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Abstract

Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane
tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure.
Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here
we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are
highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM
repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new
subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long
coiled-coil tethering factors of the golgin family.
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Introduction

The armadillo (ARM) repeat motif is present in a variety of

proteins. It was first described in the Drosophila segment-polarity

gene product armadillo [1], the mammalian homolog of b-catenin

that is essential for cadherin-based cell adhesion and Wnt/

Wingless growth factor signaling. Furthermore, it functions to

bridge the cytoplasmic domain of cadherins to a-catenin and the

actin cytoskeleton [2,3] and is associated to multiple diseases

including cancer [4–7].

The presence and arrangement of ARM motifs differ in various

proteins, and it was suggested that these linked units comprise a

structural domain described by a universal consensus sequence

(Figure 1) [8]. The number of tandem ARM repeats in an ARM

fold ranges from 6 to 12. Based on the organization of their ARM

motifs, three major subfamilies of ARM-like proteins are

distinguished, namely the classical catenins, the p120ctn related

catenins and the proteins involved in nuclear import [9,10].

Murine b-catenin (138–664) was the first structure of an ARM-

repeat protein to have its structure solved [11], revealing that each

ARM motif folds into a conserved three-dimensional structure

consisting of three helices (H1, H2 and H3) that form a compact

helical bundle with distinct features (Figures 1, 2). While H1 is the

shortest helix containing approximately two turns, helices H2 and

H3 comprise about three and four turns, respectively. Helices H2

and H3 share extensive hydrophobic interactions and are oriented

in an antiparallel fashion, whereas H1 lies almost perpendicular to

the remaining helices. Importantly, all H3 helices within the ARM

fold decorate the superhelical groove of the solenoid structure,

whereas helices H1 and H2 are located at the cylindrical outer

surface [11].

Canonical ARM repeats possess a sequence of about 42 amino

acids. Generally, the sequence similarity between the sequences of

repeating ARM motifs within a single protein may be very low,

but their similarity at the three-dimensional structure level tends to

be high.

The ARM-repeat helix H1 contains five highly conserved

residues within the universal consensus sequence [8]. Additionally,

the Gly residue C-terminal of the ARM-repeat helix H1 is strongly

conserved and mediates a distinct kink between H1 and H2

[11,12]. ARM-repeat helix H2 possesses three highly conserved

hydrophobic residues (usually Leu), one at the N-terminus of H2

and two consecutive hydrophobic residues in a block of eight

conserved residues. ARM-repeat H3 contains ten conserved

residues including a strongly conserved solvent exposed polar

residue, most frequently an Asn at the C-terminus of the helix.

Recently, structural insight into vesicle tethering mediated by the

ARM-repeat protein p115 has been provided [13,14]. Although the

two independently determined crystal structures are virtually

identical, the two publications came to different conclusions

regarding the classification of structural repeats present in p115.

Whereas Striegl et al. [13] characterized p115 as an ARM-repeat

protein, An et al. [14] suggested the presence of novel ‘‘tether

repeats’’ (TR) in p115 and proposed that these tether repeats would

also occur in a broad spectrum of other tether proteins.

In order to clarify this discrepancy, we here present a proper

classification of the p115 ARM-motifs by combining both

structural and sequence information. Additionally, in our analysis

we observe no significant evidence that the p115 ARM-motif

pattern is present in other tethering factors such as golgins GM130

and giantin.

Analysis

The Globular Head Region of p115: An ARM-Like Helical
Conserved Structure

The human general vesicular transport factor p115 is a

protein of the golgin family that gives identity and structure to
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Figure 1. ARM-motif consensus and structure-based sequence alignment of human p115GHR. On the top of the alignment the cartoon
and helical wheel representation of isolated ARM-repeat helices are shown. Each repeat is composed of three helices that are displayed in green (H1),
blue (H2), and yellow (H3). The universal ARM-repeat consensus sequence derived from the alignment of five ARM-repeat proteins [8] is shown
beneath as well as the consensus sequence for b-catenin [11] followed by the single ARM-repeat sequences of p115GHR and, at the bottom of the
alignment, the consensus sequence for p115GHR. Residues comprising H1, H2 and H3 in each repeat are separated by their connecting loop regions.
Italicized residues are not present in the X-ray structure of human p115GHR [13] and derived from the structure of the bovine homolog [14]. Residues
shown in green are missing from both the human and bovine p115GHR structure. Conserved residues that define the ARM-consensus motif are
highlighted in red. Structural positions with strong preferences for a given amino acid or group of amino acids are shaded with the following
symbols: half-closed box = general hydrophobic; open box = small hydrophobic; diagonal-filled box = hydrophilic; closed box = large hydrophobic;
(+) = basic. In the consensus sequence, the single-letter code is listed at the bottom if the residue is present in at least six of twelve repeats. Residues
that mediate contacts (hydrogen bond or salt bridge) between the USO repeat and the USO-domain helix H3 are highlighted in blue.
doi:10.1371/journal.pone.0008991.g001
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the Golgi apparatus and is part of a complex protein network at

the Golgi membrane [15–18]. p115 facilitates the tethering of

transport vesicles inbound from the endoplasmic reticulum to

the cis-Golgi membrane. The myosin-shaped protein forms

stable homodimers and comprises a long central coiled-coil

region (p115CC), a large N-terminal globular head domain

(p115GHR) and a C-terminal acidic region [19,20]. p115 is

recruited to membranes by the guanosine triphosphatase

(GTPase) Rab1a in a nucleotide-dependent manner and is

among the best characterized representatives of long coiled-coil

tethering factors [21–27].

