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Abstract

Glucocorticoids are potent inhibitors of angiogenesis in the rodent in vivo and in vitro but the

mechanism by which this occurs has not been determined. Administration of glucocorticoids

is used to treat a number of conditions in horses but the angiogenic response of equine ves-

sels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis

and treatment of equine disease, is unknown. This study addressed the hypothesis that glu-

cocorticoids would be angiostatic both in equine and murine blood vessels.The mouse aortic

ring model of angiogenesis was adapted to assess the effects of cortisol in equine vessels.

Vessel rings were cultured under basal conditions or exposed to: foetal bovine serum (FBS;

3%); cortisol (600 nM), cortisol (600nM) plus FBS (3%), cortisol (600nM) plus either the glu-

cocorticoid receptor antagonist RU486 or the mineralocorticoid receptor antagonist spirono-

lactone. In murine aortae cortisol inhibited and FBS stimulated new vessel growth. In

contrast, in equine blood vessels FBS alone had no effect but cortisol alone, or in combina-

tion with FBS, dramatically increased new vessel growth compared with controls. This effect

was blocked by glucocorticoid receptor antagonism but not by mineralocorticoid antago-

nism. The transcriptomes of murine and equine angiogenesis demonstrated cortisol-

induced down-regulation of inflammatory pathways in both species but up-regulation of pro-

angiogenic pathways selectively in the horse. Genes up-regulated in the horse and down-

regulated in mice were associated with the extracellular matrix. These data call into question

our understanding of glucocorticoids as angiostatic in every species and may be of clinical

relevance in the horse.

Introduction

Angiogenesis, the formation of new blood vessels from existing vasculature, is essential for tis-

sue repair [1]. Aberrant angiogenesis is an important feature of several disease processes

including the growth of tumours [2], diabetic retinopathy [3] and rheumatoid arthritis [4].
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Glucocorticoids at supra-physiological levels and in the presence of heparin, are potent inhibi-

tors of angiogenesis in the chick embryo and rabbit corneal models [5]. At physiological con-

centrations, glucocorticoids inhibit angiogenesis in rodent models, both in vitro and in vivo
[6]. When first described, this angiostatic effect presented a potentially significant therapeutic

breakthrough in the prevention of tumour metastasis and aberrant angiogenesis [5, 7]. In addi-

tion, reduced angiogenesis is described in circumstances of chronic exposure to excess endoge-

nous or exogenous glucocorticoids [8–10]. There has, however, been limited use of

glucocorticoids as angiogenesis inhibitors in human medicine [11–13].

Glucocorticoids are frequently administered to veterinary species such as horses, in which

prednisolone and dexamethasone are commonly prescribed for allergic dermatological and

respiratory conditions. In horses glucocorticoids are also used for the initial treatment of

tumours such as lymphoma but with limited success [14]. Glucocorticoid administration, and

dysregulation of glucocorticoids in Equine Cushing’s Disease, have been implicated in the

development of the vascular condition of the hoof, laminitis [15–17]. In chronic laminitis the

blood vessels of the hoof fail to regenerate and there is evidence of a blunted angiogenic

response with attenuation of the blood vessels and filling defects [18, 19]. The angiogenic

response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorti-

coids in pathogenesis and treatment of equine disease is unknown.

The angiostatic effect of glucocorticoids is mediated by the glucocorticoid receptor in

rodents [6] and in human endothelial cells [20] but the target cell and mechanism is unclear.

Shikatani et al. found that corticosterone-treated rat endothelial cells exhibited reduced migra-

tion, through reduced RhoA and MMP-2 mediated proteolysis [21]. Migration of rat vascular

smooth muscle cells and their MMP2 activity is also inhibited by dexamethasone but this effect

is not observed in human smooth muscle cells [22]. Glucocorticoids prevent tube-like struc-

ture formation by human endothelial cells [20]. Logie et al. demonstrated that cortisol induces

cytoskeletal disruption, interfering with cell-to-cell contact of endothelial cells, but does not

inhibit their proliferation or migration [20]. Analysis of a selection of candidate genes in that

study showed only induction of anti-angiogenic thrombospondin-1 [20]. There is also evi-

dence that glucocorticoids, by activating macrophages or myofibroblasts, can mediate a para-

crine effect on endothelial cells which alters their angiogenic state [23, 24].

There is marked variation in response to glucocorticoids between cells, species and models

of angiogenesis [22, 25]. Comparing contrasting effects of glucocorticoids in different models

may provide insights into a final common pathway for glucocorticoid-induced angiostasis. In

this study we compared the effects of glucocorticoids on vessels of different species (horses

and mice) in a whole vessel model; hypothesising that glucocorticoids would be angiostatic in

both species. We hypothesised that a next generation sequencing approach would reveal previ-

ously unidentified pathways important in glucocorticoid-mediated effects on angiogenesis.

Materials and methods

Drugs

Unless otherwise stated, chemicals, reagents and drugs were obtained from Sigma, Dorset,

UK.

