The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

Mohammad Nasehi ${ }^{1 *}$
1. Department of Biology, Faculty of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran.

Article info:

Received: 30 November 2014
First Revision: 20 March 2015
Accepted: 25 April 2015

Abstract

Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic ($5-\mathrm{HT}$) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline. Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333) and antagonist (RS23597-190) were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively.

Results: The data revealed that pre-training injection of higher dose of harmaline ($1 \mathrm{mg} / \mathrm{kg}$), RS67333 ($0.5 \mathrm{ng} /$ mouse) and RS23597-190 ($0.5 \mathrm{ng} /$ mouse) decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 ($0.005 \mathrm{ng} /$ mouse) or RS23597-190 ($0.005 \mathrm{ng} /$ mouse $)$ with subthreshold dose of harmaline ($0.5 \mathrm{mg} / \mathrm{kg}$, i.p.) intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors. Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia.

1. Introduction

0ne of the most important compound in the brain is serotonin (5-hydroxytryptamine; 5-HT), which influences learning and memory formation (Cammarota, Bevilaqua, Medina, \& Izquierdo, 2008; Huer-ta-Rivas, Perez-Garcia, Gonzalez-Espinosa, \& Meneses, 2010), In mammals, serotonin pathways originate from raphe nuclei, and ascending 5-HT fibers innervate brain regions (e.g. cortex, hippocampus), which make it well placed in mediating normal and dysfunctional learning and memory (Gonzalez-Burgos \& Feria-Velasco, 2008; Hensler, 2006). 5-HT mediates its action by 14 different receptor subtypes with different functional proper-
ties (Perez-Garcia \& Meneses, 2008a), which have been classified into families according to their pharmacological, molecular, and second messenger systems profiles (Meneses, 2003; Walstab, Rappold, \& Niesler, 2010). 5-HT3 receptor is a ligand-gated ion channel, that induced rapid actions for hippocampal LTP modulation (Berumen, Rodriguez, Miledi, \& Garcia-Alcocer, 2012). Other 5-HT receptors belong to the G-protein coupled receptor superfamily (Charnay \& Leger, 2010). It seems that 5-HT receptors have critical role in regulation of behaviors induced by hippocampus, including learning and memory process (Berumen et al., 2012).
β-carbolines are a class of alkaloids which have elicited considerable research interest (Moura et al., 2006;

[^0]Nasehi, Mashaghi, Khakpai, \& Zarrindast, 2013). These alkaloids consist of an indole nucleus and a pyridine ring (Moura et al., 2006; Nasehi, Sharifi, \& Zarrindast, 2012). β-carbolines can be divided into three structural groups, depending upon their degree of ring saturation: (a) harmane; (b) harmalane; and (c) the harmaline (Moura et al., 2006). These compounds, also known as harmala alkaloids, have been isolated from Peganumharmala (Rook et al., 2010). Though, harmala alkaloids are also said to occur endogenously in normal body constituents, such as heart, liver, kidney, blood plasma central nervous system (Zheng, et al., 2000). β-carbolines by inhibition of $\mathrm{MAO}_{\mathrm{A}}$ or $\mathrm{MAO}_{\mathrm{B}}$ increase the extracellular norepinephrine, dopamine and 5-HT levels in several brain regions (Herraiz \& Chaparro, 2005). According previous data: 1- β-carboline could enhance $5-\mathrm{HT}$ levels in several brain area through inhibition of MAO enzyme and 2-the role of β-carbolines (Venault \& Chapouthier, 2007), 5-HT receptors (Cammarota et al., 2008; Liy-Salmeron \& Meneses, 2007), and hippocampus (Bur-gess, Maguire, \& O'Keefe, 2002) in memory process, the aim of this study was to investigate the involvement of harmaline on memory acquisition/exploratory behav-iors/pain response with regards to 5-HT3 receptors on these phenomenon in the step-down passive avoidance, open field and tail flick tests in mice.

2. Methods

2.1. Animals

Male NMRI mice weighing 25-30 g obtained from the institute for cognitive sciences (ICSS) were used. Animals maintained at a controlled temperature $\left(22 \pm 2^{\circ} \mathrm{C}\right)$ with 12/12-h light/dark cycle, which that behavioral tests were done during the light phase. The mice freely received food and water except during the limited times of experiments. In each group, ten animals were used and each mouse was used once only. All treatments have been designed in accordance with institutional guidelines for animal care and use that was approved by the Ethics Committee of the Faculty of Science of the University of Tehran.