Recently, the crystal structures of the human (Figure 2) and

bovine p115GHR were determined [13,14]. Since human and

bovine p115GHR are more than 99% identical in their amino acid

sequence, it comes as no surprise that the structure of human

p115 (Protein Data Bank accession code 2W3C) is very similar to

that of the bovine p115 (Protein Data Bank accession code

3GRL), yielding a Z-score of 47.6 for an alignment of 549

residues with a root-mean-square deviation of 1.1 Å by the

DaliLite program [28]. The high structural similarity, confirmed

by superposition of the a-carbon traces of the human and bovine

p115, suggests that both proteins should share an identical

structural classification.

However, there are significant differences concerning the

p115GHR ARM-fold nomenclature and classification adopted in

these publications. An et al. [14] claim that the p115GHR solenoid

is made up by a functionally specific TR motif. Striegl et al. [13],

however, advance the view that this TR motif is actually a frame-

shifted classical ARM repeat in which helix H1 of TR corresponds

to H2 of ARM, H2 (TR) to H3 (ARM) and H3 (TR) to H1

(ARM). Accordingly, we argue that, on a sequence and structural

level, p115GHR, indeed, belongs to the ARM-protein superfamily

[13] (Figures 1, 2, 3).

In fact, the crystal structures of both the human and the bovine

p115GHR show that the protein consists of a multi-helical b-

catenin-like ARM fold arranged in a regular right-handed

superhelix. The published human p115GHR structure included

residues Asp54 to Tyr629 of p115 resulting in the assignment of

the N-terminal armadillo repeat observed in the structure as

ARM1 [13]. The globular head domain of bovine p115 [14]

completes the full-length ARM fold of p115GHR by an additional

but incomplete (due to a disordered helix H1) ARM repeat at the

N-terminus of the molecule. To facilitate a structural comparison,

the ARM repeats in human p115GHR have been renumbered such

that ARM1 of Striegl et al. [13] is now labeled ARM2, and the last

repeat preceding the ARM-like USO element is ARM11

(Figure 2a).

The N-terminal armadillo helical domain comprising ARM1

to ARM7 of p115GHR (residues 1–342) is remarkably similar to

members of different ARM-protein subfamilies. For example,

an iterative sequence search of the database with this fragment

using PSIBLAST [32] retrieves proteins containing ARM

repeats at significant E-values (,0.005) already in the 2nd

iteration. On the contrary, the five C-terminal repeats of

p115GHR (residues 343–629, starting from ARM8) are not

easily discernable as ARM-repeats at the sequence level. In

fact, sequence analyses classify this region as a USO1 head

domain (Figure 2), a domain that identifies a group of proteins

described as general vesicular transport factors, transcytosis-

associated proteins (TAP) or vesicle docking proteins [29]. A

structure-based sequence alignment of p115GHR and b-catenin

ARM repeats, however, clearly shows that the conserved

hydrophobic residues located in this region align very well,

with the exception of the C-terminal four helices (USO

element; Figure 1, Tables S1, S2). Thus, the ARM8-ARM11

repeats within the USO1 head domain are indeed armadillo

repeats.

The USO element folds back into the superhelical groove

covering helices H3 of repeats ARM8-ARM11 [13] (Figures 2, 3b,

4). This possibly explains the described differences in sequence and

structure between the N-terminal ARM domain and the C-

terminal USO1 head domain of p115GHR. The interaction with

the superhelical groove is mediated by hydrophobic interactions

and a single salt bridge (Figure 3b, Table S3). In addition, the

USO1 head domain displays large inter- and intra-repeat

insertions (Figure 1, 2a). The ARM10 helix H1, for example, is

connected to helix H2 by 15 residues, whereas the kink of these

helices of ARM5 within b-catenin is mediated by a single glycine

(Figure 1).

Despite these structural differences of the USO1 head domain,

the superimposition of all p115GHR repeats on the one hand and

the superimposition of repeats of p115GHR and b-catenin on the

other hand reveals significant structural similarity and a common

overall fold (Figure 2b, 3a). Thus, the repeats within the USO1

head domain are indeed ARM repeats with exception of the C-

terminal USO element.

In summary, p115GHR contains 11 ARM repeats. The last four

C-terminal ARM repeats of p115GHR and the USO element

form the USO1 head domain that reveals some sequence and

structural alterations compared to the N-terminal classical ARM

domain. These differences go along with the function of p115 in

vesicular transport and tethering.