Animals

This study was approved by the University of Edinburgh Veterinary Ethical Review Commit-

tee. Healthy horses (n = 10) and horses with laminitis (n = 9), destined for euthanasia, were

recruited from clinics at the Royal (Dick) School of Veterinary Studies. Females and castrated

males were included, reflecting the clinical population in the UK. Blood was obtained after
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overnight fasting, between 0900h and 1100h, via an intravenous cannula inserted in the jugular

vein for the purpose of euthanasia. Horses were humanely euthanased with intravenous qui-

nalbarbitone sodium and cinchocaine hydrochloride (1mL/10kg bodyweight; Somulose,

Dechra Veterinary Products, Shrewsbury, UK).

Adrenocorticotrophic hormone (ACTH), cortisol and insulin concentrations were mea-

sured by chemiluminescent immunoassays validated for clinical use in the horse (Immulite

2000, Siemens, Camberley, UK). See supplementary data (Tables A and B in S1 File) for clini-

cal and biochemical characteristics of the horses included.

All murine investigations were approved by the institutional ethical committee and per-

formed under the Provisions of the Animals Scientific Procedures Act (1986) of the UK Home

Office, in accordance with EU Directive 2010/63. Five male C57BL6/J mice aged 8 weeks

(Charles River Laboratories International Inc., Massachusetts, US) were sacrificed by CO2

asphyxiation.

Tissue Preparation

Thoracic aortae were removed from the mice. Subcutaneous facial skin arteries (50–100μm in

diameter) and laminar arteries and veins (100–500μm in diameter) were harvested from horses

[26]. Following dissection the vessels were kept in physiological saline solution at 4˚C while

any adherent adipose and connective tissue was removed and 1 mm rings were prepared.

Embedding was achieved within 2 hours of collection.

To quantify angiogenesis vessel rings were embedded in Matrigel (250μl, BD Biosciences,

Oxford, UK) and incubated at 37˚C (5% CO2) in serum free Dulbecco’s Modified Eagle

Medium (DMEM, Lonza Group Ltd., Basel, Switzerland) with heparin and ascorbic acid in the

presence or absence of serum (foetal bovine serum 3%), cortisol (600nM), serum with cortisol,

cortisol with the glucocorticoid receptor antagonist RU38486 (10−6 M) or cortisol with the

mineralocorticoid receptor antagonist spironolactone (10−6 M). Drugs were dissolved in etha-

nol and diluted in DMEM: final ethanol concentration 1–3% vol/vol. The media were changed

every 48 hours. Experiments were performed in triplicate. New vessels were counted, using

inverted light microscopy, on days 3, 5 and 7. To confirm the nature of the new vessels, the

embedded vessels were subjected to immunohistochemical analysis on day 5. The Matrigel-

embedded vessels were fixed in zinc formalin and stained for CD31 (AB28364, Abcam plc,

Cambridge, UK).

Statistical analysis

Two way ANOVAs with Bonferroni post-hoc tests were used to determine the effect of embed-

ding matrix, vessel type (laminar artery vs. vein) and anatomical site (facial vs. laminar) on the

response to treatment of vessels. The mean outgrowth numbers per treatment group at each

time point were compared using a one-way ANOVA and Dunnett’s post-hoc test comparing

all treatment to DMEM. All analyses were carried out in Graph Pad Prism 4 or SPSS Statistics

19. Data are expressed as mean +/- SEM (n = number of horses).

Next generation-sequencing of vessel rings from mice and horses incubated

with FBS or FBS and cortisol

Vessels isolated from healthy horses (n = 3) and C57BL6/J mice (male, 8 weeks old, n = 3),

embedded in collagen, were mechanically disrupted in QIAzol (Qiagen Inc, Valencia, CA,

USA) after 5 days culture in medium containing FBS or FBS plus cortisol. Total RNA was

extracted using the RNAeasy Mini Kit (Qiagen Inc,). RNA quantity and quality were evaluated
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using the Agilent 2100 Bioanlyser (Agilent Technologies, California, USA). RNA was deemed

of sufficient quality if the RNA integrity number was >7.0.

RNA from each of the samples was profiled on an Illumina HiSeq sequencer. Adapters

were trimmed using CutAdapt (http://journal.embnet.org/index.php/embnetjournal/article/

view/200), after which the reads were aligned to their respective genomes using TopHat2

(http://genomebiology.biomedcentral.com/articles/10.1186/gb-2013-14-4-r36): mouse

genome version GRCm38 for murine RNA and horse genome version EquCab2 for equine

RNA. Read counts were generated with HTSeq-Count (http://www.ncbi.nlm.nih.gov/

pubmed/25260700) and transformed to log2 counts per million reads using voom (http://

genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29).

Statistical analysis

Following transformation from raw counts per gene to log2 counts per million reads, samples

were assessed for quality using the array Quality Metrics R package (http://www.ncbi.nlm.nih.

gov/pubmed/19106121) and principal component analysis. No quality issues were identified

within the data. The data were then normalised using a TMM (Trimmed Mean of M-compo-

nent) approach (https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-

3-r25).

