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Low frequency dynamics introduced by structural flexibility can result in considerable
performance degradation and even instability in on-orbit, robotic manipulators.
Although there is a wealth of literature that addresses this problem, the author has
found that many advanced solutions are often precluded by practical considerations.
On the other hand, classical, robust control methods are tractable for these systems if
the design problem is properly constrained. This paper investigates a pragmatic
engineering approach that evaluates the system’s stability margins in the face of
uncertain, flexible perturbation dynamics with frequencies that lie close to or within the
bandwidth of the nominal closed-loop system. The robustness of classical control
strategies is studied in the context of both collocated (joint rate) and non-collocated
(force/torque and vision-based) feedback. It is shown that robust stability and
performance depend on the open-loop control bandwidth of the nominal control
law (as designed for a simplified, rigid plant). Namely, the designed bandwidth must
be constrained to be lower than the minimum flexible mode frequency of the
unmodeled dynamics by a given factor. This strategy gives credence to popular
heuristic methods commonly used to reduce the effect of unmodeled dynamics in
complex manipulator systems.
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1 INTRODUCTION

Historically, manipulators designed for on-orbit operations exhibit considerably lower frequency
flexible modes than their earthbound counterparts. On Earth, as the designed workspace and payload
of a manipulator increases, it is common for the manipulator design to increase in rigidity and,
therefore, overall mass. This reduces inaccuracies due to gravity load “sag” and moves the lowest
natural frequencies of the manipulator links outside of the control bandwidth. Moreover, the
workspaces of industrial, Earth-based manipulators are typically below 5 (m). Although the use of
transmissions with significant compliance (such as Harmonic Drives) has become common-place in
Earth manipulators, a considerable amount of the manipulator control literature has been dedicated
to dealing with this problem. Most solutions involve modifying joint sensor design to include either
output torque sensing or output position sensing to ensure robustness and maintain control
bandwidth despite transmission compliance (Ghorbel et al., 1989; Albu-Schäffer et al., 2007;
Brogliato et al., 1995).
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In contrast, on-orbit manipulators do not need to contend
with gravity loading, but are constrained by the need to reduce
mass, thereby reducing launch costs. Additionally, such
manipulators typically require larger workspaces [5 (m) to
15 (m) (4)] to be able perform large-scale assembly tasks. The
combination of low mass and long links results in increased
slenderness. To exacerbate this issue, the payloads that on-orbit
manipulators are required to handle are considerably more
massive than those dealt with on Earth, exceeding
100,000 (Kg) in the case of the Space Station Robotic
Manipulator System (SSRMS) design (Laryssa et al., 2002).
The increased slenderness and payload mass contribute
significantly to the decrease of minimum natural frequencies
of space manipulators, which are often less than 1 (Hz). As with
Earth-based manipulators, joint flexibility can also contribute to
the decrease of natural frequencies.

While the control of manipulators with high link compliance
has been addressed in the controls literature, it has been found
that many of the solutions presented in the literature are
prohibitive in practice. Firstly, mode suppression solutions (as
in (Luo, 1993; Sabatini et al., 2012)) that rely on sensors along
manipulator links to determine vibrational mode amplitude,
frequency, or shape are untenable due to the number of
additional sensors required. Space qualified sensors are
considerably more expensive than non-qualified sensors (by an
order of magnitude in many cases), leading to significant increase
in the overall cost of the system. Moreover, the introduction of
additional sensors has considerable impact on avionics
architecture as well as cable management, problems that can
often be overlooked in the design of robotic systems.

Over the past decade, there has been a considerable shift in the
space manipulator industry from large government programs to
smaller commercial programs. Unlike some government
programs, the budget of commercial space robotics programs
cannot support a full analysis of flexible manipulator mode
shapes and often must resort to simplifying assumptions.
Although the resulting analyses can provide bounds on
minimum flexible frequencies that advise control design, it
cannot furnish advanced control syntheses that depend on
detailed a priori knowledge of flexible mode shapes as in (De
Luca et al., 1998). Even with such information, the author has
found that the current state of the art of “space-rated” computers
and microcontrollers cannot support online computation of
flexible modes (Bayo, 1987; Bayo et al., 1989) or the control
strategies that rely on exact, full-state, mode information (di
Castri andMessina, 2012). Some stability guarantees can be made
when actuators and sensors are collocated (Benhabib et al., 1981)
(in some cases, when non-collocated (Damaren, 1999), but no
guarantee on performance is forthcoming and collocation is not
always viable. In industry, it is important to maintain simple
performance and robustness metrics (such as gain margin, phase
margin, overshoot, etc.) in order to serve the broader context of
systems engineering. Even more crucially, some conclusions
regarding control architecture and performance must be made
even before the mechanical system is fully designed.