Figure 2. Crystal structure of human p115GHR [13]. The color
scheme of the ARM helices is the same as that in Figure 1. (A) The
protein is composed of 11 ARM repeats and the USO element (repeat
numbers are shown next to the repeats, in red for the USO1 head
domain, in black for the armadillo helical domain). ARM1 is not visible in
the structure of human p115GHR but is partially resolved in the bovine
p115GHR structure. (B) A superimposition of the ARM repeats of human
p115GHR (excluding ARM2 due to a disordered H1) is shown on the left.
For comparison, the ARM repeats of murine b-catenin are superim-
posed on the right.
doi:10.1371/journal.pone.0008991.g002
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Figure 3. Comparison of repeat motif structures. (A) A comparison of p115GHR ARM8/10 with b-catenin ARM11/5. The backbones are
superimposed on the right. The individual repeats are shown on the left, with the side chains of the conserved consensus residues shown as sticks.
(B) The C-terminal non-canonical USO element. Key residues that mediate interactions of the USO element with the superhelical groove are shown in
stick representation on the right.
doi:10.1371/journal.pone.0008991.g003
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The ARM Motifs of p115: Unique and Not Present in
GM130 and Giantin

Analysis of the globular head domain of bovine p115 by An et al.

[14] led to the assumption that the p115GHR repeats lack sequence

conservation except for leucine-rich motifs, and, due to these

characteristics, variable leucine-rich motifs for the helices H1, H2

and H3 were suggested [14]. Upon visual inspection, a pattern of

leucine-rich residues separated by sequences of variable length, as

found for p115GHR, was detected in other tether proteins that are

involved in exocytic and endocytic trafficking [14], including the

cis-Golgi golgins GM130 and giantin [reviewed in 16]. This

sequence similarity was used for the characterization and

classification of the TR motifs. However, iterative sequence

searches with these proteins using PSIBLAST [28] did not support

their similarity to p115 or to any protein with ARM-repeats. In

order to make a more exhaustive analysis we collected orthologs of

the GM130, giantin and p115 human proteins, and scanned them

with ARD, which uses a neural network to detect ARM and other

repeats forming alpha-rods [30]. Whereas four correct matches

could be identified in the N-terminal part of most of the p115

homologs used, no such signal was obtained in human GM130,

giantin (not shown), or their orthologs tested (Figure 5).

Additionally, we scanned ten golgin-related sequences (Gol-

gin245, Golgin84, Gmap210, BicaudalD1, Iporin, Mical1,

Rabenosyn5, Rabaptin5, EEA1, Rim3, Noc2) for alpha-rod

repeats using the ARD server. None of the sequences was

identified as containing such repeats: seven sequences received no

single hit, and three (Rabaptin5, EEA1, Rim3) received one single

hit above 0.8, whereas at least three such hits are taken as evidence

for repeats.

Discussion

Proteins within the different ARM subfamilies display a

conserved architecture and provide a scaffold for the assembly of

protein complexes with various functions. Generally, the identi-

fication of ARM repeats by sequence comparisons is relatively

simple, the C-terminal region of p115GHR, however, demonstrates

the difficulty to classify the protein as an ARM-fold protein just by

sequence comparisons. This may explain why a structural

annotation of bovine p115GHR [14] invoked a new type of repeat

(TR) which we find, however, neither required nor helpful in

classifying this protein structure.

Crystal structure analysis revealed a special ARM-fold archi-

tecture of the p115GHR C-terminal domain identified as the USO1

head domain, bearing large insertions and a unique USO element.

This domain is inimitable among ARM-repeat proteins and

Figure 4. Dimeric organization of the USO element. The dimeric
orientation of human p115GHR is shown on the left, the orientation of
the USO element on the right side accordingly.
doi:10.1371/journal.pone.0008991.g004

Figure 5. Search for alpha-rod repeats in p115, GM130 and homologs. Human sequences and representative orthologs were aligned, and
the multiple sequence alignment (MSA) and hits to alpha-rods (from ARD) [33] were represented using BiasViz [33]. Basically, gaps are represented in
red and aligned sequence in black unless a significant match to an alpha-rod was recorded (white). Top: MSA of human GM130 and orthologs from 12
species. Only three scattered matches are observed, and most sequences (including the human) did not have any significant match. Bottom: MSA of
human p115 and orthologs from 7 species. Significant matches were observed in all but one ortholog for four ARM repeats (the human sequence
showing the four of them).
doi:10.1371/journal.pone.0008991.g005
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defines proteins as vesicular transport factors. The unexpected

ARM fold of the USO1 head domain of p115GHR differs from the

classical ARM fold, but structure-based sequence alignments

advance a better understanding of how to unambiguously classify

p115 as an ARM-protein superfamily member.

In conclusion, we propose to define a fourth subfamily of ARM-

like proteins. Thus, besides the classical catenins, the p120ctn-

related catenins and the proteins involved in nuclear import the

new ARM subfamily is termed USO1 head domain-like and

describes a group of proteins that are involved in vesicular

transport and are conserved from yeast to human. Therefore, the

globular head region of p115 is the first crystal structure of a

member of the USO1 head domain-like ARM subfamily.
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