2.2. Stereotaxic surgery

The animals were anaesthetized by xylazine ($5 \mathrm{mg} / \mathrm{kg}$) and ketamine hydrochloride ($50 \mathrm{mg} / \mathrm{kg}$) solution and then placed in a stereotaxic apparatus (Stoelting Co, Illinois, USA). Two stainless-steel guide cannulae (8 mm length, 22 gauge) were placed 1 mm above of hippocampus in accordance with atlas of Paxinos and Franklin (2 mm posterior of bregma, 1.6 from the sagital suture and
1.5 mm blow from the skull surface) (Paxinos \& Franklin, 2001). The dental acrylic cement was used for cannulae fixation to the bone. For preventing possible obstruction, a stylet was presented into the guide cannula. The animals were rested in the home cage during 5-7 days for clearing the effect of the anesthetic drugs and recovery (Yousefi, Farjad, Nasehi, \& Zarrindast, 2013).

2.3. Memory assessment

The passive avoidance task comprised of a plastic box $\left(30 \times 30 \times 40 \mathrm{~cm}^{3}\right)$. There are parallel stainless steel rods (0.3 cm in diameter, spaced 1 cm apart) in the floor of task with a wooden platform $\left(4 \times 4 \times 4 \mathrm{~cm}^{3}\right)$ in the center. An isolated stimulator (Grass S44, Quincy, MA, USA) delivered an electric shocks ($1 \mathrm{~Hz}, 0.5 \mathrm{~s}$ and 50 VDC) to the grid floor (Nasehi, Jamshidi-Mehr, Khakpai, \& Zarrindast, 2014).

The training and retrieval protocols were carried out among 9:00 a.m. and 2:00 p.m. The animals were gently placed on the wooden platform and when the animal stepped down from the platform to the grid floor, intermittent electric shocks were delivered for 15 s continuously. 24 hours later, each animal was located on the platform again, and the step-down latency was measured as passive avoidance behavior. An upper cut-off time of 300 s was set (Nasehi, Amin Yavari, \& Zarrindast, 2013; Nasehi et al., 2014; Nasehi, Piri, Abbolhasani, \& Zarrindast, 2013).

2.4. Measurement of locomotor activity

The locomotion task (BorjSanat Co, Tehran, Iran) comprised of perspex container box ($30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 40$ cm high). The task has a gray perspex panel $(30 \mathrm{~cm} \times 30$ $\mathrm{cm} \times 2.2 \mathrm{~cm}$ thick) with 16 photocells which separated the box to 16 equal-sized squares. Locomotor activity was recorded as the number of crossings from one square to another during 5 min (Khakpai, Nasehi, Haeri-Rohani, Eidi, \& Zarrindast, 2012; Nasehi et al., 2014; Yousefi, Nasehi, Khakpai, \& Zarrindast, 2012).

2.5. Tail flick test

The tail flick task had been used for animal pain response assessment (Nasehi et al., 2014; Tabatabai, Zarrindast, Lashkari, \& Shafiee, 1999; Zarrindast, Dinkoub, Homayoun, Bakhtiarian, \& Khavandgar, 2002). In this method, latency of flicks of animal's tail following a light beam that focused on the animal's tail was assessment. This behavior testing was done 5 min after training.

2.6. Drugs

Harmaline (1-methyl-7-methoxy-3, 4-dihydro-bcarboline) from Sigma (St. Louis, MO), 5-HT3 receptor agonist (M-CHL) and 5-HT3 receptor antagonist (Y-25130) from (Tocris Bioscience United Kingdom) were used in this study. The time of administration and doses of drugs were chosen according to pilot studies and published work in scientific literature (Nasehi, Amin Yavari, et al., 2013; Nasehi, Mashaghi, et al., 2013; Nasehi, Piri, Abdollahian, \& Zarrindast, 2013; Nasehi et al., 2012). The drugs were tested at doses: harmaline: $0.25,0.5$ and $1 \mathrm{mg} / \mathrm{kg}$, M-CHL: $0.005,0.05$ and $0.5 \mathrm{ng} /$ mouse and Y-25130: 0.05, 0.5 and $5 \mathrm{ng} /$ mouse. Harmaline was dissolved in sterile 0.9% saline solution and the compound was stirred for 1 h before obtaining the final solution; other drugs were dissolved in 0.9% saline, just before the experiments.

2.7. Drug microinjections

After restrained gently animals by hand, during a 60 s period, the serotonergic agents were injected manually, via 27-gauge needles (1 mm below the tip of the guide cannulae) in a total volume of $1 \mu \mathrm{l} /$ mouse ($0.5 \mu \mathrm{l}$ in each side). For facilitating the drug diffusion, the injection needles were left in place for an extra 60 s (Nasehi, Piri, Abdollahian, et al., 2013; Zarrindast, Hoseindoost, \& Nasehi, 2012).