In this paper, the complicated dynamics of a flexible-link,
multi-degree-of-freedom manipulator are condensed into a set of

mass-spring-damper models in order to analyze control loop
interactions in a simplified framework. In Section 2, a perturbed
plant transfer function is derived, which consists of a single pole
transfer function (representing the nominal, rigid plant) that is
interconnected with a variable-frequency, resonant pole
(representing the flexible-link plant perturbation). We assume
that there is a known lower bound on the variation of this
resonant frequency, as is typical in the aerospace industry. A
state-space model is derived, but a classical robust control
technique is also applied, which the author has found to be
the most amenable to the systems level understanding that is
requisite for successful manipulator design.

With the plant model in hand, a controller is defined in
Section 3, which satisfies some standard robust design metrics
for the nominal (rigid) system. In the context of the full
manipulator system, this controller is analogous to the
manipulator joint control system. The effect of the
perturbation on control stability margins is characterized and
a constraint on open-loop control bandwidth is derived to ensure
that the nominal stability margins are maintained.

In Sections 4 and 5, representative models of vision-based
servoing control and manipulator force/torque control are
derived. These models augment the inner, joint control loop
with outer feedback loops on the non-collocated, perturbed plant
states. Stability margins and criteria are assessed for each control
loop in terms of the effect of the flexible perturbation.

2 SINGLE JOINT PLANT MODEL

As mentioned, it is the goal of this article to illustrate the effects of
uncertain flexible link modes on the performance and robustness
of space manipulator control systems. We seek to first reduce the
manipulator dynamics to simplified, independent joint dynamics.
Such simplifications are often necessary in industry to facilitate
design choices at the systems engineering level and are
thoroughly verified once a the manipulator system is fully
designed.

The standard second-order equations of motion of rigid joint
and link manipulators take the form shown in Eq. 1. These
equations have been well studied and can be found in any robotics
textbook (see (Sciavicco and Siciliano, 2012; Spong et al., 2005)).

M(q)€q + C(q, _q) _q + B _q + g(q) � u + JTFtip (1)

State variables q, _q, and €q are vectors of manipulator joint
angles and their derivatives, M(q) is the configuration
dependent mass matrix, C(q, _q) _q represents the nonlinear
Coriolis forces, B is a diagonal matrix represent viscous
friction of the joints, g(q) is torque due to gravity load, J is
the robotic Jacobian matrix, Ftip is a force/moment vector
applied to the tip of the manipulator and u is a vector of
control torque inputs each of the joints. We now make a series
of simplifying assumptions:

• A1 The Coriolis terms (C(q, _q) _q) are negligible with respect
to other dynamics terms. This is often the case in space
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manipulators where commanded joint rates are low (0–5
[deg/s]).

• A2 Gravity loading is negligible with respect to other
dynamics terms. This assumption is common for on-
orbit manipulators.

• A3 Joint gearboxes have large gear reduction ratios.
• A4 Each joint has the same joint rate controller with
identical control parameters.

With these assumptions in mind, we note that the dominant
dynamics of the joints can be considered uncoupled (see Chapter
6.2 of (Spong et al., 2005)). In this analysis, the approach of
independent joint rate control is adopted and residual coupling
torques between joints are lumped into disturbance input d. The
linearized equation of motion of the ith joint is presented in Eq. 2
as a single joint dynamic model.

M€q + B _q � u + d + f (2)

With slight abuse of notation, q, _q, and €q now represent the joint
angle of a given joint and its derivatives,M represents the lumped
inertia of the manipulator from the ith joint to the tip of the
manipulator about the axis of the ith joint, B represents the
viscous friction of the ith joint, u represents the control torque of
the ith joint, d denotes the lumped coupling torques from other
joints onto the ith joint and f represents the projection of tip force
Ftip to torque on the ith joint. This equation represents the
“unperturbed” or “nominal” single joint model that will be the

focus of this study. Hereafter, we neglect the explicit effect of
input d in the analysis.

