNAcompete, ChIP-Seq and HT-SELEX experiments, to derive

binding affinities of RBPs and transcription factors [17]. It applies a convolutional neural net-

work (CNN) to capture features from raw sequences and uses the trained CNN model to pre-

dict sequence binding preferences. We downloaded the trained model from http://tools.genes.

toronto.edu/deepbind/ and applied it to both RNAcompete and eCLIP datasets using the

default parameter to test the data and compare with our method.

DLPRB. DLPRB describes a novel deep neural network approach for learning intrinsic

RBP binding preferences [18]. It integrates sequence and structural features of RBP binding

sites to train a CNN model and applies the CNN model to predict sequence binding prefer-

ences. We downloaded the code from https://github.com/ilanbb/dlprb and trained the model

using our own data. The RNA sequence structure information was measured by an adaptation

of RNAplfold[39].

2.3. Sequence encoding

An RNA sequence is a string of nucleotides over the alphabet R (A; G; C; U). We encode each

nucleotide as a one-hot vector of dimension 4. To standardize the input data, the length of

each sequence is set as 41, which is also the maximum length of RNA fragments in the RNA-

compete experiments. For those sequences with short length, we use ‘N’ to extend it to the

same length, where ‘N’ is encoded by (0,0,0,0).

2.4. RBP-ADDA model

As shown in Fig 1, we take in vitro data (derived by RNAcompete) as source domain and in

vivo data (from eCLIP) as target domain. Similar to DeepBind, DLPRB and other methods, we

train a model individually for each RBP. Given the sequences Xs and labels Ys drawn from a

source domain distribution ps (x,y), and sequences Xt and labels Yt drawn from a target
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domain distribution pt(x,y), our described model has the following two objectives. (i) Since the

target in vivo data is usually more complex, we aim to employ the learned source representa-

tion to improve the performance on the target data learning via an adversarial domain adapta-

tion process. (ii) Considering the complementarity between the data in the source and target

domains, we aim to enhance the representation on both sides by further fine-tuning on these

two data sets simultaneously.

Fig 1 shows the overall architecture of our proposed RBP-ADDA algorithm, which consists

of the following steps. In Step 1, we train the source network and the task predictor by using

the labeled RNA sequences in the (in vitro) source domain. In Step 2, we perform adversarial

adaptation and learn the target network and a discriminator. The discriminator is used to dis-

tinguish the representations derived from the source domain and from the target domain,

respectively; the target network aims to fool the discriminator by producing target features

that resembles the source representation. By doing so, we can take advantage of the well-

learned source domain to improve the learning on the target domain. In Step 3, after mixing

the source and target domains, we further fine-tune the task predictor on the source samples

and target samples simultaneously to further extract complementary information from these

two domains. The parameters of the source and target networks are fixed throughout this pro-

cess. Such adversarial domain adaptation techniques have been shown to work well in prob-

lems such as biomedical image processing [32,33], gene expression analysis [34,35], and

biological network reconstruction [36]. In the following, we describe in more details the indi-

vidual steps in the algorithm.

2.4.1 Source pre-training. As shown in Fig 1, after encoding the source (in vitro) data

and the target (in vivo) data by using one-hot vectors to represent the nucleotides, we conduct

pre-training on the sequences in the source domain. The pre-training involves a source net-

work Ms and a task predictor T. The source network contains two convolution layers and two

fully connected layers (S1A Fig). The convolution layers first apply a series of filters on the fea-

ture representation of the nucleotides to capture local patterns at the sequence level. A rectified

linear unit (ReLU) is next applied to restrict to only positive matches [40]. A max pooling

operation is next applied to reduce the dimensionality by selecting the maximum value over a

window. A fully connected layer computes a weighted sum of the neurons from the previous

layer. The task predictor contains two fully-connect layers and one output layer (S1B Fig). We

used the following mean square error to regularize the whole network and update the parame-

ters based on back propagation.