2.8. Statistical analysis

Due to the presence of individual variations in stepdown apparatus data, we chose to analyze data using the Kruskal-Wallis non-parametric one-way analysis of variance (ANOVA) followed by a two-tailed MannWhitney's U-test. Holmes Sequential Bonferroni Correction Test was used for paired comparisons when appropriate. The median as well as interquartile ranges of the step-down latencies were recorded for ten mice in each experimental group. One/two way ANOVA followed by post-hoc test was used for statistical evaluation in the tail flick and open filed tasks. In all evaluations $\mathrm{P}<0.05$ was considered statistically significant.

2.8.1. Experiment 1: Effects of pre-training 5-HT3

 drugs administration on memory acquisitionIn this experiment, eight groups of mice were used. Four groups of animals received saline ($1 \mu \mathrm{l} /$ mouse) or three doses of M-CHL ($0.005,0.05$ and $0.5 \mathrm{ng} /$ mouse) 5 \min prior training. The other four groups received saline
($1 \mu \mathrm{l} /$ mouse) or three doses of Y-25130 ($0.05,0.5$ and 5 $\mathrm{ng} /$ mouse) 5 min before training.
2.8.2. Experiment 2: Effects of pre-training 5-HT3 receptor drugs administration on memory acquisition under the disruptive effect of harmaline

In this experiment, 12 groups (three arms) of animals were used. The mice received saline ($1 \mu \mathrm{l} /$ mouse $)$ or various doses of harmaline $(0.25,0.5 \mathrm{and} 1 \mathrm{mg} / \mathrm{kg}$; i.p.) 15 min before training. These animals received intra-hippocampal pre-training saline ($1 \mu \mathrm{l} /$ mouse, for groups), subthreshold does of M-CHL ($0.005 \mathrm{ng} /$ mouse, for groups) or Y-25130 ($0.05 \mathrm{ng} /$ mouse, for groups) 5 min earlier training.

2.9. Histology

After behavioral testing, the animals were decapitated and the results were plotted on representative sections taken from the mice brain atlas of Paxinos and Franklin (Paxinos \& Franklin, 2001). 200 from 221 mice with correct cannulae into the hippocampus regions were included in statistical analyses.

3. Results

3.1. Effects of pre-training intra-hippocampal administration of 5-HT3 drugs on memory acquisition, locomotor activity and tail flick

Kruskal-Wallis and Mann-Whitney results shows that the administration of M-CHL $[\mathrm{H}(3)=9.30, \mathrm{P}<0.05$; $0.5 \mathrm{ng} /$ mouse, figure 1 A ; left panel] and Y-25130 $[\mathrm{H}(3)=8.26, \mathrm{P}<0.05$; $5 \mathrm{ng} /$ mouse, figure 1 A ; right panel], 5 min before training, decreased memory acquisition. Furthermore, one-way ANOVA postulates that all interventions did not alter locomotor activity $[\mathrm{F}(3,36)=$ $1.99, \mathrm{P}>0.05$ for $\mathrm{M}-\mathrm{CHL}$ (figure 1 B ; left panel) and $\mathrm{F}(3$, 36) $=1.06, \mathrm{P}>0.05$ for $\mathrm{Y}-25130$ (figure 1 B ; right panel)] and tail flick $[\mathrm{F}(3,36)=1.96, \mathrm{P}>0.05$ for $\mathrm{M}-\mathrm{CHL}$ (figure 1 B ; left panel) and $\mathrm{F}(3,36)=0.46, \mathrm{P}>0.05$ for $\mathrm{Y}-25130$ (figure 1 C ; right panel)].
3.2. Effects of pre-training 5-HT3 receptor drugs administration on memory acquisition, locomotor activity and tail flick under the amnesia induced by harmaline

The data show that intraperitoneal injection of harmaline ($1 \mathrm{mg} / \mathrm{kg}$, i.p.) 15 min before training, decreased memory acquisition $[\mathrm{H}(3)=19.03, \mathrm{P}<0.001$, Figure 2A; left panel, using Kruskal-Wallis and Mann-Whitney], but did not alter locomotor activity $[\mathrm{F}(3,36)=2.3$,