The nominal plant transfer function Pnom(s): u1 _q,
representing the single joint model, is given by,

Pnom(s) � 1
B

ωp

s + ωp
, (3)

where s is the Laplace variable and ωp � B
M is the nominal plant

pole. Pnom(s) represents the nominal, free-space plant transfer
function from inputs u or f to joint rate _qwhen the other inputs
are ignored. For this analysis, we also make the assumption
that the nominal plant pole is much lower than the desired
control bandwidth ωBW (i.e. ωp ≪ ωBW). This assumption
corresponds to cases in which the joint inertia M is large.
Cases of large joint inertia are of greatest concern for this
analysis, as they coincide with low-frequency, flexible
dynamics. The frequency response of the nominal plant
dynamics are shown in Figure 1 below.

2.1 Flexible Link Perturbation
Implicit in the above derivation is the assumption that the robotic
links are rigid. We now consider the effect of relaxing this
assumption. In general, the introduction of link flexibility into
a robotic system model leads to a set of infinite dimensional,
nonlinear equations of motion which considerably complicate the
task of design for the control system engineer (see, for example
(Macchelli et al., 2007)). Conversely, it is a goal of this paper to

FIGURE 1 | Nominal plant frequency response for joint inertia M �1000[Kgm2] and viscous friction B � 100 [Nm* s
rad ]
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first explore the effects of flexible dynamics on a simplifiedmodel,
thereby shedding light on the engineer’s understanding of the
nonlinear, flexible robotic model. Thus, to maintain the simplicity
of the model in Eq. 2, we exploit linearity and orthogonality of
structural modes to model the effect flexible link modes with a
single flexible perturbation of variable frequency. Free body
diagrams of the nominal and perturbed models are shown in
Figure 2.

The parameterM has been subdivided into two separate inertias
connected by a spring-damper. This forms a “lumped parameter”
vibrational mode perturbation, with natural frequency and damping
depending on parameters K and damping D. The system of
equations that represent the perturbed model are as follows.

M1€q1 � −B _q1 − fp + u, (4)

M2€q2 � fp − f, (5)

fp � K(q1 − q2) +D( _q1 − _q2), (6)

where q1 and q2 represent the collocated and non-collocated states of
the perturbed model, respectively. In the context of a full
manipulator model, q1 can be interpreted as the sensed output
position of the joint while q2 represents the effective joint position
when link flexibility is taken into consideration. By extension, M is
divided into M1, the inertia that is rigidly connected to the joint
output, andM2, the inertia that is free to vibrate (i.e.M �M1 +M2).
Accordingly, the viscous friction B generates a torque that applies
only to q1. Torque fp represents the coupling torque between states q1
and q2 and is determined by stiffness and damping parametersK and
D. It is important to note that in this broader context of the
manipulator, the state q2 is generally unobservable and is
therefore not available for direct feedback control of joint rate.

The state space model of the system given by Eqs 4–6.

_q1
€q1
_q2
€q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
0 1 0 0

− α

1 − α
ω2
o − α

1 − α
2ξωo − 1

1 − α
ωp

α

1 − α
ω2
o

α

1 − α
2ξωo

0 0 0 1

ω2
o 2ξωo −ω2

o −2ξωo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q1
_q1
q2
_q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
0 0

− 1
1 − α

1
M

0

0 0

0 −1
α

1
M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u
f

[ ], (7)

where α � M2
M parameterizes of the fraction of the nominal inertia

that is free to vibrate, ωo � 





K/M2

√
parameterizes the natural

frequency of vibration, and ξ � D
2M2ωo

parameterizes the amount
of structural damping in the vibrating inertia (modeled as viscous
damping).

2.2 Perturbation in Free Space Motion
Although the state space formulation provides a complete picture
of the dynamics, it does not convey an easily accessible
understanding of the effect of the perturbation on the nominal
dynamics of the system. To gain further insight, the dynamics are
reformulated using the robust control approach to separate the
nominal plant and the perturbation (see (Gu, 2013)).

Under the assumption that the joint is moving in free-space, it
can be assumed that f � 0. Eqs. 5 and 6 can be used to find a
relationship between the states of the system:

T21 � q2
q1

� 2ξωos + ω2
o

s2 + 2ξωos + ω2
o

(8)

Summing Eqs 4, 5 and substituting Eq. 8, we see that the
perturbed plant transfer function P(s) � _q1

u can be written as the
nominal plant multiplied by a perturbation function Δ(s).

