

I.C. Senanayake^{1,2,3}, P.W. Crous⁴, J.Z. Groenewald⁴, S.S.N. Maharachchikumbura⁵, R. Jeewon⁶, A.J.L. Phillips⁷, J.D. Bhat^{8,9}, R.H. Perera³, Q.R. Li¹⁰, W.J. Li^{1,2,3}, N. Tangthirasunun^{11,12}, C. Norphanphoun³, S.C. Karunarathna^{1,2*}, E. Camporesi^{13,14,15}, I.S. Manawasighe¹⁶, A.M. Al-Sadi⁵, and K.D. Hyde^{1,2,3}

¹Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; ²East and Central Asia, World Agroforestry Centre, Kunming 650201, Yunnan, China; ³Center of Excellence for Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand; ⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; ⁵Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Omari, ⁶Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, 80837, Mauritius; ⁷Faculty of Sciences, Biosystems and Integrative Sciences Institute (BiolSI), University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal; ⁸Department of Botany, Goa University, Goa 403 206, India; ⁹No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha 403108, India; ¹⁰Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China; ¹¹Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris 75205, France; ¹²Univ Paris Sud, Institut de Génétique et Microbiologie, UMR8621, Orsay 91405, France; ¹³A.M.B. Gruppo Micologico Forlivese, Antonio Cicognani, Via Roma 18, Forli, Italy; ¹⁴A.M.B. Circolo Micologico, Giovanni Carini, 314 Brescia, Italy; ¹⁵Società per gliStudiNaturalisticidella Romagna, 144 Bagnacavallo, RA, Italy; ¹⁶Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, No. 9 of ShuGuangHuaYuanZhongLu, Haidian District, Beijing 100097, China

*Correspondence: S.C. Karunarathna, samanthakarunarathna@gmail.com

Abstract: Diaporthales is an important ascomycetous order comprising phytopathogenic, saprobic, and endophytic fungi, but interfamilial taxonomic relationships are still ambiguous. Despite its cosmopolitan distribution and high diversity with distinctive morphologies, this order has received relativelyiaceae, *Macrohilaceae, Melanconidaceae, Pseudoplagiostomaceae, Schizoparmaceae, Stilbosporaceae* and *Sydowiellaceae*. Taxonomic uncertainties among genera are also clarified and recurrent discrepancies in the taxonomic position of families within the *Diaporthales* are discussed. An updated outline and key to families and genera of the order is presented.

Key words: Multi-gene DNA phylogeny, New taxonomic arrangement, Phytopathogenic fungi, Sordariomycetes, Systematics.

Taxonomic novelties: New families: Apiosporopsidaceae Senan. Maharachch. & K.D. Hyde, Apoharknessiaceae Senan. Maharachch. & K.D. Hyde, Asterosporiaceae Senan. Maharachch. & K.D. Hyde, Auratiopycnidiellaceae Senan. Maharachch. & K.D. Hyde, Erythrogloeaceae Senan. Maharachch. & K.D. Hyde, Melanconiellaceae Senan. Maharachch. & K.D. Hyde, Prosopidicolaceae Senan. Maharachch. & K.D. Hyde, Prosopidicolaceae Senan. & K.D. Hyde, New genera: Marsupiomyces Senan. & K.D. Hyde, Microascospora Senan., Camporesi & K.D. Hyde, Phaeoappendicospora Senan., Q.R. Li & K.D. Hyde, Paradiaporthe Senan., Camporesi, & K.D. Hyde, Hyaliappendispora Senan., Camporesi & K.D. Hyde, Chiangraiomyces Senan. & K.D. Hyde; New species: Chiangraiomyces bauhiniae Senan. & K.D. Hyde, Coniella pseudokoreana Senan., Tangthir. & K.D. Hyde, Cytospora centrivillosa Senan., Camporesi & K.D. Hyde, Cytospora rosae Senan., Camporesi & K.D. Hyde, Gnomoniopsis agrimoniae Senan., Camporesi & K.D. Hyde, Hyaliappendispora galii Senan., Camporesi & K.D. Hyde, Marsupiomyces epidermoidea R.H. Perera, Senan., Bulgakov & K.D. Hyde, Marsupiomyces quercina Senan., Camporesi & K.D. Hyde, Melanconis italica Senan., Camporesi & K.D. Hyde, Microascospora rubi Senan., Camporesi & K.D. Hyde, Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, Melanconis italica Senan., Camporesi & K.D. Hyde, Microascospora rubi Senan., Camporesi & K.D. Hyde, Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, Microascospora rubi Senan., Camporesi & K.D. Hyde, Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, Microascospora rubi Senan., Camporesi & K.D. Hyde, Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, Microascospora rubi Senan., Camporesi & K.D. Hyde, Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, Microascospora rubi Senan., Camporesi & K.D. Hyde, Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, Microascospora fragariae (F

Available online 1 August 2017; http://dx.doi.org/10.1016/j.simyco.2017.07.003.

INTRODUCTION

The *Diaporthales* is a distinct order in the subclass *Diaporthomycetidae* (*Sordariomycetes*) and it includes pathogens, saprobes and endophytes, with no known coprophilous, hypersaprobes or mycophylic species (Barr 1978, Rossman *et al.* 2007, Vasilyeva *et al.* 2007, Maharachchikumbura *et al.* 2015, 2016). Taxa of this order inhabit a wide diversity of hosts and substrates, including most economically and ecologically important trees and crops, soil and living animal and human tissues (Barr 1978, Gryzenhout *et al.* 2006c). Species in *Diaporthales* form solitary or aggregated, immersed to erumpent, rarely superficial, orange, brown to black

perithecial ascomata, with short or long necks, that are located in stromatic tissues or substrates, with a centrum (or hamathecium) lacking or with few paraphyses (Alexopoulos & Mims 1978, Barr 1978, Castlebury *et al.* 2002). Asci are unitunicate with a conspicuous refractive ring (Hawksworth *et al.* 1995, Rossman *et al.* 2007). Ascospore morphology is diverse, ranging from short to elongate and aseptate or septate with hyaline or pigmented walls. The asexual morphs of *Diaporthales* are generally coelomycetous (Rossman *et al.* 2007), producing acervuli or pycnidial conidiomata, with or without a well-developed stroma. Conidiogenesis is phialidic or rarely annellidic and conidia are usually unicellular or 1-septate (Rossman *et al.* 2007).