Pre- training Treatment: Drug (ng/mice)
NEUR:SCIENCE
Figure 1. The effects of pre-training intra-hippocampal administration of saline, M-CHL and Y-25130 on memory acquisition, locomotor activity and tail flick.
Left and right panels indicate the effects of pre-training administration of M-CHL ($0.005,0.05$ and $0.5 \mathrm{ng} /$ mouse) or Y-25130 ($0.05,0.5$ and $5 \mathrm{ng} /$ mouse) on memory acquisition, respectively (panel A). Step-down latencies are expressed as median and quartile for 10 animals.
Additionally, locomotor activity in panel B was examined 5 min after memory testing and tail flick in panel C was tested 5 min after training. Each bar is mean \pm SEM. * $\mathrm{P}<0.05$ when compared to saline group.
$\mathrm{P}>0.05$; figure 2 B , left panel] and tail flick behaviors $[\mathrm{F}(3,36)=1.05, \mathrm{P}>0.05$; figure 2 C , left panel], following one-way ANOVA testing.

Kruskal-Wallis and Mann-Whitney results in according to harmaline-treated groups show that a subthreshold dose of M-CHL $[\mathrm{H}(3)=12.48, \mathrm{P}<0.001 ; 0.005 \mathrm{ng} /$ mouse, figure 2A, middle panel] or Y-25130 $[\mathrm{H}(3)=18.88$, $\mathrm{P}<0.001 ; 0.05 \mathrm{ng} /$ mouse, figure 2 A , right panel] revers harmaline-induced amnesia.

Additionally, two-way ANOVA postulates that locomotor activity-induced by harmaline did not alter following M-CHL \{figure 2B; middle panel [Dose Effect $\mathrm{F}(3,72)=1.43, \mathrm{P}>0.05$; Treatment Effect $\mathrm{F}(1,72)=1.28$, $\mathrm{P}>0.05$ and Dose-Treatment interaction Effect $\mathrm{F}(3$, 72) $=0.83, \mathrm{P}>0.05]\}$ or $\mathrm{Y}-25130$ \{figure 2 B ; right panel [Dose Effect $\mathrm{F}(3,72)=1.62, \mathrm{P}>0.05$; Treatment Effect $\mathrm{F}(1,72)=0.6, \mathrm{P}>0.05$ and Dose-Treatment interaction Effect $\mathrm{F}(3,72)=0.63, \mathrm{P}>0.05]$ \} injections.

Similar analysis showed that tail flick-induced by harmaline did not alter following M-CHL \{figure 2C; middle panel [Dose Effect $\mathrm{F}(3,72)=2.29, \mathrm{P}>0.05$; Treatment Effect $\mathrm{F}(1,72)=0.39, \mathrm{P}>0.05$ and Dose-Treatment interaction Effect $\mathrm{F}(3,72)=0.61, \mathrm{P}>0.05]\}$ or $\mathrm{Y}-25130$ \{figure 2 B ; right panel [Dose Effect $\mathrm{F}(3,72)=1.26, \mathrm{P}>0.05$; Treatment Effect $\mathrm{F}(1,72)=1.84, \mathrm{P}>0.05$ and Dose-Treatment interaction Effect $\mathrm{F}(3,72)=1.56, \mathrm{P}>0.05]\}$ injections.

4. Discussion

The obtained results showed that pre-training administration of 5-HT3 receptor agonist (M-CHL) and 5-HT3
receptor antagonist (Y-25130) impaired memory acquisition, by itself. In all experimental groups, these interventions did not effect on locomotor activity and tail flick. Direct participation of 5-HT in learning and memory (Gonzalez, Chavez-Pascacio, \& Meneses, 2013; Meneses \& Perez-Garcia, 2007), has been demonstrated by decreasing 5 -HT brain levels using acute 5 -HT depletion, which impaired memory formation (Meneses, 2007). In contrast, enhancing brain serotonin activity by means of its precursor (i.e. tryptophan) improved memory (Meneses \& Perez-Garcia, 2007). 5-HT3 receptors are found in the brain in presynaptic and postsynaptic areas associated with axons and nerve terminals (Faer-