min
Ms ;T

LðXs;YsÞ ¼ ðTðMsðXsÞÞ � YsÞ
2

ð1Þ

2.4.2 Domain adaptation. Domain adaptation is an area in machine learning that deals

with scenarios in which a model trained on a source distribution is applied in the context of a

different but related target distribution [18,41]. The objective is to mitigate the harmful effect

of domain shift. Adversarial adaptation method is a recent extension of the classic domain

adaptation technique, which seeks to minimize an approximate domain discrepancy distance

metric through a domain discriminator. These innovative methods have demonstrated to be

very effective in biomedical image processing [32,33], gene expression analysis [34,35], and

biological network reconstruction [36].

In our framework, we aim to employ the adversarial adaptation approach to minimize the

domain distance between the source and target domains, i.e., the bound RNA sequences iden-

tified in the in vitro and in vivo experiments. Specifically, we train a target network Mt to share

the same architecture as the source network so that it can produce the representation close to

the source domain. We train the discriminator to maximize the domain difference between
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these two representations learned from source data and target data. Such an adversarial learn-

ing process can mix the target representation with the source representation. By doing so, we

can use the well-trained source representation to improve the learning in the target domain.

The detailed algorithm is described below in pseudocode.
Algorithm 1 Training Strategy of RBP-ADDA model
Input: Source data samples and labels: Xs, Ys

Target data samples and labels: Xt, Yt
Training iterations: n1,n2,n3; Batch size: m
Output: Source network: Ms

Target network: Mt
Discriminator: D
Task predictor: T

//Step 1: Source pre-training
1: for n1 training iterations do
2: Sample minibatch of m source samples from Xs
3: Calculate the Mean Square Loss of source data using Eq (1)
4: Update the learnable parameters of Ms and T
5: end for

// Step 2: Domain adaptation
6: Initial the parameters of Mt with Ms
7: for n2 training iterations do
8: Sample minibatch of m source samples from Xs
9: Sample minibatch of m target samples from Xt
10: Calculate the discriminator loss using Eq (2) and update the
parameters of D
11: Calculate the loss of target network using Eq (3) and update the
parameters of Mt
12: end for

//Step 3: Model fine-tuning
13: for n3 training iterations do
14: Sample minibatch of m source samples from Xs
15: Sample minibatch of m target samples from Xt
16: Calculate the loss of task predictor using Eq (4) and update the
parameters of T
17: end for

First, a domain discriminator D, which classifies whether a data point is originated from

the source or the target domain, is optimized according to a loss function, L(Xs,Xt,Ms,Mt,D).

The loss function is defined below:

min
D

LðXs;Xt;Ms;Mt;DÞ ¼
1

2
ððDðMsðXsÞÞ � 1Þ

2
þ ðDðMtðXtÞÞ � 0Þ

2
Þ ð2Þ

Second, the source and target mappings are optimized according to a constrained adversar-

ial objective. We select the optimization for the generator as follows, one part from the loss of

discriminator and one part from the loss of target network:

min
Mt

LðXt;Yt;DÞ ¼ ðDðMtðXtÞÞ � 1Þ
2
þ ðTðMtðXtÞÞ � YtÞ

2
ð3Þ

2.4.3 Model fine-tuning. Considering the complementary information contained in the

source (in vitro) data and target (in vivo) data, we further fine-tuned the parameters of the task

predictor on the source and target samples simultaneously by using the following loss function

(Eq 4). We keep the parameters of source and target networks unchanged and alternate

between the input source and target data. We used a smaller learning rate, lr = 0.00005, to

fine-tune the parameters of the task predictor since we found the parameters trained on the
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source in vitro data were already performing well.

min
T

LðXs;Xt;Ys;YtÞ ¼ ðTðMsðXsÞÞ � YsÞ
2
þ ðTðMtðXtÞÞ � YtÞ

2
ð4Þ

For testing, the RNA sequences from the target domain are fed into the target network, and

subsequently mapped to the shared feature space together with the data from the source

domain. The final prediction is made by the updated task predictor. Similarly, the source net-

work takes the source sequences as input and the results are also predicted by the new updated

predictor. We used Pearson correlation coefficients (PCC) between the predicted and actual

probe intensities as metrics to evaluate the model performance. The Pearson correlations are

also used to evaluate the prediction performance of RBPs in DeepBind and DLPRB.

