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Abstract 

Background:  Non-alcoholic fatty liver disease (NAFLD) is a global epidemic afflicting 20–30% in the general popu‑
lation. The animal model of NAFLD available at the present are less clinically relevant. In this study. We aimed to 
establish a NAFLD model of rhesus monkeys and develop an ultrasonographic steatosis score (USS) system to grade 
hepatic steatosis in this model.

Methods:  We performed hepatic ultrasonography and blood biochemical tests on 86 rhesus monkeys with and 
without metabolic syndrome (MetS), among which 45 animals were further assessed by histopathological analysis.

Results:  The liver histological features of rhesus monkeys NAFLD were resemble to those of NAFLD patients. There 
was a close correlation between the histological steatosis grade and the USS (Spearman’s coefficient, 0.705, p < 0.001). 
The USS sensitivity was 87.5% and the specificity was 94.6% when the cut-off was USS2. In addition, the prevalence of 
MetS was significantly higher in the USS2–3 group. Multiple risk factors of cardiometabolic disease, including obesity, 
insulin resistance and dyslipidemia were significantly correlated with the USS.

Conclusions:  NAFLD was developed spontaneously among aging in rhesus monkeys (with increased prevalence 
in the MetS monkeys), which provided an ideal model for NAFLD. The newly developed USS system can be used to 
evaluate fatty liver in the rhesus monkey. The model as well as the noninvasive assessment methodology will provide 
a powerful tool for mechanistic studies and preclinical test of novel therapies for NAFLD.

Keywords:  Non-alcoholic fatty liver disease, Non-human primates, Ultrasonographic steatosis score, Metabolic 
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Background
Non-alcoholic fatty liver disease (NAFLD) is a serious 
public health problem [1–4]. It has become the most 
common type of chronic liver diseases in China and 
western countries [5, 6]. It causes a wide spectrum of his-
topathological changes, ranging from simple hepatic ste-
atosis to non-alcoholic steatohepatitis (NASH), hepatic 
cirrhosis and hepatocellular carcinoma [1]. Several long-
term follow-up studies demonstrated that higher mortal-
ity was observed among patients with NAFLD compared 

to the general population [7–9], with liver-related dis-
eases, cardiovascular diseases (CVD), and malignancy as 
the major causes of mortality [7, 10].

Despite intensive clinical and epidemiological studies, 
the pathogenesis of NAFLD and the interplay between 
metabolic disease, CVD and other NAFLD related dis-
eases are not fully understood. Moreover, no effective 
medications have been proved to reverse the liver dam-
age of NAFLD [1]. Adequate animal models of NAFLD 
are urgently needed for both basic and translational 
research [11]. As the closest phylogenetic relatives of 
humans, non-human primates (NHPs) are more similar 
to humans in terms of lipoprotein profiles, pathogen-
esis of CVD, response to clinical treatment and genetic 
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makeup [12–15]. Furthermore, the controllability of 
environmental factors, such as diet, alcohol consump-
tion, and medication, as well as feasibility of tissue sam-
pling and real-time monitoring of disease phenotypes, 
make NHPs the ideal model for biomedical studies. Rhe-
sus monkeys have been used as the model for alcoholic 
fatty liver disease [16, 17]. Nagarajan et  al. investigated 
NAFLD in 5 aged bonnet monkeys and 5 aged rhesus 
monkeys and found that the bonnet monkeys showed a 
number of biochemical and histopathological character-
istics of NAFLD compared to the rhesus monkeys [11]. A 
couple of research labs including ourselves demonstrated 
that rhesus monkeys spontaneously developed obesity 
with aging, metabolic syndrome (MetS), and diabetes [18, 
19]. Furthermore, the whole genome of rhesus macaque 
is available and better annotated now [15, 20–22]. How-
ever, naturally occurring NAFLD has not been evaluated 
and reported in rhesus macaques.