Figure 2. The effects of harmaline on memory acquisition, locomotor activity and tail flick in the present and absence 5-HT3 receptor agents.
Figure 2A describes the effects of pre-training administration of harmaline ($0.25,0.5$ and $1 \mathrm{mg} / \mathrm{kg}$, i.p) on animals which were trained under the influence of saline ($1 \mu \mathrm{l} /$ mouse; intra-hippocampus; left panel), M-CHL (0.005 ng / mouse, intra-hippocampus; middle panel) or Y-25130 ($0.05 \mathrm{ng} /$ mouse, intrahippocampus; right panel). Test session step-down latencies are expressed as median and quartile for 10 animals.
Also, locomotor activity in figure 2 B was tested 5 min after memory testing and tail flick in figure 2 C was recorded 5 min after training. Each bar is mean \pm SEM. ${ }^{* * *} \mathrm{P}<0.001$ when compared with saline/saline group. $++\mathrm{P}<0.01$ and $+++\mathrm{P}<0.001$ when compared with harmaline $(1 \mathrm{mg} / \mathrm{kg}) /$ saline group.
ber, Drechsler, Ladenburger, Gschaidmeier, \& Fischer, 2007). Thus 5-HT3 receptor agonist (M-CHL) through acting on presynaptic receptors impair memory (Meneses, 2007). Since, 5 -HT serves as a link between synaptic plasticity at the receptor and post receptor level (i.e. signal transduction pathways) during learning and memory formation (Meneses, 2003), we propose that 5-HT3 receptor antagonist (Y-25130) decrease memory formation via operating on postsynaptic receptors. Some expected agonists showed rather silent or antagonistic effects depending on the level of ligand independent activity (Pytliak, Vargova, Mechirova, \& Felsoci, 2011).

In consistent with our data, some evidences revealed that 5-HT3 receptor agonists (Meneses, 2007) and 5-HT3 receptor antagonist (Modica et al., 2000) impaired memory. On the other hand, some studies reported that 5-HT3 receptor antagonists improve learning and memory (Fakhfouri, Rahimian, Ghia, Khan, \& Dehpour, 2012), or did not affect memory. Hence, the specific role of $5-\mathrm{HT}$ in learning and memory function has remained unclear, partly due to many contradictory findings (Ogren et al., 2008). For instance, 5-HT antagonists have been reported to impair memory, to facilitate memory, or have no effect on memory. In the case of 5-HT agonists, there are like conflicting results with reports of impaired or facilitated, or unaffected memory (Volpe, Hendrix, Park, Towle, \& Davis, 1992).

As well, it is reported that the destruction or pharmacological blockade of 5HTergic pathways impair, have no effect, or even could facilitate the performance of rats in different spatial memory tasks (Gutierrez-Guzman et al., 2011; Ogren et al., 2008). Certainly, the role of 5-HT receptors may varies according to many aspects of memory tasks, including the nature and degree of difficulty of behavioral tasks used, brain areas involved, training time (e.g. number of trials), site (systemic or central) of administration and specific drugs (Manuel-Apolinar et al., 2005; Meneses, 2004; Perez-Garcia \& Meneses, 2008b; Petkov, Belcheva, Konstantinova, \& Kehayov, 1995).

Additionally, our data exhibits that pre-training administration of harmaline declined memory acquisition, while did not alter tail flick and locomotor activity. There are several evidence that harmaline has a number of diverse effects such as excitation, euphoria (Rommelspacher, Strauss, \& Lindemann, 1980), motor tremor, alteration in associative and motor learning and calcium channel opening, with a resultant rise in neuronal excitability (Moura et al., 2006). According to our results, it has been reported that harmaline impair different memories (Moura et al., 2006; Nasehi et al., 2010; Nasehi et
al., 2012). In contrast, some evidence indicated that the dihydro- β-carbolineharmaline mostly improved long term memory (Moura et al., 2006). The controversial reports may be due to methods, route of infusion and/or the doses of drugs used (Nasehi et al., 2010).

In the next section of this paper, we investigate the involvement of 5-HT3 receptors on impairment of avoidance memory induced by harmaline. Our results displayed that in mice trained under harmaline injection, pre-training intra-hippocampal administration of M-CHL and Y-25130 restored harmaline-induced amnesia. β-carboline alkaloids bind to some CNS receptors such as 5 -HT and imidazoline receptors (Glennon et al., 2000). Furthermore, β-carbolines enhance the extracellular 5-HT levels in some brain regions through inhibition of $\mathrm{MAO}_{\mathrm{A}}$ (Venault \& Chapouthier, 2007). Harmaline has a partial aromaticity structure containing methoxyllig and at C-7 position and a methy 1 group at C-1 (Jimenez, Riveron-Negrete, Abdullaev, EspinosaAguirre, \& Rodriguez-Arnaiz, 2008). Methoxyl group in $\mathrm{C}-7$ position favors the inhibition of $\mathrm{MAO}_{\mathrm{A}}$. This notion explains the inhibition of MAO_{A}, heighten extracellular serotonin levels (Herraiz \& Chaparro, 2005; Moura et al., 2006; Robinson, Platt, \& Riedel, 2011), so in mice that were trained under harmaline infusion, pre-training intra- hippocampal injection of M-CHL and Y-25130 cause enhancement of memory acquisition.