The factors in the experimental design were assessed to determine whether any were con-

founded with each other by calculating all pairwise associations per sample. Furthermore, the

per-sample associations between each factor and the principal components of the (normalised)

expression data were determined. A moderate association (p< 0.01 in a linear model) was

observed between the individual from which each RNA sample was taken and principal com-

ponent 1, as expected when using non-clonal animals. However, the presence of paired FBS

and cortisol-treated samples limits the impact that this association may have on downstream

analysis.

Statistical analysis was subsequently performed using empirical Bayes from the limma R

package (http://m.nar.oxfordjournals.org/content/early/2015/01/20/nar.gkv007.abstract).

TMM normalised data in the form of log2 counts per million reads provide the input for statis-

tical hypothesis testing. For murine and equine samples, separate statistical comparisons were

undertaken using linear modelling. For each species, a single statistical contrast was performed

of samples cultured in FBS and cortisol relative to samples cultured in FBS only. Subsequently,

empirical Bayesian moderation was applied using limma. For each comparison, the null

hypothesis was that there was no difference between the groups being compared. Due to the

small sample size and the impact of individual variation on the first principal component, as

noted previously, a relaxed statistical significance threshold comprising a fold change� 2 and

p< 0.01 was employed, without adjustment for multiple testing. Due to the lack of adjustment

for multiple testing, it is possible that many of the differentially-expressed genes identified are

false positives. Further analysis was therefore performed to identify enrichment of whole path-

ways on exposure to cortisol.

Following identification of putatively differentially-expressed genes, the Kyoto Encyclopae-

dia of Genes and Genomes (KEGG) pathways [27] and Gene Ontology (GO) terms [28, 29]

were assessed for pathway enrichment.

Significant genes with raw p< 0.01 and fold change�2 from each comparison were ana-

lysed for enrichment of GO terms across all three GO ontologies using a hypergeometric test.

No correction was applied for multiple testing, nor for the structure of the GO graph. Enrich-

ment (p< 0.05) was assessed for up- and down-regulated genes separately.
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Validation of next generation sequencing

Gene expression changes identified by next generation sequencing analysis were validated by

real time quantitative PCR of RNA extracted. Validation genes chosen included those identi-

fied as differentially expressed in mice compared to horses (Scube2, Comp, Pla1, Rasl12) and

genes known to be regulated by glucocorticoids (Per1, Fkbp51, Col4a1, Cxc,5). Total RNA was

extracted from embedded murine aortae incubated with vehicle or cortisol (1μM, n = 5) (Qia-

gen Inc, Valencia, CA, USA). Four aortic rings were combined and mechanically disrupted in

QIAzol (Qiagen). Total RNA was extracted using an RNeasy Mini Kit according to the manu-

facturer’s instructions. cDNA was synthesised from 75ng RNA using a high Capacity cDNA

Reverse Transcription Kit with RNAse Inhibitor (Applied Biosystems, Lithuania) according

to the manufacturer’s instructions.

Quantitative real-time polymerase chain reaction was performed using a Light-cycler 480

(Roche Applied Science, Indianapolis, IN, USA). Primers were designed using sequences

from the National Centre of Biotechnological Information and the Roche Universal Probe

Library (see Table C in S1 File for details of primers for genes of interest and housekeeping

genes). Samples were analysed in triplicate and amplification curves plotted (y axis fluores-

cence, x axis cycle number). Triplicates were deemed acceptable if the standard deviation of

the crossing point was < 0.5 cycles. A standard curve (y axis crossing point, x axis log con-

centration) for each gene was generated by serial dilution of cDNA pooled from different

samples and fitted with a straight line and deemed acceptable if reaction efficiency was

between 1.7 and 2.1.

Results

New vessel growth from murine aortae was stimulated by foetal bovine serum (FBS; Fig 1).

Cortisol inhibited both basal and FBS-induced growth of new vessels from murine aortae (Fig

1). This inhibitory effect was abolished by antagonism of glucocorticoid, but not mineralocor-

ticoid, receptor (Fig 1).

Laminar and facial skin vessels from healthy horses produced vessel outgrowths (Fig 2ai),

that stained strongly for CD31 (Fig 2aii), and were similar whether vessels were embedded in

Matrigel or collagen (Tables D and E in S1 File). Data from laminar arteries and veins were

combined for analysis as there were no significant differences in their response to any of the

treatments (Tables F and G in S1 File).