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

^{© 2017} Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fungal taxa placed in "Diaporthaceae sensu lato" were divided into two groups (von Höhnel 1917) as "Eu-Diaportheen", to accommodate genera without allantoid ascospores and "Valseen" to accommodate genera with allantoid ascospores. Nannfeldt (1932) introduced the order Diaporthales to accommodate von Höhnel's Eu-Diaportheen group. Luttrell (1951) described Diaporthales as an order comprising species that have a "Diaporthe-type centrum" and "Endothia-type ascus". Chadefaud (1960) analysed characters of stromatic tissues in diaporthoid taxa and recognised families as Diaporthaceae or Cytosporaceae (= Valsaceae), Melanconidaceae and Gnomoniaceae. Wehmeyer (1975) classified the Diaporthales to include three families: Diaporthaceae, Gnomoniaceae and Cytosporaceae. Barr (1978) revised the order Diaporthales accepting Gnomoniaceae and Cytosporaceae in the suborder Gnomoniineae. Melanconidaceae and Pseudovalsaceae were accommodated in the suborder Melanconidineae. To differentiate genera, Barr (1978) used characters such as presence or absence of stromata, stromatic development and tissue types, the position of the perithecia and perithecial necks relative to the substrate, as well as ascospore shape; and Monod (1983) distinguished genera within Gnomoniaceae based on characters of the stromatic tissues, asexual morphs and ascospores. Three families were recognised in Diaporthales by Eriksson (2001), including Cytosporaceae, Melanconidaceae and Vialaeaceae. Based on analysis of LSU nrDNA sequence data, Castlebury et al. (2002) accepted Diaporthaceae, Gnomoniaceae, Melanconidaceae and Cytosporaceae in Diaporthales. Gnomoniaceae was revised by several recent studies and new taxa were introduced (Sogonov et al. 2008, Walker et al. 2010, 2012, Mejía1 et al. 2011). Castlebury et al. (2002) did not confirm Vialaeaceae as a family in Diaporthales and therefore excluded it from Diaporthales. Réblová et al. (2004) introduced Togniniaceae to this order based on small subunit (SSU) nrDNA; however, Mostert et al. (2006) concluded that its placement was ambiguous based on large subunit (LSU) nrDNA. Maharachchikumbura et al. (2015) excluded Togniniaceae from Diaporthales and accommodated it in Togniniales. Gryzenhout et al. (2006c) introduced the Cryphonectria-Endothia complex as the family Cryphonectriaceae. Sydowiellaceae and the Schizoparme-Pilidiella complex with the genus Coniella were introduced as Schizoparmaceae in Diaporthales (Rossman et al. 2007, Alvarez et al. 2016). Harknessiaceae was introduced into Diaporthales accommodating Harknessia with wuestneia-like sexual morphs (Crous et al. Pseudoplagiostomaceae was introduced 2012b). by Cheewangkoon et al. (2010) to accommodate Pseudoplagiostoma. Voglmayr & Jaklitsch (2014) resurrected Stilbosporaceae in Diaporthales based on phylogenetic analysis of LSU nrDNA sequence data and transferred the genera Stegonsporium and Stilbospora to this family. Macrohilaceae was introduced by Crous et al. (2015), based on an analysis of LSU nrDNA to accommodate Macrohilum. Suetrong et al. (2015) introduced Tirisporellaceae into Diaporthales; however, Jones et al. (2015) excluded this family from Diaporthales. Norphanphoun et al. (2016) introduced Lamproconiaceae to accommodate Lamproconium and Hercospora. Juglanconidaceae was introduced in the Diaporthales by Voglmayr et al. (2017). However, molecular data suggest that additional families still remain to be elucidated

(Gryzenhout *et al.* 2006c, Crous *et al.* 2012a, 2015, Voglmayr *et al.* 2017). Currently there are 14 families accepted in the *Diaporthales*.

Given the taxonomic discrepancies within *Diaporthales*, the present study uses a combined taxonomic approach based on morphology and DNA sequence analyses of the partial 28S nrDNA (LSU), the internal transcribed spacer regions and intervening 5.8S nrDNA (ITS), DNA-directed RNA polymerase II second largest subunit (*rpb2*), and translation elongation factor 1-alpha (*tef1*) gene regions to investigate phylogenetic relationships of all genera in *Diaporthales* to update their classification. All taxonomic novelties and present taxonomic families are redescribed and illustrated where necessary. We also present new data on each family to provide a better taxonomic understanding.

MATERIALS AND METHODS

Isolates and specimens

Specimens were collected from Germany, Italy, Russia, Thailand and the UK. They were placed in paper bags and collection details noted. Specimens were brought to the laboratory in Ziplock plastic bags and examined with a Motic SMZ 168 stereomicroscope. Rehydrated fruiting bodies were used to observe morphological characteristics of ascomata, asci, ascospores and other tissues and characters were photographed with a Canon 550D digital camera fitted to the Nikon ECLIPSE 80i compound microscope. Photomicrographs were arranged with Adobe Photoshop v. CS6 and all measurements were made with Tarosoft v. 0.9.0.7. Specimens were preserved and are deposited at the BBH and MFLU fungaria. Taxonomic novelties and descriptions were deposited in MycoBank (Crous et al. 2004), and new species were established using modern criteria and standards (Taylor et al. 2000, Seifert & Rossman 2010, Jeewon & Hyde 2016).

Sporocarps were removed from the substrate using a sterilised needle and placed in a few drops of sterilised distilled water on a sterilised cavity slide and a spore suspension was prepared as described in Chomnunti *et al.* (2014). Germinating ascospores were aseptically transferred to Petri dishes containing Potato Dextrose Agar (PDA) or Malt Extract Agar (MEA) (Crous *et al.* 2009). Colonies were photographed and characters were noted. Colony colour on PDA and MEA was determined with the colour charts of Rayner (1970). Living cultures are deposited at Mae Fah Luang University (MFLU) and the Westerdijk Fungal Biodiversity Institute (CBS) culture collections. Autoclaved pine needles were placed on water agar (WA) to observe conidiomatal development and sporulating (Crous *et al.* 2009).

Types and other relevant authentic specimens were loaned from accessible fungaria [New York State Museum (NY), Naturhistorisches Museum Wien (W), Swedish Museum of Natural History (S), Royal Botanic Gardens, Kew (K), Universität Wien (WU)]. A small part of the fungarium specimen was cut and rehydrated in water or 5 % KOH. Micro-morphological characters were observed from rehydrated ascomata and photography was done as previously described.

DNA extraction, PCR amplification and phylogeny

Fresh fungal mycelia grown on MEA for 4 wk at 18 °C was scraped from the colony margin and sometimes perithecial content of fresh specimens were used for genomic DNA extraction following the protocol outlined by Jeewon *et al.* (2002). PCR amplification and sequencing of the LSU nrDNA region using the primer pair LROR/LR5 (Vilgalys & Hester 1990, Rehner & Samuels 1994), ITS nrDNA region using primer pair ITS5/ITS4 (White *et al.* 1990), *rpb2* region using the primer pair fRPB2-5F/ fRPB2-7cR (Liu *et al.* 1999), and *tef1* region using primer pair EF1-728F/EF1-986R (Carbone & Kohn 1999) were performed.

Each amplification reaction contained 0.125 µL of 5 units/µL Ex-Tag DNA polymerase (TaKaRa), 2.5 µL of 10 × PCR buffer, 2 µL of 2 mM MgCl₂, 2.5 µL of 2 mM dNTPs, 1 µL of 0.2–1.0 µM primer. <500 ng DNA template and was adjusted with doubledistilled water to a total volume of 25 mL. Amplification reactions were performed in a thermal-cycler (BIORAD 1000™ Thermal Cycler, Bio-Rad Laboratories, Hercules, California). The temperature profile for both ITS nrDNA and LSU nrDNA was an initial denaturing step for 2 min at 94 °C, followed by 35 amplification cycles of denaturation at 94 °C for 60 s, annealing at 58 °C for 60 s and extension at 72 °C for 90 s and a final extension step of 72 °C for 10 min (Phillips et al. 2008). The temperature profile for the rpb2 was: initial denaturation at 94 °C for 120 s, followed by 35 amplification cycles of denaturation at 95 °C for 45 s, annealing at 57 °C for 50 s and extension at 72 °C for 90 s (Liu et al. 1999). The temperature profile for tef1 was: initial denaturation at 94 °C for 120 s, followed by 35 amplification cycles of denaturation at 95 °C for 30 s, 58 °C for 50 s, 72 °C 60 s (Glass & Donaldson 1995). All PCR products with a DNA ladder were determined by electrophoresis at 120 V/cm for 20 min in 1 % agarose gel stained with ethidium bromide (0.5 mg/mL). The gel was visualised under a UV transilluminator to estimate the fragment size. PCR products were purified and sequenced with both primers at the Sunbiotech Company, Beijing, China. Sequences were edited and condensed with DNASTAR Lasergene v. 7.1. The sequences generated in this study were supplemented with additional sequences obtained from GenBank (Table 1) based on blast searches and published literature. Multiple sequence alignments were generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html) and the alignment was manually improved with BioEdit v. 7.0.5.2 (Hall 1999).