2.5. Data augmentation

Data augmentation is a common strategy in machine learning in situations where the labeled

training data is scarce, and the input data is artificially manipulated to enlarge the quantity and

the diversity of the training samples [42]. Data augmentation has been effectively used in the

areas of image recognition where Gaussian noises are added into the training images, and in

natural language processing which used data noising as smoothing, and in predictive language

models for synonym replacement. Data augmentation has also found success in biomedical

research, for example, Chaudhari et al used generative adversarial networks to augment gene

expression data for cancer classification [43]. Given the relative scarcity of the RBP binding

data and the complexity of the experimental design, data augmentation could be a useful

approach in generating additional data for model training.

In this work, we experimented with the following augmentation operations to enlarge the

training dataset, i.e., the RNA fragments bound by RBPs. (i) Replacement: randomly choosing

a nucleotide from the sequence and replacing it with its neighboring nucleotide. (ii) Swap: ran-

domly choosing two nucleotides in the sequence and swap their positions. (iii) Gap: randomly

choosing a nucleotide from the sequence and use the vector [0.3, 0.2, 0.2, 0.3] to replace one-

hot encoder vector of this nucleotide. As a preliminary attempt, we only conducted data aug-

mentation for RBP with a small amount of in vivo data, since it is hard to train a model with

fewer samples. Also, the data augmentation was only conducted in the training samples and

the modification on each sample was limited in a narrow range on a temporary basis, thus pre-

venting permanent changes. We also experimented with two different hyper parameters: the

number of nucleotides being replaced, swapped, or removed per sequence (0, 1, 2, 3, 4, or 5

nucleotides), and the percentage of RNA sequences in the training dataset that underwent aug-

mentation (0%, 20%, 50%, 100%). The results of the fine-tuning showed that single nucleotide

augmentation and 100% augmentation rate achieved the best performance.

2.6. Interpretation of RBP-ADDA predictions

Here we provide relevant biological intuition and interpretation of the RBP-ADDA model and

its predictions. The overall objective of the model is to use adversarial domain adaptation to

learn the RBP binding affinities from both in vitro and in vivo domains, which offers advan-

tages over learning from only in vivo or in vitro. In addition, we also explored interpretation

of the model, which can help us identify the structural or sequence features that contributed

the most to the discriminative power of the model. Traditionally, in a deep neural network, the

gradient (partial derivatives) of a neuron can be taken to approximate how much t the input

features contribute to the output [44,45].
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Given a set of RBP bound RNA sequences, we aim to ascertain which nucleotides of the

input sequences are responsible for the positive prediction. Taking this concept, we employed

an attribution-based method, i.e., integrated gradients (IG) [37]. As the input of the network

traverses along a linear path from a baseline, IG computes the average gradients of the output

to assign an attribution score to each input feature. The attribution score of each nucleotide

indicates the importance of the nucleotide to the result we predict. Noted that the baseline is

defined based on the application and we used a reference input that had the expected frequen-

cies of A,C,G,U at each position (i.e., we set the ACGU channel axis to [0.3; 0.2; 0.2; 0.3]).

For a given RNA sequence, we calculated the attribution scores of every position and visual-

ized the attribution scores as a sequence logo. The height of each position in the logo indicates

the importance of each nucleotide position. For those locations with large positive attribution

scores, the corresponding features can be interpreted as more informative for predicting RBP

binding. There are some subtle differences between the attribution scores and the traditional

positional specific weight matrices (PWM) which are often used to represent protein binding

motifs. Attribution scores aim to identify the most discriminative position in the binding site

while PWM indicate relative normalized frequency of each nucleotide at each position.