In contrast to its effects on murine aorta, FBS (3%) did not increase basal outgrowth of new

vessels from equine vessels (Fig 2bii & 2ci). Furthermore, exposure to cortisol dramatically

increased new vessel formation from equine vessels compared with DMEM alone or with FBS

(p< 0.001), in both laminar (Fig 2bi, 2bii and 2ci) and facial skin (Fig 2cii) vessels. This

increase was evident after 3 days in culture and was maintained at days 5 and 7. The combina-

tion of cortisol with FBS produced a similar increase in new vessel formation to cortisol alone

(p< 0.001 compared with DMEM or FBS alone) in laminar and facial skin vessels (Fig 2ci and

2cii). There were no differences in vessel growth in response to treatment between healthy

horses and horses with laminitis (S1 Fig).

Exposure to antagonists targeted at GR (RU38486) or MR (spironolactone) had no effect

on basal (DMEM alone) new vessel formation from equine vessels (data not shown). However,

RU38486 inhibited the cortisol-stimulated formation of new vessels (p = 0.003) whereas spiro-

nolactone did not (Fig 2ci and 2cii).
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Transcriptomic analysis

The effect of cortisol on the transcriptome of murine vessels. In total, 341 genes were

differentially expressed when FBS-stimulated murine vessels were exposed to cortisol (at an

unadjusted p-value of� 0.05 and a fold-change� 2).

Fig 1. Cortisol inhibits angiogenesis in murine aortae. New vessel outgrowths from murine aortae (C57BL/6J, male, 8 weeks of age, n = 10) in the

presence of DMEM, foetal bovine serum (FBS), cortisol, FBS+ cortisol, cortisol + RU486, or cortisol + spironolactone. Data are mean ± SEM and were

analysed by one-way ANOVA and Dunnett’s post-hoc test at each time point. � P<0.05in comparison to DMEM.

https://doi.org/10.1371/journal.pone.0192746.g001

Cortisol and angiogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0192746 February 15, 2018 6 / 18

https://doi.org/10.1371/journal.pone.0192746.g001
https://doi.org/10.1371/journal.pone.0192746


Fig 2. Cortisol stimulates angiogenesis in equine vessels. (a) Light microscopy images of new vessel outgrowths [i], which stained strongly (brown) for CD31 [ii],

indicating they are likely to be predominantly endothelial in nature (Scale 0.2mm). (b) Light microscopy images of equine laminar vessel sections after incubation

(5 days) with DMEM [i], foetal bovine serum [ii], cortisol [iii], or FBS with cortisol [iv]. These demonstrate the stimulatory effect of cortisol on new vessel growth

from equine vessels. (c) New vessel outgrowths from laminar (n = 10) [i] and facial skin vessels (n = 10) [ii] of healthy horses were quantified in the presence of

DMEM, foetal bovine serum (FBS), cortisol, FBS+ cortisol, cortisol + RU486, or cortisol + spironolactone. Data are mean ± SEM for (n) horses) and were analysed

by one-way ANOVA and Dunnett’s post-hoc test at each time point. � P<0.05 in comparison to DMEM.

https://doi.org/10.1371/journal.pone.0192746.g002
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Twenty KEGG pathways were identified as significantly enriched (at an unadjusted p-value

of� 0.05). Of these, 7 were enriched for up-regulated genes, and 13 for down-regulated genes

(Fig 3). Of the 13 pathways down-regulated in cortisol-treated tissue, 9 were associated with

inflammatory or immune responses and 4 were associated with extracellular matrix or cyto-

skeletal function. GO terms were significantly enriched for 483 up-regulated genes, and for

485 down-regulated genes (using unadjusted p-values of� 0.05; Table 1 shows the top 8 up-

or down-regulated genes). Pathways specifically related to angiogenesis (such as VEGF signal-

ling) were not altered by exposure to cortisol. Many of the GO terms enriched among the up-

regulated genes were related to transmembrane transport and homeostasis, as well as peptidase

activity. Within the down-regulated GO terms there was a predominance of immune

response/inflammation pathways.

The effect of cortisol on the transcriptome of equine vessels

Cortisol exposure induced differential expression of a total of 246 genes in equine vessels.

Thirty six KEGG pathways were identified as significantly enriched. Eight were up-regulated

and 28 were down-regulated (Fig 4). Up-regulated pathways were diverse but included calcium

signalling and sphingolipid metabolism as well as VEGF signalling. Within the up-regulated

pathways, the most commonly overlapping differentially-expressed genes included LAMA2,

LAMC3 and SPHK1. Of those pathways down-regulated by cortisol 18/28 were associated

Fig 3. KEGG enrichment analysis of pathways up- or down-regulated in murine aortae in response to cortisol. Twenty KEGG pathways were identified as

significantly enriched (at an unadjusted p-value of 0.05). Of these, 7 were enriched for up-regulated genes (red), and 13 for down-regulated genes (blue). Of the

pathways down-regulated by cortisol 9/13 were associated with inflammatory or immune responses and 4 were associated with extracellular matrix or cytoskeletal

function.

https://doi.org/10.1371/journal.pone.0192746.g003
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with inflammatory or immune responses, a similar response to that observed in murine

vessels.