Maximum likelihood analysis (ML) was performed by RAxMI GUI v. 1.3 (Stamatakis *et al.* 2008, Silvestro & Michalak 2012). The search strategy was set to rapid bootstrapping and the analysis was carried out with 1000 replicates using the GTRGAMMAI model of nucleotide substitution, which was the best model predicted for the concatenated LSU nrDNA, ITS nrDNA, *rpb2* and *tef1* alignment by MrModeltest v. 2.3 (Nylander 2004).

For the Bayesian analyses (BI) of the individual loci and concatenated LSU nrDNA, ITS nrDNA, *rpb2* and *tef1* alignment, MrModeltest v. 2.3 (Nylander 2004) was used to determine the best nucleotide substitution model settings for MrBayes. A dirichlet state frequency was predicted for all four data partitions and GTR+I+G as best model for LSU nrDNA, ITS nrDNA, and *rpb2*; for *tef1* the best model was GTR+G. The heating parameter was set to 0.2 and trees were saved every 1 000 generations (Ronquist *et al.* 2012). The Markov Chain Monte Carlo (MCMC) analysis of four chains started in parallel from a random tree topology.

The maximum parsimony analysis (MP) was performed with PAUP v. 4.0b10 (Swofford 2003). Ambiguously aligned regions were excluded and all characters were unordered and given equal weight. Alignment gaps were treated as a fifth character state. Trees were inferred using the heuristic search option with TBR branch swapping and 100 random sequence additions. MaxTrees were set to 1000, branches of zero length were collapsed and all multiple parsimonious trees were saved. Tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), homoplasy index (HI), and log likelihood (-In L) were calculated for trees generated under different optimality criteria. The robustness of the most parsimonious trees was evaluated by 1 000 bootstrap replications resulting from the maximum parsimony analysis, each with 10 replicates of random step-wise addition of taxa (Felsenstein 1985). The Kishino-Hasegawa tests (Kishino & Hasegawa 1989) were performed to determine whether the trees inferred under different optimality criteria were significantly different.

Trees were viewed in FigTree v. 1.4.3 (Rambaut 2012). The final alignments and the trees obtained were deposited in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2: S21148) and are available under study accession no. S21148.

RESULTS

To reveal the phylogenetic position of genera, families and genera *incertae sedis* within the order *Diaporthales*, a phylogenetic analysis was performed with LSU nrDNA, ITS nrDNA, *rpb2* and *tef1* sequence data. Sequences of representative species were selected from Maharachchikumbura *et al.* (2016), Norphanphoun *et al.* (2016), VogImayr *et al.* (2017) and supplemented with sequences from GenBank. The LSU nrDNA, ITS nrDNA, *rpb2*, *tef1* and combined data matrices contained 1423, 735, 1064, 427 and 3 652 characters with gaps, respectively. The alignment comprised 310 strains and *Eutypella* sp. (MFLUCC 16–1215) was selected as the outgroup.

The same concatenated alignment was subjected to phylogenetic analyses, including a Bayesian analysis, a maximum parsimony analysis and a maximum likelihood analysis. The concatenated sequence alignment contained 2027 parsimonyinformative characters, 385 were variable and parsimony uninformative and 1241 were constant. The parsimony analysis vielded the maximum of 1 000 equally most parsimonious trees (TL = 16 973 steps; CI = 0.278; RI = 0.728; RC = 0.202; HI = 0.722). The ML analysis yielded a tree with a likelihood value of In: -75295.054554 and the following model parameters: alpha: 0.368178; Π(A): 0.246723, Π(C): 0.249231, Π(G): 0.277805, and II(T): 0.226241. The Bayesian analysis lasted 72 151 000 generations (average standard deviation of split frequencies value = 0.016671) and the consensus trees and posterior possibilities were calculated from the 103 301 trees in each of the two run files, of which a total of 72 152 trees in each of the two run files, of which a total of 108 228 were sampled after discarding the first 25 % of generations for burn-in. The different data partitions contained 787, 529, 761 and 390 unique site patterns (LSU nrDNA, ITS nrDNA, rpb2 and tef1, respectively).

The phylogeny resulting from the analysis of combined gene sequence data is shown in Fig. 1. Overall, the topologies obtained from the different phylogenetic analyses were mostly