P(s) � Pnom(s)Δ(s) (9)

Δ(s) � 1
1 − Pnom(s)Δ1(s) (10)

Δ1(s) � M2s
3

s2 + 2ξωos + ω2
o

(11)

The frequency response of Δ(s) shown in Figure 3 can lend
insight into the effect of the perturbation on the nominal plant.
The perturbation has little to no effect at frequencies below ωo,
but increases the plant gain at frequencies above ωo. If we make
the approximation that the nominal plant pole is far below this
frequency (ωp ≪ ωo), we obtain the following expression for the
perturbation:

Δ(s) ≃ 1
1 − α

s2 + 2ξωos + ω2
o

s2 + 2ξωos
1−α + ω2

o
1−α

(12)

From this equation, we see that parameter α controls both high
frequency gain and the width of the transition between unity and
high gain regions. Figure 4 shows the nominal plant, perturbed
plant and the nominal plant with inertia reduced to M1. We see
from this figure that the perturbation facilitates a transitions
between the nominal plant with total inertiaM to the same plant
with reduced inertia M1. This implies that the perturbation
effectively separates the vibrating portion of the inertia from

the joint at frequencies above




ω2
o

1−α
√

and rigidly connects the
joint inertias at frequencies below ωo. This insight is valuable
in the consideration of control strategies for flexible link
manipulators.

3 JOINT CONTROL DESIGN

In this section, we develop joint control system for the nominal
plant; that is, a controller constructed under the assumption that

FIGURE 2 | Free body diagrams of the simplified nominal model (A) and
the perturbed model (B).
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FIGURE 3 | Frequency response of the perturbation with frequency normalized to the frequency parameter ωo. The plot on the left shows variation of the response
with inertia fraction α ∈ {0.1,0.3,0.5,0.7,0.9} (darker color indicates higher α) and fixed damping ξ � 0.1, while the plot on the right shows variation of the perturbation with
damping ξ ∈ {0.01,0.03,0.05,0.07,0.1} (darker color indicates higher ξ) and fixed inertia fraction α �0.9.

FIGURE 4 | Perturbed plant transfer function is shown (blue) for α ∈ {0.1,0.3,0.5,0.7,0.9} and fixed damping ξ �0.1. The nominal plant is shown (red) as well as the
nominal plant with inertia reduced to M1 (green). Black arrow indicates direction of increasing mass fraction α.
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the manipulator links are completely rigid. We will then proceed
to determine the effects of the perturbation dynamics derived in
section 2.1 on the closed-loop joint system.

3.1 Nominal Joint Control Design
For this analysis, the joint control system is based on control of
joint rate. The following control system performance and
robustness criteria are required to be met by the nominal

FIGURE 5 |Nominal controller is shown (left) according to the control schemedefined in the text withωBW�1 andωz �0.1. The resulting loop gain (centre) is shown based
on nominal controller and plant models with M �1000 and B �100. The closed loop transfer function from commanded rate to actual rate is also shown (right).

FIGURE 6 | Joint control feedback loop in the presence of a vibrational
perturbation.

FIGURE 7 | phase margin (top row) and Percent overshoot (bottom row) of the perturbed control system with vibration frequency ωo normalized by designed
bandwidth ωBW. The left column shows the effect of vibrating inertia fraction α, while the right column shows the effect of vibrational damping.
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control system (i.e. the control system that is designed for the
rigid, nominal plant given in Eq. 3). Note that these criteria will
also be used when studying the effect of flexible dynamics
perturbation.

• PC1 The closed loop system shall have zero steady state
error for a step input command (i.e. infinite DC gain).

• PC2 The closed loop system shall have a gain margin of
10 (dB).

• PC3 The closed loop system shall have a phase margin of
45 (deg).

• PC4 The closed loop system shall have a gain rolloff of
−40 [ deg

decade] to reduce noise and high frequency
sensitivity.

• PC5 The closed loop system shall have a bandwidth of ωBW

(pass band filter frequency).

• PC6 The closed loop system should maximize disturbance
rejection at frequencies below ωBW.