In conclusion, the data showed that a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia.

Acknowledgments:

The author appreciates Prof. Mohammad-Reza Zarrindast, Dr. Fatemeh Khakpai and Mr. Mehdi JamshidiMehr for their valuable assistance. Moreover, the author wishes to thank Garmsar Branch, Islamic Azad University for providing financial support to this project.

References

Berumen, L. C., Rodriguez, A., Miledi, R., \& Garcia-Alcocer, G. (2012). Serotonin receptors in hippocampus. Scientific World Journal, 2012, 823493. doi: 10.1100/2012/823493

Burgess, N., Maguire, E. A., \& O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641.

Cammarota, M., Bevilaqua, L. R., Medina, J. H., \& Izquierdo, I. (2008). ERK1/2 and CaMKII-mediated events in memory
formation: is 5HT regulation involved? Behavior Brain Research, 195(1), 120-128. doi: 10.1016/j.bbr.2007.11.029

Charnay, Y., \& Leger, L. (2010). Brain serotonergic circuitries. Dialogues in Clinical Neurosciences, 12(4), 471-487.

Faerber, L., Drechsler, S., Ladenburger, S., Gschaidmeier, H., \& Fischer, W. (2007). The neuronal 5-HT3 receptor network after 20 years of research-evolving concepts in management of pain and inflammation. European Journal of Pharmacology, 560(1), 1-8. doi: 10.1016/j.ejphar.2007.01.028

Fakhfouri, G., Rahimian, R., Ghia, J. E., Khan, W. I., \& Dehpour, A. R. (2012). Impact of 5-HT(3) receptor antagonists on peripheral and central diseases. Drug Discovery Today, 17(13-14), 741-747. doi: 10.1016/j.drudis.2012.02.009

Glennon, R. A., Dukat, M., Grella, B., Hong, S., Costantino, L., Teitler, M., Mattson, M. V. (2000). Binding of betacarbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine ($\mathrm{D}(2)$) and benzodiazepine receptors. Drug \& Alcohol Dependence, 60(2), 121-132.

Gonzalez-Burgos, I., \& Feria-Velasco, A. (2008). Serotonin/ dopamine interaction in memory formation. Program in Brain Research, 172, 603-623. doi: 10.1016/S0079-6123(08)00928-X

Gonzalez, R., Chavez-Pascacio, K., \& Meneses, A. (2013). Role of 5-HT receptors in the consolidation of memory. Behavioral Brain Research, 252C, 246-251. doi: 10.1016/j.bbr.2013.05.051

Gutierrez-Guzman, B. E., Hernandez-Perez, J. J., GonzalezBurgos, I., Feria-Velasco, A., Medina, R., Guevara, M. A., Olvera-Cortes, M. E. (2011). Hippocampal serotonin depletion facilitates place learning concurrent with an increase in CA1 high frequency theta activity expression in the rat. European Journal of Pharmacology, 652(1-3), 73-81. doi: 10.1016/j.ejphar.2010.11.014

Hensler, J. G. (2006). Serotonergic modulation of the limbic system. Neuroscience E Biobehavioral Reviews, 30(2), 203-214. doi: 10.1016/j.neubiorev.2005.06.007

Herraiz, T., \& Chaparro, C. (2005). Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochemical \mathcal{E} Biophysical Research Communications, 326(2), 378-386. doi: 10.1016/j.bbrc.2004.11.033

Huerta-Rivas, A., Perez-Garcia, G., Gonzalez-Espinosa, C., \& Meneses, A. (2010). Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia. Neurobiology of Learning \mathcal{E} Memory, 93(1), 99-110. doi: 10.1016/j.nlm.2009.08.009

Jimenez, J., Riveron-Negrete, L., Abdullaev, F., EspinosaAguirre, J., \& Rodriguez-Arnaiz, R. (2008). Cytotoxicity of the beta-carboline alkaloids harmine and harmaline in human cell assays in vitro. Experimental \& Toxicological Pathology, 60(4-5), 381-389. doi: 10.1016/j.etp.2007.12.003

Khakpai, F., Nasehi, M., Haeri-Rohani, A., Eidi, A., \& Zarrindast, M. R. (2012). Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum. Behavioral Brain Research, 231(1), 1-10. doi: 10.1016/j.bbr.2012.02.049

Liy-Salmeron, G., \& Meneses, A. (2007). Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations. Brain Research, 1147, 140-147. doi: 10.1016/j.brainres.2007.02.007