Table 1. Details of the strains included for molecular and/or morphological study.							
Fungal species	Culture	Specimen	Host/substrate	Gen	Bank acce	ssion num	nbers
	accession no.	voucher no.		ITS	LSU	tef1-a	rpb2
Alnecium auctum	CBS 124263	WU 30206	Alnus glutinosa	KF570154	KF570154	KF570200	KF570170
Ambarignomonia petiolorum	CBS 121227	BPI 844274	Liquidambar styraciflua	EU254748	EU255070	EU221898	EU219307
	CBS 116866	BPI 843530	Liquidambar styraciflua	EU199193	AY818963	_	EU199151
Amphilogia gyrosa	CBS 112922	AFTOL-ID 1985	Elaeocarpus dentatus	_	FJ176889	_	FJ238374
	YMJ 91123101	HAST 91123101	Elaeocarpus japonicus	EF026147	_	KC465404	_
	CMW 10470	-	Elaeocarpus japonicus	_	AY194108	_	-
Amphiporthe hranicensis	CBS 119289	BPI 843515	Tilia platyphyllos	EU199178	EU199122	_	EU199137
Anisogramma anomala	529478	-	Corylus avellana	EU683064	EU683066	_	-
Anisogramma virgultorum	529479	-	Betula pendula	EU683062	EU683065	_	-
Apiognomonia errabunda	AR 2813	AR 2813	Fagus sylvatica	DQ313525	NG027592	DQ313565	DQ862014
Apiognomonia veneta	MFLUCC 16-1193	MFLU 17-0896	Platanus acerifolia	MF190114	MF190056	_	_
	MFLUCC 17-1656	MFLU 17-0896B	Platanus acerifolia	MF190115	MF190057	_	-
	CBS 897.79	Monod LAU	Platanus orientalis	_	EU255195	EU221910	EU219259
Apioplagiostoma populi	ID 858501	ApLA2	Populus tremuloides	KP637024	_	_	_
Apiosporopsis carpinea	CBS 771.79	_	Carpinus betulus	_	AF277130	_	_
Apiosporopsis sp.	Masuya 11Af2-1	_	Alnus firma	_	AB669034	_	_
Apoharknessia insueta	CBS 111377	CPC 1451	Eucalyptus pellita	JQ706083	AY720814	_	_
	CBS 114575	CPC 10947	Eucalyptus pellita	JQ706082	AY720813	_	_
Ascitendus austriacus	CBS 131685	-	Decayed driftwood of Alnus glutinosa	-	AF261067	-	JQ429257
	CBS 102665	-	Submerged stems of Fagus sylvatica	AF242263	AF242263	-	-
Asteroma alneum	CBS 109840	_	Alnus glutinosa	EU167609	EU167609	_	_
Asteroma sp.	Masuya 8Ah9-1	_	Alnus hirsuta	_	AB669035	_	_
Asterosporium asterospermum	-	MFLU 15-3555	Fagus sylvatica	-	MF190062	-	MF377615
	KT 2125	HHUF 30038	Fagus crenata	_	AB553743	_	_
	CBS 112404	_	Fagus sylvatica	_	AB553745	_	_
	KT 2101	HHUF 30037	Fagus crenata	_	AB553742	_	_
	KT 2138	HHUF 30039	Fagus crenata	_	AB553744	_	_
Aurantioporthe corni	MNA 1003	_	Cornus alternifolia	KF495043	KF495058	_	-
	SDS 1001	-	Cornus alternifolia	KF495046	KF495061	_	-
Aurantiosacculus acutatus	CPC 13704	CBS H-20933	Eucalyptus viminalis	JQ685514	JQ685520	_	-
Aurantiosacculus eucalyptorum	CPC 13229	-	Eucalyptus globulus	JQ685515	JQ685521	_	-
Aurapex penicillata	CMW 11296	-	Myrica faya	AY214315	AY194090	_	-
	CMW 10032	-	Miconia theaezans	AY214312	AY194104	_	-
Auratiopycnidiella tristaniopsis	CBS 132180	CBS H-20932	Tristaniopsis laurina	JQ685516	JQ685522	-	-
Aurifilum marmelostoma	CBS 124930	CMW 28288	Terminalia ivorensis	FJ882856	HQ730874	_	-
	CBS 124929	PREM 60257	Terminalia mantaly	FJ882855	HQ730873	_	-
Brachysporium nigrum	MR 1346	-	-	-	KT991662	_	KT991652
Cainiella johansonii	Kruys 727 (UPS)	-	Dryas sp.	JF701922	_	_	-
	Kruys 731 (UPS)	-	Dryas octopetala	JF701922	JF701920	_	-
Calosphaeria pulchella	CBS 115999	JF 3200	Prunus sp.	EU367451	AY761075	_	GU180661
Celoporthe dispersa	CMW 9978	_	Syzygium cordatum	AY214316	HQ730854	HQ730841	-
Celoporthe eucalypti	CMW 26913	-	Eucalyptus EC48 clone	HQ730839	HQ730865	HQ730852	_
Chaetoconis polygoni	-	MFLU 17-0965	Rumex acetosa	-	MF190063	_	-
	CBS 405.95	_	Polygonum sachalinense	-	EU754141	-	-
Chapeckia nigrospora	CBS 125532	BPI 863766	<i>Betula</i> sp.	JF681957	EU683068	-	-

Table 1. (Continued).							
Fungal species	Culture	Specimen	Host/substrate	GenBank accession numbe			nbers
	accession no.	voucher no.		ITS	LSU	tef1-a	rpb2
Chiangraiomyces bauhiniae	MFLUCC 17-1669	MFLU 17-0964	Bauhinia sp.	MF190119	MF190064	MF377598	MF377603
	MFLUCC 17-1670	CHUNI 81	<i>Bauhinia</i> sp.	MF190118	MF190065	MF377599	MF377604
Chromendothia citrina	AR 3445	_	Quercus mongolica	_	EU255074	EU222013	EU219342
	CBS 109758	BPI 747935	Quercus mongolica	_	AF408335	_	_
Chrysocrypta corymbiae	CBS 132528	CPC 19279	Corymbia sp.	JX069867	JX069851	_	_
Chrysofolia barringtoniae	TBRC 5647	SDBR-CMUENBA048	Barringtonia sp.	KU948046	KU948045	-	-
Chrysofolia colombiana	CPC 24986	CBS 139909	Eucalyptus urophylla	KR476738	KR476771	-	_
Chrysoporthe cubensis	CMW 14394	_	Eucalyptus sp.	JN942342	JN940856	GQ290137	_
Chrysoporthella hodgesiana	CMW 10641	CBS 115854	Tibouchina semidecandra	AY692322	-	-	-
Coniella africana	CBS 114133	CBS H-22706	Eucalyptus nitens	AY339344	AY339293	KX833600	KX833421
Coniella australiensis	IMI 261318	BPI 748425	Leaf litter	AF408336	AF408336	KX833692	KX833497
Coniella crousii	NFCCI 2213	AMH 9406	Terminalia chebula	HQ264189	-	-	-
Coniella fragariae	CBS 110394	RMF 74.01	Forest soil	KJ710463	KJ710441	KX833695	KX833499
	CBS 172.49	STE-U 3930	<i>Fragaria</i> sp.	AY339317	AY339282	AY339352	-
Coniella koreana	CBS 143.97	CBS H-22710	-	KX833584	AF408378	KX833684	KX833490
Coniella pseudokoreana	MFLUCC 12-0427	MFLU 13-0282	-	MF190145	-	-	-
	MFLUCC 17-1673	MFLU 13-0282B	-	MF190146	-	-	-
Coniella pseudostraminea	CBS 814.71	IMI 233050	<i>Fragaria</i> sp.	KX833582	-	KX833682	-
Coniella quercicola	CBS 283.76	-	Eucalyptus nitens	AY339344	AY339293	AY339364	-
Coniella straminea	CBS 149.22	STE U 3932	<i>Fragaria</i> sp.	AY339348	AY339296	AY339366	KX833506
Coniella tibouchinae	CPC 18511	BECM1	Tibouchina granulosa	JQ281774	JQ281776	JQ281778	KX833507
Coniella wangiensis	CPC 19397	CPC 19397	Eucalyptus sp.	JX069873	JX069857	KX833705	KX833509
Coryneum longipes	AR 3541	BPI 872021	Quercus cerris	-	EU683072	-	-
Coryneum modonia	AR 3558	BPI 749131	Castanea sativa	-	EU683073	-	-
Coryneum umbonata	AR 3897	BPI 843585	Quercus cerris	-	EU683074	-	-
Corynym arausiaca	MFLUCC 13-0658	MFLU 17-0875	Quercus sp.	MF190120	MF190066	MF377574	MF377609
	MFLUCC 15-1110	BBH 42437	Quercus sp.	MF190121	MF190067	MF377575	MF377610
Crinitospora pulchra	CBS 138014	CBS H-21729	Mangifera indica	KJ710466	KJ710443	-	-
Cryphonectria parasitica	ATCC 38755	-	Castanea dentata	AY141856	EU199123	EU222014	-
	AFTOL ID 2123	ATCC 38755	-	-	-	DQ862033	DQ862017
Cryptodiaporthe aesculi	AR 3580	BPI 748430	Aesculus hippocastanum	EU199179	AF408342	-	EU199138
	CBS 109765	AFTOL-ID 1238	Aesculus hippocastanum	-	DQ836905	-	DQ836892
Cryptometrion aestuescens	CMW 18790	PREM 60249	Eucalyptus grandis	GQ369458	HQ730869	-	-
	CMW 18793	-	Eucalyptus grandis	GQ369459	HQ730870	-	-
Cryptosporella hypodermia	CBS 116866	BPI 748432	Ulmus minor	EU199181	AF408346	-	EU199140
Cryptosporella suffusa	CBS 121077	BPI 871231	Alnus incana	EU199184	EU199124	-	EU199142
Cytospora ambiens	ATCC 52280	ATCC 52280	Acer rubrum	AY347345	AF277146	-	-
Cytospora austromontana	Willow21	-	-	KM669911	-	KM669767	-
Cytospora carbonacea	CFCC 50056	-	Ulmus pumila	KP281263	KP310809	KP310852	-
Cytospora cedri	CBS 196.50	-	-	AF192311	-	JX438575	-
Cytospora centrivillosa	MFLUCC 16-1206	MFLU 17-0887	Sorbus domestica	MF190122	MF190068	-	MF377600
	MFLUCC 17-1660	BBH 42449	Sorbus domestica	MF190123	MF190069	-	MF377601
	-	MFLU 17-0999	Sorbus domestica	MF190124	MF190070	-	-
Cytospora ceratosperma	AR 3426	-	-	-	EU255209	-	-
Cytospora chrysosperma	CFCC 89630	-	Salix psammophila	KF765674	KF765690	-	KF765706
Cytospora fraxinigena	MFLUCC 14-0868	BBH 42442	Fraxinus ornus	MF190133	MF190078	-	-
	-	MFLU 17-0880	Fraxinus ornus	MF190134	MF190079	-	-
						(continued of	n next page)