2.7. Implementation of RBP-ADDA

The RBP-ADDA is implemented in Python by using Tensorflow 1.15.0. We set the maximum

number of epochs to 1000, and the batch size to 256. In the pre-training step, the learning rate

was set at 0.001. In the domain adaptation step, the learning rates for target network and the

discriminator were set at 0.001 and 0.00005, respectively. We set a small learning rate as

0.00005 for fine-tuning the task predictor. We evaluate all comparison models by using 5-fold

cross-validation. The train and test time for different models are reported in S3 Table.

For the source and target networks (shown in S1A Fig), the number of filters for the two-

convolution layers was set to 32. The filter sizes were set as 4x4 in the first convolution layer

and 4x1 in the second convolution layer. The two fully connected layers have 128 hidden unis

and 64 hidden units, respectively. The task predictor (shown in S1A Fig) consists of two fully

connected layers of 64 and 32 hidden units, respectively, in addition to the prediction output.

The discriminator consists of one fully connected layer of 64 hidden units and the adversarial

discriminator output (S1C Fig). The hyper-parameters were optimized by a grid search pro-

cess with the number of filters set at (16, 32, 64 and 128), the lengths of filter set at (4, 6, 8), the

source and target network learning rate set at (0.01, 0.001 and 0.0001), and the discriminator

learning rate (0.0001, 0.00005 and 0.00001).

3. Results

3.1. RBP-ADDA model achieves good performance on in vitro and in vivo data

To evaluate the performance of our RBP-ADDA model, we compiled 25 in vitro datasets from

RNAcompete, and 38 in vivo datasets generated by eCLIP, including 19 from HepG2 cell line

and 19 from K562 cell line. Details about these datasets can be found in Materials and Meth-

ods (Section 2.1). In the following, we first discuss the prediction performance on the in vitro

data. We conducted 5-fold cross-validation for each RBP dataset and quantified and compared

the performance of the models via Pearson correlation of predicted and actual probe intensi-

ties. For each dataset of individual RBP, we withheld 20% of the bound RNA sequences and

trained the RBP-ADDA and other models on the remaining 80% of the data. The models were

then applied to the withheld data and Pearson correlation coefficients were calculated between

the predicted and the observed probe intensities. We compared the performance of

RBP-ADDA model with two other state-of-the-art approaches for predicting RBP binding
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sites, i.e. DeepBind [17] and DLPRB[16]. We note that it was not straightforward to compare

with other prediction methods, either because the source code was not available, or it was diffi-

cult to train the models. As explained in Materials and Methods, we implemented DeepBind

with a well-trained model provided by the author. For DLPRB, we downloaded the code and

trained the model on our data. In addition, to evaluate the contribution of domain adaptation

step, we also removed the domain adaptation step in RBP-ADDA and trained a spared-down

version, shown as Without-ADDA in Fig 2.

As shown in Fig 2, our RBP-ADDA model significantly outperformed DeepBind and had

marginally better performance than DLPRB and Without-ADDA. The detailed comparisons

between RBP-ADDA and other methods on each RBP are shown in S2 Table. Across 25 in

vitro experiments, our RBP-ADDA model achieved better performance than DeepBind,

DLPRB and Without-ADDA, having Pearson correlation values ranging from 0.211 to 0.84

and a median value of 0.708 (Fig 2A and Table A in S2 Table). In contrast, DLPRB had Pear-

son correlation values between 0.155 and 0.796 with a median value of 0.658; DeepBind had

Pearson correlation values between 0.154 and 0.684 with a median value of 0.508; Without-

ADDA had Pearson correlation values between 0.205 and 0.828 with a median value of 0.698.