One hundred and fifty-five GO terms were identified as being significantly up-regulated

and 331 down-regulated by cortisol. Within the top 8 up-regulated pathways (Table 2) were

‘endothelial cell migration’ and ‘vena cava morphogenesis’ which include specific angiogenic

signalling. Interestingly, ‘blood vessel development’ was among the top 8 down-regulated

pathways in the GO analysis, suggesting that not all angiogenic pathways were up-regulated by

cortisol in equine vessels.

A comparison of the murine and equine responses to cortisol

There was little congruence between the pathway analysis of murine and equine angiogenesis

models in their response to cortisol.

Seven KEGG pathways overlapped between the two species: "Amoebiasis", "Toxoplasmosis",

"ECM-receptor interaction", "Primary immunodeficiency", "Pertussis", "Hematopoietic cell

lineage", and "Cytokine-cytokine receptor interaction", all of which were downregulated by

cortisol in both species. All of these pathways have inflammatory or immune responses as

their key elements.

Fifty-five GO terms overlapped between the species in response to cortisol when not con-

sidering direction of change; no more than would be expected by chance. Furthermore, the

distribution of these terms between being disturbed in the same direction (both up or both

down) and in different directions (one up and one down) was roughly equal. This implies

there was no clear pattern of differential regulation of GO terms revealed by this analysis.

Analysis of individual genes differentially expressed in horses and mice in response to corti-

sol identified 18 genes that were up-regulated by cortisol in the horse and down-regulated in

the mouse (Table 3). GO analysis of these genes showed enrichment of the ‘extracelluar matrix’

GO term. 10 genes were down-regulated in the horse and up-regulated in the mouse (Table 4).

GO analysis did not show any pathway enrichment for these genes.

The next generation sequencing analysis was validated by quantification of three genes up-

regulated by cortisol (Collagen, type XIV, alpha 1 (Col4a), Period 1 (Per1) and FK506 binding

protein 5 (Fkbp5)) and two genes that were down-regulated by cortisol (Matrix metallopro-

tease 9 (Mmp9)) and chemokine (C-X-C motif) ligand 5 (Cxcl5)) in the murine model. We

demonstrated changes in expression of these genes consistent with the data from next genera-

tion sequencing analysis (S2 Fig).

Table 1. GO term enrichment analysis comparing murine samples incubated with FBS (control) with those incu-

bated with cortisol. The top 8 up-regulated and down-regulated pathways are shown.

Pathways up-regulated in the presence of cortisol

(P<0.05)

Pathways down-regulated in the presence of cortisol

(P<0.05)

Metal ion transport Extracellular space

Dipeptidase activity Extracellular region

Cation transport Killing of cells of other organism

Ion transport Disruption of cells of other organism

Sodium ion transport Extracellular region part

Drug metabolic process Modification of morphology or physiology of other

organism

Dipeptidyl-peptidase activity Cell adhesion

Transition metal ion homeostasis Regulation of killing of cells of other organism

https://doi.org/10.1371/journal.pone.0192746.t001
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Discussion

In this study, we demonstrated that cortisol increased angiogenesis in equine vessels in con-

trast to its angiostatic effects in murine vessels. This unexpected cortisol-dependent induction

of angiogenesis was mediated by glucocorticoid receptor (GR).

Fig 4. KEGG enrichment analysis of pathways up- or down-regulated in equine laminar vessels in response to cortisol. Thirty six KEGG pathways were

identified as significantly enriched. Eight were up-regulated (red) and 28 were down-regulated (blue).

https://doi.org/10.1371/journal.pone.0192746.g004

Table 2. GO term enrichment analysis comparing equine samples incubated with FBS (control) with those incu-

bated with cortisol. The top 8 up-regulated and down-regulated pathways are shown.

Pathways up-regulated in the presence of cortisol

(P<0.05)

Pathways down-regulated in the presence of cortisol

(P<0.05)

Negative regulation of protein kinase activity Extracellular region

Nucleosome Cytokine activity

Regulation of I-kappaB kinase/NF-kappaB signalling Regulation of heart rate by cardiac conduction

Positive regulation of blood vessel endothelial cell

migration

Inflammatory response

Integral component of plasma membrane Interleukin-1 receptor binding

Superior vena cava morphogenesis N-formyl peptide receptor activity

Subthalamic nucleus development Embryonic digestive tract development

Chromosome Blood vessel development

https://doi.org/10.1371/journal.pone.0192746.t002
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Our findings in mouse aorta are consistent with previous studies showing that glucocorti-

coids inhibit angiogenesis in rodent models, via a GR-mediated mechanism, at supra-physio-

logical and physiological concentrations [5–7, 30–32]. Previous literature suggests that, in

rodents, glucocorticoids act on multiple steps in the angiogenesis process. Dexamethasone dis-

rupts the cytoskeletal structure and tight-junctions of rat brain endothelial cells [33]. Cortico-

sterone reduces rodent endothelial cell migration and alters proteolysis of the extracellular

matrix [21]. RhoA and Mmp2 have been identified as potential candidate genes in the proteo-

lytic process [21]. Indications of species differences have been reported; for example, dexa-

methasone inhibits migration of rodent vascular smooth muscle cells (VSMC) but not of

human VSMCs or endothelial cells [20, 22]. Bovine aortic smooth muscle cells have reduced

proliferation when exposed to dexamethasone [34]. There are several potential explanations

for the species-specific differences identified in this study. Species-specific differences in GR,

particularly variation within the promotor region influencing the gene transactivation

Table 3. Genes identified by next-generation sequencing that were up-regulated in the horse by cortisol and down-regulated in the mouse.