Biopsy is the golden standard for the diagnosis of 
NAFLD, but its invasiveness and possible complications 
precluded it as a routine method of assessing NAFLD in 
humans as well as in animal models. In contrast, non-
invasive abdominal ultrasonography is widely used for 
the screening and diagnosis of fatty liver in the clinic 
[23–25]. In a prospective study, Saverymuttu et  al. [26] 
have shown that abdominal ultrasonography is a sensitive 
method for detecting fatty liver. Compared with histo-
logical test, ultrasound scanning identifies steatosis with 
a sensitivity of 94% and a specificity of 84% in human 
[26]. Furthermore, hepatic ultrasound provides grading 
of hepatic steatosis based on a sequence of characteris-
tics. Nevertheless, neither features of ultrasonic images 
nor standards for diagnosis of NAFLD has been reported 
in rhesus monkeys. In the present study, we aimed to: (1) 
identify the natural occurrence of NAFLD in a cohort of 
rhesus monkeys; (2) investigate the histological and ultra-
sonographic features of NAFLD in rhesus monkeys; (3) 
establish a hepatic ultrasonographic method for assessing 
NAFLD in rhesus monkeys; (4) compare the diagnostic 
accuracy between ultrasonography and histopathology, 
and verify the ultrasound standard for diagnosing hepatic 
steatosis in rhesus monkeys; and (5) investigate the rela-
tionship between risk factors of MetS and NAFLD in the 
rhesus monkey model.

Methods
Ethics statement
The use and care of the rhesus monkeys were approved 
and directed by the Animal Care and Use Committee of 
Peking University and the Association for Assessment 
and Accreditation of Laboratory Animal Care (Permit 
Number: IMM-ZhangXQ-1).

Animals and housing
In this study, we included 86 adult male rhesus monkeys 
housed in the Laboratory Animal Center of Peking Uni-
versity. The monkeys were housed individually in cages, 
under a 12-h light–dark cycle at 18–24  °C and 40–70% 
humidity. The monkeys had free access to water and 
were fed ad  libitum with national standard pellet mon-
key chow (Beijing HFK Bio-Technology Co., Ltd, China), 
which contains 7–10% crude fat, 16–20% crude protein, 
and 55–65% crude carbohydrate.

Hepatic ultrasonographic imaging
During follow-up observation of the monkeys, hepatic 
ultrasound images were recorded using a human proto-
col with modification [25, 27]. In brief, after overnight 
fasting, the monkeys were anesthetized with ketamine 
(10 mg/kg, body weight, i.m.) secured in a supine, left lat-
eral position on the testing table with the abdominal hair 
removed. Hepatic images were acquired by a well-trained 
technician and recorded with a GE Vivid 7 Dimension 
ultrasound machine (GE Vingmed Ultrasound, Horten, 
Norway) using an abdominal transducer (8C). All set-
tings, including over gain and time gain compensation, 
were kept the same for all monkeys. All sonograms were 
recorded during smooth breathing and covered different 
areas of the liver (lobes, edge, portal vein, and hepatic 
vein), and a contrast image of liver and kidney was 
recorded. Both the right lobe of the liver and the right 
kidney were captured side-by-side in one image.

The images of hepatorenal echo contrast were usually 
obtained under the last right rib. The angle between the 
probe and the spine was 30–45°. The probe was located 
in the anterior axillary line in rhesus monkeys, rather 
than the mid-axillary line in humans [25].

Parameters for diagnosis of NAFLD
Fatty liver was diagnosed by a clinician specialized in 
ultrasonography. The ultrasonographic steatosis score 
(USS) used for diagnosis was based on four findings: 
hepatorenal echo contrast, bright liver, deep attenu-
ation, and vessel blurring [25, 27]. Hepatorenal echo 
contrast is the difference of echo between the hepatic 
and renal parenchyma. Bright liver means brighter and 
more intense echoes from the hepatic parenchyma. Deep 
attenuation refers to a reduction in the penetration and 
amplitude of the ultrasound beam in deeper portions of 
the liver. And vessel blurring shows narrow lumens and 
less clear borders of the intrahepatic vessels [23, 25, 27].