For in vivo data determined by eCLIP, as shown in Tables B and C in S2 Table,

RBP-ADDA achieved the best Pearson correlation for 19 RBPs in HepG2 cell line and the best

Pearson correlation of 19 RBPs in K562 cell line. The performance of DeepBind lags behind

RBP-ADDA and DLPRB on in vivo data (Fig 2B and 2C). We note that DeepBind was devel-

oped and trained primarily on in vitro RBP binding data, which explained why it did not per-

form well on the in vivo eCLIP data. Fig 2 and S2 Table show that DLPRB achieved

comparable performance as our RBP-ADDA model. Note that DLPRB method integrates both

RNA sequence and structural information into the prediction framework, while our

RBP-ADDA model requires RNA sequence information only.

As shown in Fig 2B and 2C, the RBP-ADDA model significantly outperformed the With-

out-ADDA model on in vivo data, validating the effectiveness of the domain adaptation

approach. On the other hand, on in vitro data (Fig 2A), Without-ADDA also significantly out-

performed other methods, while the performance improvement on in vivo data was marginal.

This further confirmed our rationale to leverage domain adaption technique, where we use in

vitro data as the source data to achieve a better prediction on in vivo data.

Fig 2. Comparison of performances between RBP-ADDA and other methods. (A) Comparison on 25 in vitro RNAcompete datasets;

(B) Comparison on 19 eCLIP datasets from HepG2 cell line; (C) Comparison on 19 eCLIP datasets from K562 cell line. P-values are

computed using unpaired Wilcoxon rank sum one-tailed test with p.adjust.

https://doi.org/10.1371/journal.pcbi.1009863.g002
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As explained in Introduction, in vitro RBP-RNA binding datasets intrinsically have higher

signal-to-noise ratio than in vivo datasets, thus it is understandable that the prediction perfor-

mance on in vitro data was generally better than that on in vivo data. Therefore, when con-

ducting domain adaptation, it is preferable to take in vitro data as source data, providing a

better latent representation. To further explore this idea, we trained a “reversed” model using

in vivo data as source and in vitro data as target. Indeed, the comparison results (shown in S5

Table) confirmed that the RBP-ADDA model with in vitro data as source data generally per-

formed better the “reversed” models on both in vitro and in vivo.

3.2. The role of individual steps in RBP-ADDA

The RBP-ADDA model consists of three steps: pre-training, domain adaptation and fine-tuning.

As shown in S2 Fig, the prediction performance of most RBPs has improved after domain adapta-

tion was applied. For example, the Pearson correlation of PABPN1 in HepG2 cell line increased

from 0.218 to 0.227 (S2A Fig), and the Pearson correlation of SRSF1 in K562 cell line increased

from 0.315 to 0.322 (S2B Fig). It is likely that the primary reason for such improved performance

on in vivo data was the relatively good prediction results on the source (in vitro) data, with Pear-

son correlation at 0.613 and 0.723 respectively, which provided better feature representation for

these two RBPs. Hence, when conducting domain adaptation, the in vitro source data can provide

a well-initialized learning space for the corresponding RBPs on in vivo data, improving the pre-

dictive performance. This also validated the effectiveness of our domain adaptation approach, as

it reduces the domain shift between source data and target data and improves the prediction per-

formance on target data. We notice that domain adaptation has slightly negative effect on a few

RBPs, where there is a large difference on the size of training samples between source data and

target data, such as PCBP1(Fig 3 and S1 Table). Such an imbalanced distribution may be a barrier

to integrate these two kinds of data. Lastly, we validated the effect of the fine-tuning step, which

can further take the complementary advantage from pooled features in two domains. These

results showed that there was moderate increase for almost all RBPs on in vitro data (S2C Fig),

while most RBPs also have slight improvements on in vivo data, particularly for those RBPs with

more in vivo samples (S2A and S2B Fig).