We select a control system structure that provides sufficient
flexibility to address all of the above performance criteria. In
particular, the structure is defined to be a Proportional-Integral
(PI) controller with a first-order low pass filter. The control
transfer function C(s) from rate error ( _qerr � _qcmd − _q1) to
control torque u and is defined as follows,

C(s) � KP + KI

s
( ) ωf

s + ωf
� KP(s + ωz)

s

ωf

s + ωf
, (13)

where KP is the proportional gain, KI is the integral gain, ωf is the
low pass filter cutoff frequency and ωz � KI

KP
is the PI zero. The

loop gain of the nominal feedback system is defined by,

Lnom(s) � Pnom(s)C(s) � 1
s

KP

M

ωf

s + ωf

s + ωz

s + ωp
(14)

The nominal closed loop joint rate transfer function (HJNT(s))
from a reference rate to joint rate is given by

HJNT(s) � _q

_qref
� Lnom(s)
1 + Lnom(s), (15)

where _qref is a reference joint rate. We employ classical control
system design techniques to select the control system parameters.
The presence of the integrator ensures that closed loop system has
zero steady-state error under step function input reference. Since
the loop gain has relative degree 2, the high frequency phase lag is
180 (deg). Therefore, to ensure a phase margin of 45 (deg), the

FIGURE 8 | Vision-based servo loop expressed in the context of single
joint control with forward kinematics lumped into K1 and inverse kinematics
and tip level position gain lumped into K2.

FIGURE 9 | A study of vision-based servo loop margins and bandwidth based on position gain KVS normalized by joint control bandwidth ωBW.
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low pass filter cutoff frequency is set at the desired system
bandwidth, ωf � ωBW. The controller zero is set a factor of 10
below the system bandwidth to prevent any effect on phase
margin while maximizing loop gain (10ωz � ωBW). At
frequencies close to ωBW, the effects of the plant pole (s + ωp)
and controller zero (ωz) are negligible. The proportional gain is
set such that the loop gain magnitude is one at the desired system
bandwidth.

Lnom(s)| |s�jωBW
� KP

MjωBW

ωf

jωBW + ωf

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ � KP

MjωBW

1
j + 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

� KP

M p


2

√
pωBW

� 1

0 KP � M p


2

√
pωBW (16)

Figure 5 demonstrates the designed loop gain and controller
transfer functions of the design described above when ωBW � 1
[rads ]. Hereafter, it is assumed that results are normalized with
respect to closed loop joint bandwidth (i.e. desired joint control
bandwidth is assumed to be unity).

3.2 Effect of Perturbation on Control Design
We now explore the effect of the vibrational perturbation on the
stability margins and performance of the joint control system as
designed in section 3.1. Figure 6 shows the control system
feedback diagram including the perturbation. The perturbed
loop gain is defined as follows,

L(s) � Pnom(s)Δ(s)C(s) � Lnom(s)Δ(s) (17)

Note that since Δ(s) always has positive phase and phase of
Lnom(s) never crosses Φ � −180 [deg], the gain margin of
the perturbed system is infinite. This implies that the
perturbation itself is not capable of causing instability when
the collocated state _q1 is used for feedback. Similar results
regarding stability collocated feedback systems have been well
studied in the literature, most notably by (Benhabib et al.,
1981).

Regardless, the presence of the perturbation pushes the nominal
control system design closer to marginal stability. Figure 7
demonstrates the effects of the perturbation on the phase
margin and percent overshoot of the closed loop system. We
note that as the perturbation frequency ωo approaches a factor
of 10 above the designed control bandwidth ωBW, the effect of the
perturbation on robustness margin and performance becomes
negligible. This lends credence to the popular industry design
heuristic of bandwidth separation between control bandwidth and
the minimum vibrational mode in a system. Indeed, it also reflects
the fact that the perturbation function Δ(s) has unity gain and no
phase shift at frequencies 10 times lower than ωo, as seen in
Figure 3.

Intuitively, the margin/performance degradation is
proportional to inertia fraction α and inversely proportional to
vibrational damping ξ. That is, the perturbation has a more
negligible effect when a smaller fraction of mass vibrates and
when there is higher modal damping. It is also interesting to note
that, for some parameter combinations, the flexible mode has a
robustifying (margin increase) effect at relative frequencies
greater than one.