Histological evaluation of fatty liver
During the last few years, there were 22 monkeys eutha-
nized among the cohort because of incurable diseases 
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such as abdominal aortic embolism, myocardial infarc-
tion, heart failure, severe diabetes, or severe arthritis. 
The liver tissue from these monkeys was fixed in 4% 
paraformaldehyde (PFA), embedded in paraffin, and cut 
as 5-µm sections followed by staining with hematoxylin-
eosin (HE) and Masson’s trichrome. The abdominal ultra-
sound images were recorded before euthanasia.

In addition, liver biopsy was performed by an experi-
enced surgeon in 23 additional monkeys after abdomi-
nal ultrasonography. In brief, after overnight fasting, 
the monkeys were anesthetized with ketamine (10  mg/
kg body weight, i.m.) and was maintained well sedated 
by inhalation of 2–3% isoflurane during the biopsy. 
Buprenorphine (0.01  mg/kg, i.m.) was given before and 
after biopsy for analgesia. Liver samples were fixed in 4% 
PFA, paraffin-embedded, sectioned, and stained with HE. 
All sections were evaluated by an experienced patholo-
gist who was blind to the monkeys’ clinical features, 
and were evaluated semi-quantitatively according to the 
NAFLD activity score (NAS) [28], which comprised stea-
tosis (0–3): < 5% (0), 5–33% (1), 33–66% (2), and > 66% (3) 
of steatotic hepatocytes; lobular inflammation (0–3); and 
hepatocellular ballooning (0–2).

Blood chemical tests and cytokines/adipokines 
measurements
The blood samples were taken from a vein before hepatic 
ultrasonographic imaging. Blood glucose and lipids were 
measured by a Cobas c 311 analyzer (Roche). Insulin 
was measured with an insulin measurement kit (Cobas 
12017547 122) from Roche using a Cobas e 411 ana-
lyzer. TNF-α was measured by Radioimmunoassays with 
Endothelin radioimmunoassay kit (Beijing North Insti-
tute of Biological Technology, China). IL-1b (Invitrogen, 
USA), IL-2 (Invitrogen, USA), IL-6 (Invitrogen, USA), 
adiponectin (R&D Systems, USA) and leptin (R&D Sys-
tems, USA) were measured by enzyme-linked immu-
nosorbent assays (ELISA) with commercially available 
ELISA kits.

Statistical analysis
Continuous variables were expressed as mean ± SE. Cat-
egorical variables were described as counts and percent-
ages. Student’s t-test and the χ2 test were used in the 
present study for analysis. Spearman’s correlation coef-
ficients were calculated to evaluate correlations between 
the USS, histological findings and MetS risk factors. 
Pearson correlation analysis was performed between the 
USS and the clinical factors. All statistical tests were two-
sided, and the significance level was p ≤ 0.05. All analyses 
were performed using SPSS 16.0 (Chicago, IL, USA).

Results
Ultrasonic grading of NAFLD and its correlation 
with histological findings in the rhesus monkeys
The ultrasonographic images of the livers were assigned 
to four grades (0–3) by USS and compared with the his-
tological changes. If the hepatorenal echo contrast was 
higher in the kidney (Fig.  1a), with no bright liver, no 
deep attenuation and no vessel blurring (Fig. 1b), it was 
graded as USS0 (normal), and there is no histological 
evidence of steatosis (Fig.  1c); if the hepatorenal echo 
contrast and bright liver were both negative (Fig.  1d) 
and there was no deep attenuation or vessel blurring 
(Fig.  1e), it was graded as USS 1 (mild steatosis), and 
the histology showed that ~ 10% of the cells were stea-
totic (Fig.  1f ); if the hepatorenal echo contrast was 
higher in liver (Fig. 1g), along with a mild bright liver, 
negative or mild deep attenuation and negative vessel 
blurring (Fig. 1h), it was graded as USS2 (moderate ste-
atosis), which with ~ 50% steatotic cells in the liver sec-
tion (Fig. 1i); and if the hepatorenal echo contrast was 
much higher in the liver (Fig.  1j), accompanied with a 
bright liver, attenuation and positive vessel blurring 
(Fig. 1k), it was graded as USS3 (severe steatosis), and 
the histological steatosis was almost 80% in the liver 
section (Fig. 1l).