Manuel-Apolinar, L., Rocha, L., Pascoe, D., Castillo, E., Castillo, C., \& Meneses, A. (2005). Modifications of 5-HT4 receptor expression in rat brain during memory consolidation. Brain Research, 1042(1), 73-81. doi: 10.1016/j.brainres.2005.02.020

Meneses, A. (2003). A pharmacological analysis of an associative learning task: 5-HT(1) to $5-\mathrm{HT}(7)$ receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learning and Memory, 10(5), 363-372. doi: 10.1101/ lm. 60503

Meneses, A. (2004). Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behavioral Brain Research, 155(2), 275282. doi: 10.1016/j.bbr.2004.04.026

Meneses, A. (2007). Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behavioral Brain Research, 184(1), 81-90. doi: 10.1016/j.bbr.2007.06.026

Meneses, A., \& Perez-Garcia, G. (2007). 5-HT(1A) receptors and memory. Neuroscience \& Biobehavioral Reviews, 31(5), 705727. doi: 10.1016/j.neubiorev.2007.02.001

Modica, M., Santagati, M., Guccione, S., Russo, F., Cagnotto, A., Goegan, M., \& Mennini, T. (2000). Design, synthesis and binding properties of novel and selective 5-HT(3) and 5-HT(4) receptor ligands. European Journal of Medicinal Chemistry, 35(12), 1065-1079.

Moura, D. J., Rorig, C., Vieira, D. L., Henriques, J. A., Roesler, R., Saffi, J., \& Boeira, J. M. (2006). Effects of beta-carboline alkaloids on the object recognition task in mice. Life Sciences, 79(22), 2099-2104. doi: 10.1016/j.lfs.2006.07.004

Nasehi, M., Amin Yavari, S., \& Zarrindast, M. R. (2013). Synergistic effects between CA1 mu opioid and dopamine D1like receptors in impaired passive avoidance performance induced by hepatic encephalopathy in mice. Psychopharmacology (Berl), 227(3), 553-566. doi: 10.1007/s00213-013-2987-y

Nasehi, M., Jamshidi-Mehr, M., Khakpai, F., \& Zarrindast, M. R. (2014). Possible involvement of CA1 5-HT1B/1D and $5-\mathrm{HT} 2 \mathrm{~A} / 2 \mathrm{~B} / 2 \mathrm{C}$ receptors in harmaline-induced amnesia. Pharmacology Biochemistry \& Behavior, 125, 70-77. doi: 10.1016/j.pbb.2014.08.007

Nasehi, M., Mashaghi, E., Khakpai, F., \& Zarrindast, M. R. (2013). Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia. Neuroscience Letters, doi: 10.1016/j.neulet.2013.09.066

Nasehi, M., Piri, M., Abbolhasani, K., \& Zarrindast, M. R. (2013). Involvement of opioidergic and nitrergic systems in memory acquisition and exploratory behaviors in cholestatic mice. Behavioural Pharmacology, 24(3), 180-194. doi: 10.1097/FBP.0b013e3283618aab

Nasehi, M., Piri, M., Abdollahian, M., \& Zarrindast, M. R. (2013). Involvement of nitrergic system of CA1in harmane induced learning and memory deficits. Physiology \& Behavior, 109, 23-32. doi: 10.1016/j.physbeh.2012.10.006

Nasehi, M., Piri, M., Nouri, M., Farzin, D., Nayer-Nouri, T., \& Zarrindast, M. R. (2010). Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. European Journal of Pharmacology, 634(1-3), 77-83. doi: 10.1016/j.ejphar.2010.02.027

Nasehi, M., Sharifi, S., \& Zarrindast, M. R. (2012). Involvement of the cholinergic system of CA1 on harmaneinduced amnesia in the step-down passive avoidance test. Journal of Psychopharmacology, 26(8), 1151-1161. doi: 10.1177/0269881111421972

Ogren, S. O., Eriksson, T. M., Elvander-Tottie, E., D'Addario, C., Ekstrom, J. C., Svenningsson, P., et al. (2008). The role of $5-\mathrm{HT}(1 \mathrm{~A})$ receptors in learning and memory. Behavioral Brain Research, 195(1), 54-77. doi: 10.1016/j.bbr.2008.02.023

Paxinos, G., \& Franklin, K. B. J. (2001). The Mouse Brain in Stereotaxic Coordinates, 2nd Ed. Academic Press.