FIGURE 10 | Sample frequency response plot of nominal (blue) and perturbed (red) vision-based servo loop gain. Multiple red curves correspond to the loop gain at
different perturbation frequencies ωo

ωBW
∈ {0.1, 10} with darker color indicating higher frequency. Perturbation inertia fraction and damping are fixed (α � 0.9, ξ � 0.01).
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4 VISION-BASED SERVOING CONTROL

In this section, we consider the control problem of driving a
manipulator to a desired pose based on a tip-mounted vision
system. In its simplest form, this type of system is implemented as
a proportional controller acting on tip position error. The
resulting command is then processed to generate the
commands for the joint-level control system. The error in
vision system accuracy is neglected in this analysis. Relying on
the assumption of slow manipulator rates and linearization, this
problem can, again, be framed in the context of independent joint
control systems.

In such a framework, forward and inverse kinematics are
lumped into fixed parameters and position feedback can be
studied at the joint level. Figure 8 shows the joint level
feedback loop, with HJNT(s) representing closed-loop joint rate
control (see Eq. 15), K1 representing forward kinematics, and K2

representing the tip-level proportional position gain and inverse
kinematics. The loop gain of the vision-based serving loop is as
follows:

LVS(s) � KVSHJNT(s) 1s, (18)

where LVS is the loop gain and KVS � K1K2. In order to study
the effects of the vibrational perturbation on this control loop,
we first design the servo loop assuming that there is no
perturbation. Accordingly, the closed loop joint system
defined as shown in Eq. 15. Figure 9 shows robustness
margins and loop bandwidth of LVS as a function of gain
KVS normalized by joint control bandwidth. The gain is
selected as KVS � 0.3ωBW such that LVS has a 10 (dB) gain
margin and 45 (deg) phase margin.

We now introduce the perturbation into the joint model and
study its effect on the vision-based servoing loop. Note that, with
the perturbation, the closed loop joint transfer function given in
Eq. 15 becomes,

FIGURE 11 |Gain margins (top row) and phase margins (bottom row) for vision-based servoing loop. The left column demonstrates the effect of changing inertia
fraction α and the right column demonstrates the effect of perturbation damping ξ.

FIGURE 12 | Control loop diagram for force/moment control.
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HJNT(s) � L(s)
1 + L(s)T21, (19)

where L(s) is the perturbed joint control loop gain and T21

(defined in section 2.1) is introduced because manipulator

tip position is based on q2, freely vibrating state. A
frequency response plot of the nominal loop gain
compared to the perturbed loop gain is shown in
Figure 10. Note that the loop gain is clearly unstable for
cases where ωo

ωBW
< 1.

FIGURE 13 | Nominal force control plant including closed loop joint control. Different lines represent the plant with different values of ωe ∈ {0.01,100}, sampled
evenly in log-space. Darker red color indicates higher environment natural frequency, ωe.

FIGURE 14 | Force control gain margin, phase margin and bandwidth for the nominal systemwith different values of ωe ∈ {0.01,100} (sampled evenly in log-space).
Separate curves corresponds to different values of Kf. Note that the discontinuity in the Kf �0.01 curve is due to its proximity to instability.
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Figure 11 shows the gain and phase margins of the perturbed
vision-based servoing loop gain. As expected, the stability
margins are degraded whenever ωo

ωBW
< 10 and instability

occurs when ωo
ωBW

< 1. Note that stability margins are fairly
insensitive to values of α and ξ, but are very dependent on
the frequency ωo.

5 TIP FORCE/MOMENT CONTROL

In this section, we investigate active control of manipulator
forces and torques, as reported by a force/torque sensor at the
tip of the manipulator. In order to model this interaction, we
assume that the manipulator is in constant contact with the
environment and that the manipulator is in a “quasi-static”
state. As in Section 4, we use these assumptions to model the
control loop at the joint level, lumping kinematic
transformations together with control gains and environment
parameters.