Table 1. (Continued).								
Fungal species	Culture	Specimen	Host/substrate	GenBank accession number			bers	
	accession no.	voucher no.		ITS	LSU	tef1-α	rpb2	
Cytospora germanica	CXY 217	_	Populus sp.	JQ086564	JX524618		_	
Cytospora hippophaes	CFCC 89640	-	Hippophae rhamnoides	KF765682	KF765698	KP310865	KF765714	
Cytospora junipericola	_	BBH 42444	Juniperus communis	MF190126	MF190071	MF377579	_	
	_	MFLU 17-0882	Juniperus communis	MF190125	MF190072	MF377580	_	
Cytospora mali	CFCC 50044	-	Malus baccata	KR045637	KR045717	_	_	
Cytospora malicola	SXFX-V2	-	Malus pumila	GU174579	_	JQ900335	_	
Cytospora melanodiscus	Jimslanding2	-	Alnus tenuifolia	JX438621	_	JX438605	_	
	Worrall2b	-	Alnus tenuifolia	JX438620	_	JX438606	_	
Cytospora melnikii	MFLUCC 16-0635	T 1104	Populus nigra	KY417736	KY417770	_	_	
Cytospora nivea	CFCC 89643	-	Salix psammophila	KF765685	KF765701	_	KF765717	
Cytospora punicae	CBS 199.50		Punica granatum	JX438622	_	JX438568	-	
Cytospora quercicola	MFLUCC 14-0867	BBH 42443	Quercus sp.	MF190129	MF190073	-	-	
	_	MFLU 17-0881	Quercus sp.	MF190128	MF190074	-	-	
Cytospora ribis	CFCC 50027	-	Ulmus pumila	KP281268	KP310814	KP310857	-	
Cytospora rosae	MFLUCC 14-0845	MFLU 17-0885	Rosa canina	MF190131	MF190075	-	-	
	MFLUCC 17-1664	BBH 42447	Rosa canina	MF190130	MF190076	-	-	
Cytospora sacculus	CFCC 89625	-	Juglans regia	KR045646	KR045725	KP310861	-	
Cytospora salicina	MFLUCC 16-0637	T-1017	Salix fragilis	KY417751	KY417785	-	-	
	MFLUCC 16-1190	MFLU 17-1655	Cornus sanguinea	MF190132	MF190077	-	-	
Cytospora sordida	HMBF 159	-	Juglans regia	KF225613	KF225627	-	-	
Cytospora sp.	CMON41	-	Phaseolus vulgaris	JQ753989	JQ754081	-	-	
Cytospora translucens	CZ320	-	-	FJ755269	FJ755269	-	-	
Diaporthe azadirachtae	TN 01	-	Azadirachta indica	KC631323	-	-	-	
Diaporthe cassines	CBS 136440	CPC 21916	Cassine peragua	KF777155	KF777208	KF777244	-	
Diaporthe cynaroidis	150e	-	Myrtus communis	KC959207	-	-	-	
	CBS 122676	CMW 22190	Protea cynaroides	KC343058	EU552122	-	-	
Diaporthe decedens	CBS 114281	UPSC 2957	Corylus avellana	KC343059	AF408348	-	-	
Diaporthe eres	MFLUCC 17-1667	T400	Fraxinus pennsylvanica	MF190137	MF190080	MF377594	-	
	MFLUCC 17-1668	MFLU 17-0890	Fraxinus pennsylvanica	MF190138	MF190081	MF377595	-	
	MFLUCC 14-0862	Т98	Catalpa bignonioides	MF190135	MF190082	MF377596	-	
	MFLUCC 17-1661	MFLU 17-0889	Catalpa bignonioides	MF190136	MF190083	MF377597	-	
	AR 5193	-	Ulmus sp.	KJ210529	-	KJ210550	-	
	PS57	-	Glycine max	JF430494	JF704176	-	-	
Diaporthe eucalyptorum	MFLUCC 12-0306	-	Leaf litter	KT459419	-	KT459453	-	
Diaporthe litoricola	MFLUCC 16-1195	BBH 42436	Stem of sea-shore plant	MF190139	MF190086	-	-	
	MFLUCC 17-1657	MFLU 17-0894	Stem of sea-shore plant	MF190140	MF190087	-	-	
Diaporthe maytenicola	CBS 136441	CPC 21896	Maytenus acuminata	KF777157	KF777210	-	-	
Diaporthe nobilis	Napa911	-	-	KM669958	-	KM669814	-	
Diaporthe rudis	-	IT 1526	Acer campestre	MF190141	MF190088	MF377576	-	
	-	MFLU 17-0895	Acer campestre	MF190142	MF190089	MF377577	-	
	MFLUCC 16-1197	BBH 42452	Umbelliferous stem	MF190143	MF190085	-	-	
	MFLUCC 17-1658	MFLU 15-2661	Umbelliferous stem	MF190144	MF190084	-	-	
	LC6147	-	Dendrobenthamia japonica	KY011890	KY011864	KY011901	-	
	BPI 748231	-	-	-	AF362560	-	-	
	CBS 113201	CBS H-7950	Vitis vinifera	KC343234	-	KC343960	-	
Diaporthella corylina	CBS 121124	BPI 871218	Corylus sp.	KC343004	-	-	-	
Diaporthella sp.	CN5	-	Corylus avellana	KP205483	-	KP205456	-	
	CN13	-	Corylus avellana	KP205484	-	KP205457	-	
Dicarpella dryina	ICMP 14042	-	Quercus sp.	KC145909	-	KC145954	-	