Gene

Symbol

Gene Name Horse log fold

change

Horse adjusted p

value

Mouse log Fold

change

Mouse adjusted p

value

Comp Cartilage oligomeric matrix protein 3.5 0.009 -2.4 1.1E-05

Creb3l1 cAMP responsive element binding protein 3-like 1 1.7 4.8E-08 -0.7 0.01

Cxcl14 Chemokine (C-X-C motif) ligand 14 1.2 0.02 -2.8 2.5E-10

Fam65c Family with sequence similarity 65, member C 3.3 3.1E-07 -1.4 0.0005

Fbln5 Fibulin 5 1.9 0.0018 -1.0 0.0005

Gpc4 Glypican 4 2.2 3.3E-07 -0.6 0.003

Gprin3 GPRIN family member 3 3.3 0.0001 -2.4 9.2E-05

Kcnj15 Potassium inwardly-rectifying channel, subfamily J,

member 15

2.3 5.3E-16 -1.4 0.007

Matn4 Matrilin 4 2.6 0.003 -1.3 0.0003

Mest Mesoderm specific transcript 1.0 0.04 -2.1 1.2E-07

Ptgfr Prostaglandin F receptor 1.4 0.0004 -1.2 5.7E-05

Ptx3 Pentraxin related gene 4.8 9.6E-08 -1.0 5.5E-07

Scube2 Signal peptide, CUB domain, EGF-like 2 0.9 0.006 -3.3 7.1E-06

Sfrp2 Secreted frizzled-related protein 2 2.9 1.9E-08 -1.1 0.0004

https://doi.org/10.1371/journal.pone.0192746.t003

Table 4. Genes identified by next-generation sequencing that were down-regulated in the horse by cortisol and up-regulated in the mouse.

Gene

Symbol

Gene Name Horse log fold

change

Horse adjusted p

value

Mouse log fold

change

Mouse adjusted p

value

Agtrap Angiotensin II, type I receptor-associated protein -1.11 0.007 0.52 0.03

Birc3 Baculoviral IAP repeat-containing 3 -1.63 0.002 0.63 0.005

Fibin Fin bud initiation factor homolog (zebrafish) -1.74 0.01 0.67 0.006

Gabre Gamma-aminobutyric acid (GABA) A receptor, subunit

epsilon

-2.29 0.02 1.06 0.0009

Gem GTP binding protein (gene overexpressed in skeletal

muscle)

-0.98 0.04 1.11 2.0E-09

Mnda Myeloid cell nuclear differentiation antigen -1.55 0.0003 0.63 0.02

Pla1a Phospholipase A1 member A -3.22 0.0001 3.11 4.8E-19

Rasl12 RAS-like, family 12 -1.53 0.008 3.72 0.02

Slco2b1 Solute carrier organic anion transporter family, member

2b1

-1.64 0.00002 1.30 3.6E-16

Wdfy1 WD repeat and FYVE domain containing 1 -1.11 0.007 0.52 0.04

https://doi.org/10.1371/journal.pone.0192746.t004
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potential [35, 36], can result in different responses to ligand binding and are the most likely

explanation of this observation. Tissue origin is known to influence the response to glucocorti-

coids; for example, retinal endothelial cells are more resistant to the toxic effects of glucocorti-

coids than those of dermal origin [37]. Differences in the composition of the vessel (for

example the amount of smooth muscle and the endothelial phenotype) may contribute to the

differing responses to cortisol. However, veins of the hoof also showed a cortisol-mediated up-

regulation of new vessel growth, suggesting that the observation in the horse is not an idiosyn-

crasy of a particular equine vessel. The effect of glucocorticoid concentration on response is

often non-linear. Data from human ovarian cells lines indicate that cortisol may have an inhib-

itory effect on VEGF secretion at low concentrations (1nM) but a stimulatory effect at high

concentrations (1000nM) [38]. In this assay a concentration of 600 nM was used which,

though within the physiological range for humans, is approximately 3–5 times that of equine

plasma concentrations. The observed effect may, therefore reflect a “high-dose response” to

glucocorticoids rather than a physiological phenomenon.