The correlation between the USS and histopathological 
observation was significant, with a Spearman’s coefficient 
of 0.705 (p < 0.001) (Fig.  2a). Using the USS to diagnose 
moderate-to-severe steatosis, the area under the receiver 
operating characteristics curve was 0.98 (Fig.  2b). The 
percentage of moderate steatosis evaluated by ultrasound 
matching the histological result was 87.5%. In mild stea-
tosis, the matched USS percentage was 40.0%. The sen-
sitivity and specificity of the different ultrasound scores 
was provided in Table  1. The sensitivity of USS1 was 
43.8%, which was the lowest among the 4 grades, the sen-
sitivity was 87.5% at a cut-off value of USS2 and 100% at 
USS3. The specificity was 94.6% with a cut-off value of 
USS2 and 97.44% at USS3. These results suggested that 
the USS correlates very well with histological changes, 
especially the sensitivity to moderate and severe hepatic 
steatosis.

Typical histological changes in NAFLD monkeys
The histological characteristics of NAFLD in the mon-
keys included macrovesicular steatosis (Fig.  3a–c) and 
microvesicular steatosis (Fig. 3d). Except hepatic steato-
sis, we also found inflammation (Fig. 3e) and perisinusoi-
dal fibrosis (Fig. 3f ). And all these features were similar 
to the pathological findings in patients with NAFLD and 
NASH [1]. The specific percentages of different histo-
logical changes were shown in Table  2. However, no 
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significant correlation was found between the USS and 
inflammation or fibrosis.

Prevalence of hepatic steatosis in the MetS monkeys
In our previous study, we have reported that some mon-
keys spontaneously developed MetS along aging, the 
MetS monkey was diagnosed when monkey displaying 
≥ 3 MetS components. MetS components were: (1) waist 
circumference (WC) ≥ 40  cm and waist/hip ratio ≥ 0.9, 
(2) fasting plasma glucose (FPG) ≥ 4.40  mmol/L, (3) 

triglycerides (TG) ≥ 0.90 mmol/L, (4) high-density lipo-
protein cholesterol (HDL-c) ≤ 1.55  mmol/L, (5) blood 
pressure ≥ 130/80  mmHg [19]. By analyzing the ultra-
sonic images, we found that the prevalence of hepatic 
steatosis was significantly higher in the MetS monkeys. 
Among 28 MetS monkeys, 14 monkeys were moder-
ate-to-severe fatty liver (50.0%). Only 11 out of 58 non-
MetS monkeys (19.0%) had NAFLD. The percentages of 
MetS and non-MetS monkeys in different USS groups 
were shown in Fig. 4a. 21.4% of the MetS monkeys had 

Fig. 1  Representative ultrasonographs and histology. Representative ultrasonographs showing different grades of hepatic steatosis in monkeys. 
a, b Grade 0, d, e Grade 1, g, h Grade 2, and j, k Grade 3. Representative HE stained sections illustrating a normal liver (c), mild (f), moderate (i), and 
severe steatosis (l)
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severe hepatic steatosis, which was much higher than 
that in non-MetS monkeys (5.1%). Consistently, the MetS 
prevalence was significantly higher in the USS2–3 group 
(56.0%) than in the USS0–1 group (23.0%) (Fig. 4b). The 
number of MetS risk factors was significantly correlated 
with the USS (correlation coefficient = 0.305, p = 0.004). 
The incidence of NAFLD and MetS was increased along 

Fig. 2  Correlation between USS and histological steatosis. a Spearman’s correlation between the USS and histological results of steatosis. b Receiver 
operating characteristic (ROC) curve for the USS to diagnose moderate-to-severe steatosis; cut-off point set at 2 (n = 45; USS ultrasonographic 
steatosis score)

Table 1  The accuracy of USS in diagnoses hepatic steatosis

n = 45; USS ultrasonographic steatosis score, CI confidence interval

Sensitivity 95% CI Specificity 95% CI

USS0 0.60 (0.32–0.84) 0.77 (0.56–0.90)

USS1 0.44 (0.20–0.70) 0.79 (0.60–0.92)

USS2 0.86 (0.47–1.00) 0.95 (0.82–1.00)