Table 1. (Continued).								
Fungal species	Culture	Specimen	Host/substrate	GenBank accession			numbers	
	accession no.	voucher no.		ITS	LSU	tef1-α	rpb2	
	ICMP 14043	_	Quercus ilex	KC145858	_	KC145955	_	
Diplodina microsperma	CBS 114545	CPC 2336	Protea sp.	JN712461	JN712525	-	_	
Discula destructiva	CBS 109771	BPI 1107757	Cornus nuttallii	EU199186	AF408359	-	EU199144	
	MD 254	BPI 1107741	Cornus florida	AF429741	AF429721	AF429732	-	
Disculoides eucalypti	CPC 17650	-	Eucalyptus sp.	JQ685517	JQ685523	-	-	
Disculoides eucalyptorum	CBS 132184	CPC 17648	Eucalyptus viminalis	NR120090	-	-	-	
Ditopella biseptata	-	MFLU 17-0884B	Alnus glutinosa	MF190147	MF190091	-	MF377616	
	-	MFLU 17-0884	Alnus glutinosa	MF190148	MF190090	-	MF377617	
Ditopella ditopa	CBS 109748	BPI 748439	Alnus glutinosa	DQ323526	EU199126	-	EU199145	
Ditopellopsis sp.	CBS 121471	BPI 872061	Clethra alnifolia	EU254763	EU255088	EU221936	EU219254	
Dwiroopa lythri	AR 3383	BPI 747560	Lythrum salicaria	-	AF408364	-	-	
Endothia gyrosa	CMW 2091	CRY 1515	Quercus palustris	AF046905	AY194114	-	-	
Endothiella gyrosa	CMW 10436	AFTOL-ID 1223	Quercus sp.	AF452117	-	-	_	
Erythrogloeum hymenaeae	CPC 18819	-	Hymenaea courbaril	JQ685519	JQ685525	-	-	
<i>Eutypella</i> sp.	MFLUCC 16-1215	BBH 42446	Alnus cordata	MF190165	MF190112	MF377578	MF377618	
Foliocryphia eucalypti	CBS 124779	CPC 12494	Eucalyptus coccifera	GQ303276	GQ303307	-	-	
Gnomonia gnomon	CBS 829.79	Monod 267 LAU	Populus sp.	AY818957	AY818964	EU221905	-	
	CBS 199.53	_	Corylus avellana	DQ491518	AF408361	EU221885	EU219295	
Gnomoniella fraxini	AR 3999	BPI 843391	Fraxinus americana	AY455814	AY455818	-	_	
	AR 2793	BPI 746411	Fraxinus americana	AY455813	AY455817	-	_	
Gnomoniopsis agrimoniae	MFLUCC 14-0844	MFLU 17-0888	Agrimonia eupatoria	-	MF190093	MF377585	_	
	MFLUCC 17-1662	BBH 42450	Agrimonia eupatoria	-	MF190092	MF377586	_	
Gnomoniopsis alderdunensis	CBS 125680	BPI 879186	Rubus parviflorus	GU320825	_	_	_	
Gnomoniopsis chamaemori	CBS 803.79	Monod 345 LAU	Rubus chamaemorus	EU254808	EU255107	_	_	
Gnomoniopsis racemula	AR 3892	BPI 871003	Epilobium angustifolium	EU254841	EU255122	EU221889	EU219241	
Greeneria saprophytica	MFLUCC 12-0298	MFLU 13-0255	Syzygium cumini	KJ021933	KJ021935	-	-	
Greeneria uvicola	FI1 2007	_	Vitis sp.	HQ586009	GQ870619	-	_	
	FI1 2008	_	Vitis sp.	HQ586010	GQ870620	_	_	
Hapalocystis berkeleyi	AR 3851	_	_	_	EU683069	_	_	
	MFLUCC 13-0662	IT 1187	Platanus sp	_	KP744486	_	_	
Harknessia eucalypti	CBS 342.97	_	Eucalyptus regnans	AY720745	AF408363	_	_	
	CPC 13643	_	Eucalyptus regnans	JQ706089	JQ706215	_	_	
Harknessia karwarrae	CPC 10928	_	Eucalyptus botryoides	AY720748	AY720841	_	_	
Harknessia molokaiensis	CBS 114877	_	Eucalyptus robusta	AY720749	AY720842	_	_	
	CPC 19269	_	Eucalyptus cypellocarpa	JQ706127	JQ706248	_	_	
Harknessia weresubiae	CBS 113075	_	Eucalyptus sp.	AY720741	AY720835	_	_	
	CPC 5109	_	Eucalyptus sp.	AY720744	AY720838	_	_	
Hercospora tiliae	AR 3526	_	Tilia tomentosa	_	AF408365	_	_	
Holocryphia eucalypti	CBS 115852	CMW 14545	Eucalyptus sp.	JQ862840	JQ862797	JQ863037	_	
	CMW 7033	PREM 56305	Eucalyptus saligna	JQ862838	JQ862795	JQ863035	_	
Hyaliappendispora galii	MFLUCC 16-1208	MFLU 17-0893	Galium sp.	MF190150	MF190095	MF377587	_	
	MFLUCC 17-1761	MFLU 17-0966	Galium sp.	MF190149	MF190094	MF377588	_	
Hyalorostratum brunneisporum	A573 2b	ILL 40792	_	_	HM191720	_	_	
Immersiporthe knoxdaviesiana	CMW 37314	PREM 60740	Rapanea melanophloeos	JQ862770	JQ862760	_	_	
	CMW 37319	PREM 60739	Rapanea melanophioeos	JQ862765	JQ862755	_	_	
Juqlanconis iualandina	D96	WU 35960	Juglans regia	KY427145	KY427145	KY427214	KY427195	
J J	AR 3860	WU 35959	Juglanconis iuglandina	KY427149	_	KY427218	KY427199	
	CBS 121083	BPI 843622	Juglans regia	KY427148	KY427148	KY427217	KY427198	
Jualanconis oblonaa	MAFF 410216	TFM FPH 2623	Juglans ailanthifolia	KY427153	KY427153	KY427222	KY427203	
			g unununonu			(continued of	n next page)	