Perez-Garcia, G., \& Meneses, A. (2008a). Ex vivo study of 5-HT(1A) and 5-HT(7) receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia. Behavioral Brain Research, 195(1), 139-146. doi: 10.1016/j. bbr.2008.07.033

Perez-Garcia, G., \& Meneses, A. (2008b). Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behavioral Brain Research, 195(1), 17-29. doi: 10.1016/j. bbr.2007.11.027

Petkov, V. D., Belcheva, S., Konstantinova, E., \& Kehayov, R. (1995). Participation of different 5-HT receptors in the memory process in rats and its modulation by the serotonin depletor p-chlorophenylalanine. Acta Neurobiologiae Experimentalis, 55(4), 243-252.

Pytliak, M., Vargova, V., Mechirova, V., \& Felsoci, M. (2011). Serotonin receptors - from molecular biology to clinical applications. Physiological Research, 60(1), 15-25.

Robinson, L., Platt, B., \& Riedel, G. (2011). Involvement of the cholinergic system in conditioning and perceptual memory. Behavioral Brain Research, 221(2), 443-465. doi: 10.1016/j. bbr.2011.01.055

Rommelspacher, H., Strauss, S., \& Lindemann, J. (1980). Excretion of tetrahydroharmane and harmane into the urine of man and rat after a load with ethanol. FEBS Letters, 109(2), 209-212.

Rook, Y., Schmidtke, K. U., Gaube, F., Schepmann, D., Wunsch, B., Heilmann, J., et al. (2010). Bivalent beta-carbolines as potential multitarget anti-Alzheimer agents. Journal of Medicinal Chemistry, 53(9), 3611-3617. doi: 10.1021/jm1000024

Splettstoesser, F., Bonnet, U., Wiemann, M., Bingmann, D., \& Busselberg, D. (2005). Modulation of voltage-gated channel currents by harmaline and harmane. British Journal of Pharmacology, 144(1), 52-58. doi: 10.1038/sj.bjp. 0706024

Tabatabai, S. A., Zarrindast, M. R., Lashkari, S. B., \& Shafiee, A. (1999). Synthesis, conformational analysis and antinociceptive activity of 1-[N-methyl-(2-phenylethyl)amino] methyl-1,2,3,4-tetrahydroisoquinoline derivatives. Arz-neimittel-Forschung, 49(12), 1001-1005.

Venault, P., \& Chapouthier, G. (2007). From the behavioral pharmacology of beta-carbolines to seizures, anxiety, and memory. Scientific World Journal, 7, 204-223. doi: 10.1100/ tsw. 2007.48

Volpe, B. T., Hendrix, C. S., Park, D. H., Towle, A. C., \& Davis, H. P. (1992). Early post-natal administration of 5,7-dihydroxytryptamine destroys 5-HT neurons but does not affect spatial memory. Brain Research, 589(2), 262-267.

Walstab, J., Rappold, G., \& Niesler, B. (2010). 5-HT(3) receptors: role in disease and target of drugs. Pharmacology \mathcal{E} Therapeutics, 128(1), 146-169. doi: 10.1016/j.pharmthera.2010.07.001

Yousefi, B., Farjad, M., Nasehi, M., \& Zarrindast, M. R. (2013). Involvement of the CA1 GABAA receptors in ACPA-induced impairment of spatial and non-spatial novelty detection in mice. Neurobiology of Learning and Memory, 100, 32-40. doi: 10.1016/j.nlm.2012.12.001

Yousefi, B., Nasehi, M., Khakpai, F., \& Zarrindast, M. R. (2012). Possible interaction of cholinergic and GABAergic systems between MS and CA1 upon memory acquisition in rats. Behavioral Brain Research, 235(2), 231-243. doi: 10.1016/j.bbr.2012.08.006

Zarrindast, M. R., Dinkoub, Z., Homayoun, H., Bakhtiarian, A., \& Khavandgar, S. (2002). Dopamine receptor mechanism(s) and morphine tolerance in mice. Journal of Psychopharmacology, 16(3), 261-266.

Zarrindast, M. R., Hoseindoost, S., \& Nasehi, M. (2012). Possible interaction between opioidergic and cholinergic systems of CA1 in cholestasis-induced amnesia in mice. Behavioral Brain Research, 228(1), 116-124. doi: 10.1016/j. bbr.2011.11.039

Zheng, W., Wang, S., Barnes, L. F., Guan, Y., \& Louis, E. D. (2000). Determination of harmane and harmine in human blood using reversed-phased high-performance liquid chromatography and fluorescence detection. Analytical Biochemistry, 279(2), 125-129. doi: 10.1006/abio.1999.4456

[^0]: * Corresponding Author:

 Mohammad Nasehi, PhD
 Address: Department of Biology, Faculty of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
 Tel.: +98 (912) 8224672
 E-mail: Nasehi@iricss.org