The joint level force/moment feedback loop model is
shown in Figure 12. In this model, p(s) represents the
state-space model in Eq. 7, C(s) is the joint level controller
defined in Section 3.1, ZENV(s) is the impedance function of
the environment expressed at the joint (see (Kurfess, 2018)
for the definition of impedance), ZD(s) is the desired
impedance of the joint, and Hfilt(s) is a first-order, low
pass filter. The loop arrow shown in Figure 12 defines the
loop gain Lf (s) that determines the stability of the force
control system:

Lf(s) � Z−1
D (s)Hfilt(s)PF(s), (20)

where PF (s) is the force control plant transfer function, i.e. the
mapping from joint control reference rate _qref to force/torque
variable f, including closed loop joint control. The
environmental impedance is assumed to be a spring-damper
system,

ZENV(s) � f

_q2
� Ke

s
+De � M

ω2
e + 2ξeωes

s
, (21)

where Ke is the spring constant, De is the viscous damping term.
In the sequel analysis, the impedance is parameterized by a
variable-frequency parameter ωe � Ke

M and fixed damping
parameter ξe � De

2Mωe
� 0.03. This reflects the fact that

equivalent stiffness of the on-orbit robotic environment is
seldom known a priori. A frequency response plot of the force
control plant transfer function PF(s) as ωe is varied is shown in
Figure 13. The purpose ofHfilt is to limit force control bandwidth
and the level of noise of the force sensor. To maintain bandwidth
separation, the cutoff frequency of this filter is set to a factor of 10
below the joint control bandwidth, ωBW. For simplicity, the
desired impedance is a damper, i.e. Z−1

D (s) � Kf. Figure 14
shows stability margins and bandwidth of the nominal force
control loop as environment stiffness/natural frequency and gain
Kf are varied. Based on this plot, a control gain of Kf � 0.003 was
chosen to maintain sufficient control loop margins [10 (dB) gain
margin and 45 (deg) phase margin] for the nominal system.

We now analyze the stability margins of the force control loop
when the vibrational perturbation is introduced. In this case, the
margins depend on both the perturbation parameterωo as well as the
environment impedance frequency parameter ωe. Figure 15 shows
stabilitymargins and bandwidth for the perturbed force control loop.

Interestingly, there is little to no degradation of force control
stability margins when the vibrational perturbation is introduced.
This is likely due to the fact that the nominal system was already
designed to be robust against the vibrational modes induced by
the environment impedance. However, the presence of the
perturbation does reduce bandwidth when environmental
stiffness is high (ωe > ωBW).

All three plots in Figure 15 suggest that as each of the
frequencies increases past a threshold, it ceases to have an
influence on stability and bandwidth. Intuitively, this
corresponds to either the environment or the perturbation
mode stiffnesses becoming near-rigid.

FIGURE 15 | Force control gain margin, phase margin and bandwidth for the perturbed system with different values of ωe ∈ {0.01,100} and ωo ∈ {0.01,100} (both
sampled evenly in log-space). Perturbation parameters were set to α � 0.9 and ξ � 0.04.
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6 CONCLUSION

In industry, it is often necessary to develop low-order models
that, despite their simplified nature, are capable of capturing
physical phenomena well enough to allow sound engineering
conclusions to be drawn. This is especially true when the
mechanical system under analysis is not yet fully designed
and, nonetheless, control decisions must be made. This is
almost always the case when sufficient flexibility is introduced
into on-orbit manipulators.

In this article, the complicated dynamics of on-orbit,
flexible-link manipulators have been simplified into a
representative single joint model with a vibrational
perturbation. The nature of this perturbation was explored
in the context of manipulator joint control. A condition
under which stability margins and performance of the
joint controller are not degraded by such a perturbation
was demonstrated. This condition was found to match well
with a popular heuristic for control of flexible systems,
namely that designed joint control bandwidth frequency
should be set a factor of 10 lower than the minimum
vibrational mode frequency of the links.

Further, the effect of the perturbation was studied in the
context of vision-based servoing and force/moment control at
the tip of the manipulator. In the former case, the presence of the
vibrational perturbation was found to result in severe margin
degradation and even instability in cases where a bandwidth
separation factor of 10 was not enforced. Moreover, when force/
moment control is designed to be robust against a range of
environment impedences (corresponding to different
frequencies when coupled with the joint), additional
vibrational perturbations did not degrade stability margins

below their designed values. The perturbation did, however,
affect the bandwidth of the force/moment control.

Though the concepts and models expounded in this article
have been guided by the author’s experience with tuning and
control of real (as opposed to simulated) manipulators, validation
of said models is an ongoing pursuit. In terms of future work,
validation of these models using data from actual hardware is
foremost in the mind of the author. Such validation, however, is
subject to the limitations imposed by industry research - namely,
cost, data exposure, and intellectual property restrictions.
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