USS3 1.00 (0.54–1.00) 0.97 (0.87–1.00)

Fig. 3  Pathological features of NAFLD in rhesus monkeys. a, b HE staining showing macrovesicular steatosis in monkey liver sections. c Oil Red 
‘O’ staining showing the adipose deposition in monkey liver section. d HE staining showing microvesicular steatosis in monkey liver section. e HE 
staining showing inflammatory cell infiltration in monkey liver sections. f Masson’s trichrome staining showing fibrosis in monkey liver section. 
(NAFLD non-alcoholic fatty liver disease)
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aging, and monkeys with MetS more susceptible to 
develop NAFLD spontaneously (Table 3).

Clinical features of monkeys with different values 
of the USS
We evaluated the correlation between the USS and clini-
cal features in 86 monkeys (Table 4). Systolic blood pres-
sure, body weight (BW), body mass index (BMI), WC, 
FPG, homeostasis model assessment of insulin resistance 

(HOMA-IR), TG, total cholesterol and low-density 
lipoprotein-cholesterol were significantly higher in the 
USS2–3 group. HDL-c was clearly lower in the USS2–3 
group. There were no significant differences between 
the two groups in alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST). BW, BMI, WC, insu-
lin, HOMA-IR, and TG were significantly correlated 
with the USS, while the Pearson’s correlation coefficients 
were > 0.35 (Table  5). These results demonstrated that 
obesity, TG, and insulin resistance (IR) correlated well 
with the USS.

Adiponectin was decreased in severe NAFLD monkeys
Next, we tested the plasma levels of cytokines and adi-
pokines in NAFLD and non-NAFLD monkeys, and found 
that TNF-α, IL-1β, IL-2 and IL-6 were no differences 
between the groups of USS0–1 and USS2–3 (Fig. 5a–d), 
and no correlation was observed between these cytokines 
with the USS. Adiponectin was significantly lower in the 
USS2–3 group (Fig. 5e), and it was negatively associated 

Table 2  The percentage of  typical histological changes 
in NAFLD monkeys

Total n (%)
45 (100%)

Steatosis

 < 5% 15 (33.33)

 5%–33% 16 (35.56)

 33–66% 8 (17.78)

 ≥ 66% 6 (13.33)

Inflammation

 No foci 18 (40.00)

 ≤ 2 foci/20 × field 17 (37.78)

 2–4 foci/20 × field 9 (20.00)

 ≥ 4 foci/20 × field 1 (2.22)

Ballooning

 None ballooning cells 39 (86.67)

 Few ballooning cells 4 (8.89)

 Many ballooning cells 2 (4.44)

Fibrosis

 Perisinusoidal/pericellular fibrosis 7 (15.56)

 Periportal fibrosis 4 (8.89)

 Bridging fibrosis 0 (0)

 Cirrhosis 0 (0)

Fig. 4  Prevalence of hepatic steatosis in MetS monkeys. a Percentages of MetS and non-MetS in normal-to-severe hepatic steatosis groups 
(non-MetS n = 58; MetS n = 28; *p < 0.05, **p < 0.01). b Prevalence of MetS in moderate-to-severe hepatic steatosis, evaluated by the USS (USS0–1, 
n = 61; USS2–3, n = 25; *p < 0.05, **p < 0.01; MetS metabolic syndrome, USS ultrasonographic steatosis score)

Table 3  The percentage of  NAFLD and  MetS in  different 
age groups

USS ultrasonographic steatosis score, MetS metabolic syndrome, NAFLD non-
alcoholic fatty liver disease

Age < 8 8–14 ≥ 15 Total

n 8 8 70 86

Number of USS (2–3) 0 2 23 25

Percentage of NAFLD (%) 0.00 25.00 32.86 29.07

Number of MetS 0 3 25 28

Number of NAFLD in MetS monkeys 0 1 13 14

Prevalence of NAFLD in MetS monkeys (%) – 33.33 52.00 50.00

Prevalence of NAFLD in Non-MetS monkeys 
(%)

– 20.00 22.22 18.97
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with the USS (Pearson r = − 0.3113, p = 0.0035); while 
there was no significant difference in leptin between the 
two groups (Fig. 5F).