In chronic laminitis there is marked attenuation of the blood supply and endothelial dys-

function suggesting an inadequate angiogenic response [18, 39]. The current study, however,

showed no differences in the angiogenic response to FBS or cortisol between healthy horses

and those with laminitis. As previously discussed, FBS did not prove a potent stimulator of

angiogenesis in equine vessels and may not, therefore, be a robust measure of angiogenic

potential in these vessels. However, in the presence of a stimulator of angiogenesis, in this case

cortisol, the number of vessel outgrowths did not differ between the groups. Extrapolation of

these findings to the in vivo environment should, however, be treated with caution. Vessels

within the diseased hoof may be subject to very different environmental conditions, most

importantly hypoxia and altered shear stresses, which are not replicated in this model of angio-

genesis [40].

It is important to note that whilst this study compared the response of horses to that of

mice it did not take into account factors such as age which may affect the angiogenic response

in either species. The mice used were young (8 weeks) whilst the horses were old in relation to

species life span (average age 19). Aging can have profound effects on both angiogenesis and

response to glucocorticoids which may have confounded our results. Aging in humans and

rodent models results in a reduction in angiogenesis [41, 42] associated with reduced angio-

genic factors such as HIF-1α and VEGF [43, 44] as well as endothelial dysfunction [45]. Such

alterations may go some way to explain the poor angiogenic response of equine vessels to the

normally stimulatory FBS, further unknown alterations in signalling pathways in aging horses

may also contribute to the unusual response to cortisol. Aging is associated in rodents with a

reduction in glucocorticoid receptor density and activation; we do not know the effects of

aging on GR in the horse.

Given that we saw an opposite effect of cortisol in mice and horses, we looked specifically at

genes that were changed in opposite directions between the species. Out of the 14 genes up-

regulated in the horse and down-regulated in the mouse, 11 have pro-angiogenic properties.

For example, glypican 4 (Gpc4) is a cell surface heparan sulfate proteoglycan essential in angio-

genesis since this group of proteins bind almost all angiogenic factors to receptors or to inhibi-

tors [46]. Cartilage oligomeric matrix protein (Comp), also known as thrombospondin 5,

mediates adhesion and migration but not proliferation of vascular smooth muscle cells [47].

cAMP responsive element binding protein 3-like 1 (Creb3l1, also known as Oasis) is a tran-

scription factor which promotes angiogenesis when complexed with hypoxia-inducible factors

[48]. Cxcl14 is released from mesenchymal stem cells and stimulates cell migration and prolif-

eration and angiogenesis directly [49]. Endothelial Scube2 potentiates VEGF mediated adult

angiogenesis and is suggested to be a novel co-receptor for VEGFR2 [50]. Secreted frizzled-
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related protein 2 stimulates angiogenesis through the calcineurin/NFAT pathway [51]. Pet-

raxin 3 is highly expressed in endothelial cells and up-regulated in tumour endothelial cells

where it plays an important role in promoting proliferation [52]. Prostaglandin F receptor

(Ptgfr) and Mesoderm specific transcript (Mest) are expressed in the placenta and endometrial

blood vessels and are thought to play a role in angiogenesis and tissue remodelling during pla-

centation [53] [54]. The matrilins are extracellular matrix proteins belonging to the von Will-

ebrand factor A superfamily [55], which interact with the ADAMT system to induce

angiogenesis. Fibulin 5 (Fbln5) promotes adhesion of endothelial cells through interaction of

integrins and the RGD motif [56]. While these genes all appear to belong to different angio-

genesis altering pathways they are predominantly of endothelial origin and encode extracellu-

lar proteins (Comp, Fbln5, Matn 4), secreted proteins (Cxcl14, Sfrp2) or proteins associated

with the cell membrane (Gpc4, Ptgfr,Scube2).

These findings suggest that the extracellular matrix is the target for glucocorticoid-induced

changes both in horses and in mice, and that classical angiogenesis pathways may not be so

important in mediating this effect. GO and KEGG analysis of the whole dataset supports our

finding that the extracellular matrix is a key component in the response to glucocorticoids in

this system. GO analysis of the murine response demonstrated extracellular pathways and pro-

cesses were significantly down-regulated. KEGG analysis showed up-regulation in equine and

down-regulation in murine samples of the toxoplasmosis, ECM-receptor interaction and

amoebiasis pathways. The toxoplasmosis pathway encompasses JAK-STAT signalling as well

as extra-cellular matrix interactions and laminins (LAMA2 and LAMC3). Laminins are princi-

pal components of the basement membrane and exert tissue-specific effects, whilst both

LAMA2 and LAMC3 have angiogenic properties [57]. The ECM-receptor interaction pathway

encompasses the integrins (VLA proteins) and their interactions with cell-cell adhesion pro-

teins such as collagen, laminins and fibronectin. The amoebiasis pathway is an inflammatory

pathway with a significant extracellular component comprising laminins and collagen pro-

teins. The extracellular matrix (ECM) is a key component of angiogenesis and it is known that

the balance of angiogenic factors in the extracellular environment, rather than individual pro-

teins, determines whether angiogenesis will occur or not [58]. Changes to the ECM will facili-

tate or inhibit migration and proliferation of cells but there is growing evidence that the ECM

can also directly affect cell behaviour [59–61]. It is widely accepted that glucocorticoids can

have direct effects on the ECM and that these effects are often differential and cell-specific [62,

63]; it is therefore not surprising that they are also species-specific.