Table 1. (Continued).	Table 1. (Continued).								
Fungal species	Culture	Specimen	Host/substrate	GenBank accession numbe			nbers		
	accession no.	voucher no.		ITS	LSU	tef1-α	rpb2		
	MAFF 410217	TFM FPH 3599	Juglans ailanthifolia	KY427154	KY427154	KY427223	KY427204		
Juglanconis pterocaryae	MAFF 410079	TFM FPH 3373	Pterocarya rhoifolia	KY427155	KY427155	KY427224	KY427240		
Lamproconium desmazieri	AR 3525	BPI 748445	<i>Tilia</i> sp.	-	AF408372	-	_		
	MFLUCC 15-0870	MFLU 15-1940	<i>Tilia</i> sp.	KX430134	KX430135	MF377591	MF377605		
	MFLUCC 14-1047	MFLU 14-0780	<i>Tilia</i> sp.	KX430132	KX430133	MF377592			
	MFLUCC 15-0872	MFLU 15-2111	<i>Tilia</i> sp.	KX430139	AF408372	MF377593	MF377606		
	MFLUCC 15-0873	MFLU 15-2192	<i>Tilia</i> sp.	KX430140	KX430141	_	_		
	MFLUCC 15-0871	MFLU 15-2037	<i>Tilia</i> sp.	KX430136	KX430137	_	_		
Lanspora coronata	AFTOL-ID 736	JK 5839A	-	_	U46889	_	DQ470899		
Lasmenia sp.	CBS 124122	LMS 2011b	Nephelium lappaceum	GU797405	JF838337	_	_		
	CBS 124123	LMS 2011c	Nephelium lappaceum	GU797406	JF838338	_	_		
	CBS 124124	LMS 2011d	Nephelium lappaceum	JF838336	JF838341	_	_		
	CBS 124125	LMS 2011a	Nephelium lappaceum	GU797407	JF838340	_	_		
Latruncellus aurorae	CBS 125526	PREM 60348	Galpinia transvaalica	HQ171209	HQ171214	_	_		
	CBS 124904	PREM 60349	Galpinia transvaalica	GU726946	HQ171213	_	_		
Leucostoma kunzei	ATCC 64881	ATCC 64881	Picea pungens	AY347320	_	JX438595	_		
Luteocirrhus shearii	CBS 130776	PERTH 08439362	Banksia baxteri	KC197021	KC197019	_	_		
	CBS 130775	PERTH 08355312	Banksia baxteri	KC197024	KC197018	_	_		
Macrohilum eucalypti	CPC 10945	_	Eucalyptus sp.	DQ195781	DQ195793	_	_		
,,	CPC 19421	CBS H-22279	Eucalyptus piperita	KR873244	KR873275	_	_		
Mamianiella coryli	_	BPI 877578	Corylus californica	EU254862	_	_	_		
Marsupiomvces epidermoidea	_	MFLU 15-2921	Quercus robur	_	MF190058	_	_		
· · · · · · · · · · · · · · · · · · ·	_	BBH 42451	Quercus robur	_	MF190059	_	_		
Marsupiomvces quercina	MFLUCC 13-0664	MFLU 17-0876	Quercus sp.	MF190116	MF190061	_	_		
maroupromy ooo quoroma	MFLUCC 14-0566	BBH 42438	Quercus sp.	MF190117	MF190060	_	_		
Mastigosporella anisophylleae	CPC 22461	_	Anisophyllea sp	KF779492	KF777221	_	_		
	CBS 136421	CBS H-21429	Anisophyllea sp	NR137844	_	_	_		
Mazzantia napelli	AR 3498	BPI 748443	Aconitum lycoctonum	_	AF408368	FU222017	FU219345		
	AFTOL-ID 2126	AR 3498	_	_	_	_	DO862020		
Melanconiella chrysodiscosporina	MELUCC 17–1671	MELU 16-1309	Fagus sylvatica	ME190166	_	_	_		
Melanconiella chrysomelanconium	_	MFLU 17-0879	Carpinus betulus	MF190167	MF190113	_	MF377619		
Melanconiella ellisii	_	BPI 878343	Carpinus caroliniana	JQ926271	_	JQ926406	JQ926339		
Melanconiella spodiaea	SPOD1	WU 31854	Carpinus betulus	JQ926301	_	-	JQ926367		
Melanconis alni	AR 3748	BPI 872035	Alnus viridis	FU199195	FU199130	_	FU199153		
	AR 3500	BPI 748444	Alnus viridis	_	AF408371	FU221896	EU100100		
Melanconis italica	MELUCC 17-1659	MELU 15-1112	Alnus cordata	ME190152	MF190097	_	ME377602		
	MFLUCC 16-1199	MFLU 17-0883	Alnus cordata	MF190151	MF190096	_	_		
Melanconis marginalis	AR 3442	BPI 748446	Alnus rubra	FI 1199197	AF408373	FI 1221991	FU219301		
Melanconis stilbostoma	F01051	_		AV57781/	AV577813				
	E01051			AV577811	AV577810	_	_		
	AD 3548	-	- Potula sp	AIJHOII	AT377010	-	-		
	AR 3540	- BDI 7/823/	Betula sp.		AI 302307	- EL1221886	- EL 1210200		
Microascospora fragariae	1 1	DI 1 740234		- HM85/850		L0221000	L0219299		
Microascospora Iragariae	1.1	-	-		-	-	-		
	1.0	_	_		-	-	-		
Microascospora rubi	12		- Rubus ulmifolio	ME100154	- ME100009	- ME277501	- ME377614		
ινιισι σαστοσμοί α ΤΟΝΙ	_	BBH /2//2	Rubus ulmifolio	ME100152	ME100000	ME277500	ME277640		
Microthia havanansis	CMW/ 11208	DDT 42440	Fucelyntus solians		AV104004	WI 57750Z			
	011111230		Lucarypius sanylia	TIZ14320	71134031	-	-		

Table 1. (Continued).								
Fungal species	Culture	Specimen	Host/substrate	Gen	Bank acce	ssion nun	nbers	
	accession no. voucher no.			ITS	LSU	tef1-a	rpb2	
	CMW 38367	_	Psidium cattleianum	KJ027495	_	_	_	
Myrmecridium montsegurinum	JF 13180	PRM 934684	Fraxinus excelsior	KT991674	KT991664	_	KT991654	
Occultocarpon ailaoshanense	LCM 524.01	BPI 879253	Alnus nepalensis	JF779849	JF779853	_	JF779856	
	LCM 522.01	BPI 879254	Alnus nepalensis	JF779848	JF779852	JF779862	JF779857	
Ophiodiaporthe cyatheae	YMJ 1364	HAST 1364	Cyathea lepifera	JX570889	JX570891	KC465406	JX570893	
Ophiognomonia melanostyla	LCM 389.01	BPI 879257	Tilia cordata	JF779850	JF779854	_	JF779858	
Ophiognomonia vasiljevae	AR 4298	BPI 877671	Juglans nigra	EU254977	EU255162	EU221999	EU219331	
Ophiostoma gemellus	CMW 23059	_	Tarsonemus sp.	DQ821562	DQ821533	_	_	
Pachytrype princeps	Rogers s.n.	_	-	_	FJ532382	_	_	
Pachytrype rimosa	FF1066	_	_	_	FJ532381	_	_	
Papulosa amerospora	AFTOL-ID 748	JK 5547F	_	_	DQ470950	_	DQ470901	
Paradiaporthe artemisiae	MFLUCC 14-0850	MFLU 12-2131	Artemisia sp.	MF190155	MF190100	MF377583	_	
,	MFLUCC 17-1663	BBH 42448	Artemisia sp.	MF190156	MF190101	MF377584	_	
Phaeoacremonium aleophilum	CBS 631.94	_	Vitis vinifera	AF266647	AB278175	KF764643	_	
Phaeoacremonium vibratilis	CBS 117115	BPI 2460	Fagus sylvatica	KF764573	DQ649065	KF764645	HQ878611	
Phaeoappendispora thailandensis	MELUCC 13-0161	MELU 17-0873	Quercus sp.	MF190157	MF190102	_	ME377613	
	MELUCC 17-1762	BBH 42435	Quercus sp.	MF190158	MF190103	_	ME377614	
Phaeocytostroma ambiguum	CPC 17077	_	Zea mays	FR748041	FR748100	FR748073	_	
r naoooytootionia ambiguum	CPC 17078	_	Zea mays	FR748044	FR748101	FR748074	_	
Phaeodiaporthe appendiculata	CBS 123821	WU 32449	Acer campestre	KE570156	KE570156	_	_	
	CBS 123809	WU 32448	Acer campestre	KE570155	KE570155	_	_	
Phraamonorthe conformis	MELLICC 14-0567	MELU 15-2662	Alnus alutinosa	KU315388	KU315389	KU315391	_	
i magnioporato comorna	AR 3632	BPI 748450	Alnus rubra	_	AF408377	_	_	
Plagiostoma dilatatum	I CM 402 02	BPI 878957	Salix irrorata	GU367070	_	_	GU367104	
Plagiostoma ionesii	MELLICC 16-1189	MELU 17-0878	Limbelliferous stem	ME190159	MF190104	ME377589	-	
r lagiottorna jonooli	MELUCC 17-1654	BBH 42440	Umbelliferous stem	MF190160	MF190105	ME377590	_	
Plagiostoma salicellum	CBS 109755	BPI 843490	Salix sp	EU255047	_	FU221912	_	
Plagiostoma salicicola	MELLICC 13-0656	MELLI 17_0877	Salix sp.	ME100161	ME100106		_	
r lagiostorna salicicola	MELLICC 17-1666	BBH 42439	Salix sp.	ME100162	ME100107			
Plaurocaras caprasa	CBS 372 69		Salix sp.	1011 130 102	AE2771/3			
	AP /333	- BDI 877710	Salix sp.	- EU255060	EL1255106	- EU221031	- EU210313	
	CRS 006 70	Monod 469/LALL	Salix sucheriss	EU255061	EU255190	EU221931	EU219313	
Pleuroceras tenellum	CBS 121082	BDI 871050	Acer rubrum	EU233001	EU255197	EU221902	EU219311	
Prosonidicola mevicana	CBS 113529	CBS-H 79/8	Prosonis alandulosa	AV720700			E0100100	
	CBS 113530	C 158	Prosopis glandulosa	AV720710				
Pseudoplagiostoma conumbiae	CPC 10287	CBS H- 20057	Conventia sp	12060861	-			
	CPS 124807	CBS H 20303	Eucolymbia sp.	GU073512	CL 1073606	- CLI073542	-	
	CDC 1/161	00011-20303		CU073510	CU073604	CU073540	-	
Decudenteriesterne eldii	CFC 14101	-		GU973510	GU973004	GU973540	-	
rseudopiagiosionia oluli	CBS 113722	-		GU973535	GU973010	GU973503	-	
Decudenteriesterne veriebile	CBS 124000	CBS H-20300		GU973534	GU973609	GU973566	-	
r seuuupiayiusiuilla Vallapile			Eucarypius globulus	RE0062E0	GU3/3011	GUSI JOOD	-	
Pusiulorinyces bambusicola			Dallipusa sp.	NF000/02	NF0U0/03	KL000122	-	
Pyricularia potnriochioae		UBS-H 21430		KF///186	KF///238	-	-	
Pyricularia oryzae	REA 8401		Opniuros exaltatus	км484916	KM485022	-	-	
Rossmania ukurunduensis	AK 3484	BPI /4/566	Acer ukurunduense	-	EU6830/5	-	-	
Rostraureum tropicale		PREM 5/519	i erminalia ivorensis	AY16/436	AY194092	-	-	
	CMW 9975	-	Terminalia ivorensis	AY167439	-	-	-	