Discussion
In the present study, we found a subpopulation of aged 
rhesus monkeys that spontaneously developed NAFLD 
and established an USS standard for evaluating the grade 
of liver steatosis in rhesus monkeys. The USS matched 
well with the histopathological changes in the liver, dem-
onstrating that the USS is a useful noninvasive method 
for quantifying hepatic steatosis in rhesus monkey mod-
els with NAFLD. The prevalence of NAFLD was higher in 
the MetS monkeys, with the USS correlated significantly 
with the number of MetS risk factors. Obesity, TG, and 
IR were associated with the grade of liver steatosis. This 
study provided an excellent animal model for mechanis-
tic and preclinical study of NAFLD.

Animal models, especially NHPs, are ideal animal 
models for investigating the pathological mechanisms 
and preclinical studies of NAFLD since alcohol intake 
could be completely avoided, even in long-term follow-
up studies. Ultrasonography is a noninvasive method to 

evaluate the different processes of NAFLD, and it corre-
late well with histological changes in clinic [23, 29–32]. 
However, the ultrasonographic features of the organs are 
not exactly the same in humans and animals because of 
the different physiology and anatomy. The evaluation 
of rhesus monkey NAFLD model with ultrasonogra-
phy and its correlations with histological of liver steato-
sis has not been reported. Here, we found that the USS 
matched well with the histopathological findings from 
the biopsy and autopsy samples, indicating that the USS 
is a sensitive and specific method for detecting steato-
sis in the liver of rhesus monkeys. However, similar to 
clinical observations, the USS was more accurate when 
steatosis was more severe. The ultrasonographic fea-
tures changed when fat filled > 15–20% of the hepatocytes 
[33]. When the prevalence of hepatic steatosis was > 20%, 
higher specificity and a greater correlation with the histo-
logical findings was evident [34]. In our study, the ultra-
sonographic results were more consistent with hepatic 
steatosis when the steatosis was > 33%. These results 
suggested that noninvasive, easily performed ultrasound 
and the USS could be used as a screening tool to confirm 
and evaluate liver steatosis during the development of 
NAFLD in rhesus monkeys. However, the USS had a poor 
correlation with inflammation or fibrosis. This is consist-
ent with a previous study in patients, which also found 

Table 4  Clinical characteristics of  monkeys with  USS0–1 
or USS2–3

Data represented as mean ± SE; student t-test

USS ultrasonographic steatosis score, SBP systolic blood pressure, DBP diastolic 
blood pressure, BW body weight, BMI body mass index, WC waist circumference, 
FPG fasting plasma glucose, HOMA IR homeostasis model assessment of insulin 
resistance, CRP C-reactive protein, TG triglycerides, TC total cholesterol, HDL-c 
high-density lipoprotein-cholesterol, LDL-c low-density lipoprotein-cholesterol, 
NEFA non-esterified fatty acid, ALT alanine aminotransferase, AST aspartate 
aminotransferase

Factor All
(n = 86)

USS 2–3
(n = 25)

USS 0–1
(n = 61)