3.3. Effectiveness of the augmentation operations

As described in Section 2.5, we applied three augmentation operators, including Gap, Replace-

ment and Swap, to improve the generalization of our RBP-ADDA model. We experimented

with two hyper parameters in the augmentation step and evaluated how the predictive perfor-

mance has improved. S3 Fig shows the results after we replaced, swapped, or removed 1, 2, 3,

4, or 5 nucleotides in each RNA sequence. Since RNA secondary structures are sensitive to

nucleotide mutations, it is likely that mutations or replacement of two or more nucleotides

would disrupt RNA secondary structure and introduce noises to the training data. In this case,

single nucleotide operations generally were preferred.

S4 Fig shows the results after we augmented 0%, 20%, 50%, or 100% of the sequences in the

training dataset; in this case only the single nucleotide augmentation per sequence is shown.

The predictive performances fluctuated with increasing percentage of augmented sequences;

for the majority of the RBPs, the 100% augmentation rate gave rise to the highest predictive

performance, which was the parameter we chose to use in this study.

As shown in Fig 3, in most cases, the RBP-ADDA model trained with these techniques per-

formed better than the original model. Among these three techniques, the Replacement opera-

tor, which randomly chose a nucleotide and replaced it with its neighboring nucleotide,

significantly improved the prediction performance, especially in FRM1_K562, SRSF7_K562,
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PABPC4_K562, PABPN1_HepG2 with a 4.1%, 4.2%, 3.1%, 4.1% increase in the Pearson corre-

lation, respectively. We noticed that the augmentation techniques may have a slightly negative

effect on the performance of pre-training network, since the augmentation process may intro-

duce some noisy samples. Nevertheless, the augmented samples introduce more internal varia-

tions, thus contributing to a better generalization capability and preventing overfitting.

3.4 Interpretation of RBP-ADDA model

Here, we explore the interpretation of the RBP-ADDA model to better understand which

input features contribute the most to the improvement in predictive performance. To do so, as

described in Section 2.6, we employed an attribution score based method, integrated gradients

(IG) [37]. Specifically, for a given RBP, we calculated an attribution score for each nucleotide

in the input sequence. The attribution scores quantified the contribution of each nucleotide to

the discriminative performance in separating the positive and negative binding sites. For each

Fig 3. Performance of RBP-ADDA model after data augmentation operations. In each panel, the predictive

performances on an RBP are grouped and shown as norm (non-augment), gap, replacement, and swap. Within each

group, the performances after pre-training step, domain adaptation step and fine-tuning step are indicated as “1”, “2”

and “3”.

https://doi.org/10.1371/journal.pcbi.1009863.g003
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RBP, we selected sequences with the top 5 highest prediction scores (when higher than 0.5)

and visualized those attribution scores corresponding to the sequence, as shown on the left

side in Figs 4 and S5. We plotted Fig 4 with R package “ggseqlogo” [46]. The heights of nucleo-

tides represent the magnitude of attribution scores; the positive or negative scores are plotted

above or below the horizontal axis. Positive attribution scores contribute to be a binding site

and negative attribution scores have a negative influenced to be a binding site. The nucleotides

with small attribution scores have neutral contributions.

We further explored the consensus representations of the binding sites of each RBP. We

retained those positive RNA fragments with prediction scores higher than 0.5 and derived

5-mers with the highest attribution scores from these fragments and derived consensus motifs

(Fig 4 middle panel, and S6 Fig). We note that these consensus 5-mers largely agree with the

known motifs derived from RNAcompete and eCLIP. For example, HNRNPL exhibits a bind-

ing preference for CA-rich elements [47]; TARDBP preferentially binds to GU-repeats [48]

and HNRNPC is known to bind poly-U tracts [49].

In summary, Figs 4 and S1–S6 showed that the ADDA approach can successfully capture

the binding preference of each RBP and identify the nucleotide positions on the RNA that are

important in the recognition process.