The genes down-regulated in the horse and up-regulated in the mouse were more varied

in their actions and origins, with fewer having previously been reported as associated with

angiogenesis. Several were anti-angiogenic (Agtrap, Gem,Wdfy1 [64–66]) or anti-apoptotic

(Birc3, Mnda [67, 68]), as demonstrated by their association with tumour metastasis. The

complexity of angiogenesis combined with the complexity of GR signalling means that a can-

didate gene approach to understanding their interaction is limited. To our knowledge this is

the first study to apply next generation sequencing technology to this model of angiogenesis

and our results provide candidate genes for further exploration and explain why previous,

targeted, studies have failed to fully explain the phenomenon of glucocorticoid effects on

angiogenesis.

In contrast to the response of mouse aortae in this and other studies [69], there was little

increase in new vessel growth when equine vessels were cultured with, the normally pro-angio-

genic, FBS. FBS contains a significant number of, largely unidentified, embryonic growth fac-

tors which promote cell growth, though the pathways activated are unknown [70]. FBS was

used at a low concentration (3%) which has been shown to induce angiogenesis in mouse aor-

tae, a finding repeated in this study [70]. FBS is used successfully to induce proliferation and
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support growth in other cell and tissue culture systems using equine tissue; for example in car-

tilage explant models and for the culture of mesenchymal stem cells [71, 72], suggesting there

is not an inherent unresponsiveness of equine tissues.

In conclusion, these data demonstrate an unexpected species-specific (GR-mediated)

stimulation of angiogenesis by cortisol in equine vessels. We have demonstrated that the

extracellular matrix is the key component in the effects of glucocorticoids on angiogenesis.

This finding raises important questions about the regulation of angiogenesis and highlights

the gaps in our knowledge of the mechanism by which glucocorticoids alter angiogenesis.

They may also have significant clinical implications since glucocorticoids are used regularly

in horses (though not primarily for their anti-angiogenic actions) for treatment of conditions

such as allergic lung and skin disease. Given the limited data available pertaining to human

angiogenesis these data also call into question our understanding of glucocorticoids and

angiogenesis in this species.

Supporting information

S1 Fig. Laminitis did not affect the response of equine laminar [a] or facial [b] vessels to

cortisol. New vessel outgrowths from laminar vessels [a] and facial skin vessels [b] from

healthy horses (n = 10) and those with laminitis (n = 6) incubated with DMEM, Foetal Bovine

Serum (FBS), cortisol, FBS + cortisol, cortisol + RU486 or cortisol + spironolactone at day 7.

Data are mean ± SEM for (n = number of horses) and were analysed by one-way ANOVA and

Bonferroni post-hoc test at each time point. There were no differences between healthy horses

and those with laminitis.

(TIF)

S2 Fig. Gene expression patterns identified by next generation sequencing were validated

by RT-qPCR. Next generation sequencing analysis was validated by quantification of three

genes known to be up-regulated by cortisol and found to be up-regulated in our sequencing

analysis (Collagen, type XIV, alpha 1 (Col4a), Period 1 (Per1) and FK506 binding protein 5

(Fkbp5)) and two genes that are known to be down-regulated by cortisol and were down-regu-

lated in this our sequencing analysis (Matrix metalloprotease 9 (Mmp9)) and chemokine

(C-X-C motif) ligand 5 (Cxcl5)) in the murine model. In addition we validated genes that were

differentially expressed in the mouse compared to the horse in our sequencing analysis

(Scube2 (Signal Peptide, CUB Domain, EGF-Like 2) Comp (cartilage oligomeric matrix pro-

tein), Pla1a (Phospholipase A1 member A) and Rasl12 (RAS-like, family 12). Data are

mean ± SEM for and were analysed by Student’s t-test. � = P<0.05.

(TIF)

S1 File. Table A. Clinical and biochemical data from healthy horses and those with lamini-

tis. (Vessels were cultured in Matrigel for quantification of angiogenic response). Table B.

Clinical and biochemical data from healthy horses and those with laminitis. (Vessels were

cultured in collagen for next generation sequencing). Table C. Murine primer sequences for

PCRS4. Table D. New vessel outgrowths from laminar vessels of healthy horses and those

with laminitis cultured in Matrigel or Type 1 Collagen at day 3. Table E. New vessel out-

growths from laminar vessels of healthy horses and those with laminitis cultured in Matri-

gel or Type 1 Collagen at day 7. Table F. New vessel outgrowths from laminar arteries and

laminar veins of healthy horses and those with laminitis cultured in Matrigel at day 3.

Table G. New vessel outgrowths from laminar arteries and laminar veins of healthy horses

and those with laminitis cultured in Matrigel at day 7.

(DOCX)
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