p-value

Age (years) 18.1 ± 0.6 17.8 ± 0.5 18.2 ± 0.8 0.76

SBP (mmHg) 127.1 ± 2.3 134.3 ± 4.3 124.1 ± 2.6 0.04

DBP (mmHg) 76.4 ± 1.1 78.9 ± 1.9 75.4 ± 1.4 0.17

BW (kg) 12.8 ± 0.5 16.7 ± 1.0 11.2 ± 0.4 < 0.001

BMI 17.9 ± 0.7 23.5 ± 1.4 15.6 ± 0.5 < 0.001

WC (cm) 45.0 ± 1.5 56.6 ± 3.0 40.2 ± 1.3 < 0.001

FPG (mmol/L) 4.6 ± 0.2 5.2 ± 0.6 4.3 ± 0.1 0.03

HOMA IR 6.9 ± 1.6 14.3 ± 5.1 3.9 ± 0.5 0.003

Insulin (μU/ml) 28.0 ± 3.9 50.1 ± 11.3 19.0 ± 2.1 < 0.001

CRP (mg/dL) 0.3 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.26

TG (mmol/L) 0.8 ± 0.1 1.3 ± 0.4 0.6 ± 0.0 0.005

TC (mmol/L) 4.1 ± 0.2 4.9 ± 0.6 3.8 ± 0.2 0.03

HDL-c (mmol/L) 1.9 ± 0.1 1.6 ± 0.1 2.0 ± 0.1 0.01

LDL-c (mmol/L) 2.0 ± 0.2 2.9 ± 0.6 1.7 ± 0.2 0.01

NEFA (mmol/L) 1.1 ± 0.1 1.4 ± 0.3 1.0 ± 0.1 0.10

ALT (U/L) 61.7 ± 4.0 65.1 ± 8.2 60.3 ± 4.5 0.59

AST (U/L) 27.4 ± 0.8 26.5 ± 1. 27.7 ± 0.9 0.52

Table 5  Correlations between USS and clinical factors

Pearson r Pearson’s correlation coefficient, USS ultrasonographic steatosis score, 
SBP systolic blood pressure, DBP diastolic blood pressure, BW body weight, BMI 
body mass index, WC waist circumference, FPG fasting plasma glucose, HOMA 
IR Homeostasis model assessment of insulin resistance, CRP C-reactive protein, 
TG triglycerides, TC total cholesterol, HDL-c high-density lipoprotein-cholesterol, 
LDL-c low-density lipoprotein-cholesterol, NEFA non-esterified fatty acid, ALT 
alanine aminotransferase, AST aspartate aminotransferase

Factor Pearson r p-value

Age 0.13 0.24

SBP 0.19 0.08

DBP 0.09 0.39

BW 0.61 < 0.001

BMI 0.61 < 0.001

WC 0.61 < 0.001

FPG 0.35 0.001

HOMA IR 0.37 < 0.001

Insulin 0.41 < 0.001

CRP 0.19 0.08

TG 0.38 < 0.001

TC 0.30 0.006

HDL-c -0.28 0.009

LDL-c 0.31 0.003

NEFA 0.21 0.049

ALT 0.08 0.49

AST 0.004 0.97
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that ultrasonography does not accurately assess the grade 
of inflammation or NASH [27]. Adiponectin modulates 
glucose regulation and fatty acid oxidation [35], which 
was decreased in the USS2–3 group. It was also nega-
tively associated with the USS. This result was consist-
ent with clinical studies [36, 37]. Clinical study suggested 
that NAFLD is a component in the MetS cluster [38]. A 
prospective studies over 5 to 6 years of follow-up showed 
that NAFLD increases the risk of MetS by ~ twofold [39]. 
The grade of steatosis is much severe when the metabolic 
disorder is more complicated [40]. Consistent with the 
clinical studies, we also found the MetS monkeys who 
had moderate-to-severe hepatic steatosis far more than 
the non-MetS monkeys. Furthermoer, the prevalence of 
MetS was significantly higher in the USS2–3 group.

Bellentani et al. [41] found that obese people have a 4.6-
fold higher risk of developing liver steatosis. The “two-hit 
hypothesis” is widely accepted as the pathophysiological 
mechanism underlying NAFLD [42]. Metabolic disorders 
are associated with central obesity. IR and compensatory 
hyperinsulinemia also play a fundamental role in steato-
sis and even steatohepatitis [38]. This also matched our 
findings that the USS was positively correlated with BW, 
BMI, WC, HOMA IR, insulin, and TG in rhesus mon-
keys. In contrast to the previous report on bonnet mon-
keys [11], the ALT and AST were not correlated with 

NAFLD diagnosed by the USS in our study. Nevertheless, 
these results are in accordant with clinical observations, 
ALT and AST do not rise in 79% of NAFLD patients 
[43], and their levels are poor indicators of diagnosis of 
NAFLD [27].

Conclusion
Our results demonstrated that the aged rhesus monkeys, 
especially those with MetS, were more susceptible to 
develop NAFLD spontaneously, which could be screened 
using the noninvasive ultrasonic methods.
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