Fig 4. Visualization of attribution scores, consensus motif, motifs obtained from in vitro (RNAcompete) and in

vivo (eCLIP) experiments.

https://doi.org/10.1371/journal.pcbi.1009863.g004
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4. Discussion

In this paper, we present RBP-ADDA, a deep neural network approach based on Adversarial

Discriminative Domain Adaptation to learn RBP binding preferences by integrating in vivo

and vitro datasets. Motivated by the observation that in vitro and in vivo RBP binding data

share similar patterns, we employed adversarial discriminative domain adaptation to mitigate

the difference between in vitro and in vivo domains. Our model projects the two datasets onto

a shared feature space and uses an adversarial framework to derive an optimal network that

achieves optimal discriminative predictive power. Compared to other recently published

methods such as DeepBind and DLPRB, our RBP-ADDA can achieve better prediction perfor-

mances on 38 eCLIP datasets and 25 RNAcompete experiments.

To the best of our knowledge, this is the first reported application of adversarial domain

adaptation approach in the realm of DNA or RNA sequence motifs. We demonstrated the

effectiveness of this approach in integrating multiple datasets and maximizing the value of het-

erogenous datasets. It is worth mentioning that Cohn and colleagues also applied adversarial

learning to generate negative samples for transcriptional enhancer motifs identifying [50].

To further improve the generalization of our RBP-ADDA model, we introduced three aug-

mentation operators, including Gap, Replacement, and Swap. These operators can enrich the

quantity and the diversity of the training samples. As shown in Fig 3, the RBP-ADDA model

with these operators can achieve better prediction performance on RBPs that have small

amount of training samples, especially by using Replacement operator. As in other data aug-

mentation approaches, it is important to fine-tune the hyper parameters to achieve the best

performance. In the case of RBP-RNA recognition, we explored the optimal number of

replaced nucleotides per sequence and the fraction of sequences augmented in the input train-

ing data set (S3 and S4 Figs). We recommend researchers always evaluate these parameters

when applying data augmentation in the biological domain and always be mindful that the

augmentation operations are biologically meaningful. Since single nucleotide mutations and

natural variations are often tolerated in RBP binding sites [38,51], we are confident that the

single nucleotide replacement operations did not drastically disrupt RNA structure elements

and introduce unnecessary noises to the model.

Finally, we explored the interpretability of our RBP-ADDA model by ascertaining the influ-

ence of each nucleotide in the input sequence on their contribution to the discriminative

power of the model. We showed that the attribution scores calculated for each nucleotide posi-

tion are consistent with previously reported motifs as determined by in vivo or in vitro

approaches. We like to note that in the context of this work, the term “motif” strictly refers to

short, contiguous, linear RNA sequences. A majority of the RBPs that have been experimen-

tally studied are thought to recognize these linear and single stranded RNA motifs. In fact, the

local accessibility of RNA motifs has been widely adapted in previously published software

tools [14,20,23,52]. Despite such an attractive framework, recent advances in RBP studies

showed that certain RBPs break such simple rules and can recognize other RNA secondary

structure elements such as folded hairpins [53]. New approaches such as icSHAPE, which can

measure in vivo RNA accessibility [54], and more advanced computational tools that can

extract enriched RNA secondary structure motifs [55,56].

By definition, the RBP-ADDA model is designed only for RBPs that have both in vitro and

in vivo data, which is a pre-requisite for the concept of domain adaptation. There are many

RBPs that only have experimentally determined in vitro or in vivo binding data but not both.

It is interesting to explore whether it is feasible or effective to first infer the binding data for

the missing domain, and then apply the domain adaptation approach. It is relatively feasible to

infer the in vitro binding affinities for a new RBP if binding affinities are known for a large
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number of evolutionarily related homologous RBPs [57]. Additional protein structure infor-

mation on these RBPs would also be useful to improve the prediction accuracy, i.e., the prior

knowledge on which amino acid residues are involved in the RBP-RNA binding process.

Mutation data on the RBP sequence, either derived from population cohorts, or from high-

throughput cell based functional assays, are also helpful in finding important RBPs or impor-

tant amino acid residues on these RBPs in a disease context [58,59].
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