(continued on next page)

Table 1. (Continued).							
Fungal species	Culture	Specimen	Host/substrate	GenBank accession numbers			bers
	accession no.	voucher no.		ITS	LSU	tef1-α	rpb2
Sillia ferruginea	AR 3440	BPI 843619	Corylus avellana	JF681959	EU683076	_	_
	CBS 126567	BPI 843619	Corylus avellana	JF681959	EU683076	-	-
Sirococcus tsugae	CBS 119626	BPI 871167	Tsuga mertensiana	EU199203	EU199136	EF512534	EU199159
	AR 4010	-	Cedrus deodara	EF512478	EU255207	EU221928	EU219289
Sordaria fimicola	CBS 508.50	-	Dung	AY681188	AY681160	-	DQ368647
Stegonsporium acerophilum	CBS 117025	WU 28050	Acer saccharum	EU039982	EU039993	EU040027	KF570173
Stenocarpella macrospora	CBS 117560	MRC 8615	Zea mays	FR748048	EU754219	-	-
Stenocarpella maydis	CBS 117559	MRC 8614	Zea mays	FR748052	DQ377937	-	-
Stilbospora ellipsosporum	WJ 1840	-	Carpinus betulus	-	AY616229	-	-
Stilbospora macrosperma	CBS 121883	-	Carpinus betulus	JX517290	JX517299	-	KF570196
Sydowiella depressula	CBS 813.79	-	Rubus sp.	EU552156	-	-	-
Sydowiella fenestrans	CBS 125530	BPI 843503	Chamerion angustifolium	JF681956	EU683078	-	-
Sydowiella urticicola	MFLUCC 13-0665	MFLU 13-0260	Urtica dioica	-	MF190108	-	-
	MFLUCC 17-1665	BBH 42439	Urtica dioica	-	MF190109	-	-
Thyridium vestitum	AFTOL-ID 172	OSC 100064	-	-	AY544671	-	DQ470890
Tubakia seoraksanensis	CBS 127490	-	Quercus mongolica	HM991734	KP260499	-	-
	BJFCCC140824-15	-	-	KP260502	KP260501	-	-
Tubakia thailandensis	MFLUCC 12-0303	MFLU 13-0260	Decaying leaf	MF190163	MF190110	-	-
	MFLUCC 17-1672	MFLU 13-0260B	Decaying leaf	MF190164	MF190111	-	-
Ursicollum fallax	CMW 18119	PREM 58840	Coccoloba uvifera	DQ368755	EF392860	-	-
Valsalnicola oxystoma	AR 4833	BPI 884137	Alnus viridis	JX519559	JX519563	-	-
	AR 5137	BPI 884135	Alnus tenuifolia	JX519561	-	-	-
Valsella salicis	AR 3514	BPI 748461	Salix fragilis	-	EU255210	EU222018	EU219346
Valseutypella multicollis Waydora typica	CBS 105.89 PDD 103894	– PDD 103894	Quercus ilex –	DQ243803 KF727412	– KF727413	-	-

AFTOL: Assembling the Fungal Tree of Life culture collection; AMH: Ajrekar Mycological Herbarium, India; ATCC: American Type Culture Collection, Virginia, USA; BBH: National Science and Technology Development Agency, Thailand; BECM: British Empire and Commonwealth Museum, UK; BJFCCC: Beijing Forestry University, China; BPI: U.S. National Fungus Collections, Systematic Botany and Mycology Laboratory, USA; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CMW: Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; CPC: Culture collection of Pedro Crous, The Netherlands; FI: Museo di Storia Naturale dell'Universita, Italy; HAST: Herbarium, Biodiversity Research Center, Academia Sinica, Taiwan; HHUF: Hirosaki University, Japan; ICMP: International Collection of Micro-organisms from Plants, New Zealand; ILL: University of Illinois, USA; IMI: International Mycological Institute, Kew, UK; JF: Jonkershoek Forestry Research Centre, South Africa; LCM: University herbarium, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Thailand; MNA: Museum of Northern Arizona, USA; NFCCI: National Fungal Culture Collection, India; OSC: Oregon State University, Corvallis, USA; PERM: University of Perm, South Africa; PERTH: Western Australian Herbarium, Australia; PH: Academy of Natural Sciences of Drexel University, Philadelphia, PA; RMF: Rocky Mountain Herbarium, University of Wyoming, USA; SDSU: San Diego State University, USA; STE-U: University of Stellenbosch, Plant Pathology Department, South Africa; TBRC: Thailand Bioresource Research Center, Bangkok, Thailand; TFM: Forestry and Forest Products Research Institute, Matsunosato, Japan; UPSC: Fungal Culture Collection at the Botanical Museum, Uppsala University, Sweden; WU: Universitate Wien, Austria.

similar and the best scoring RAxML tree is illustrated here. The bootstrap support values of maximum likelihood analysis (MLB), maximum parsimony analysis (MPB) and Bayesian posterior probability scores (PP) are noted at the nodes. The separation of *Diaporthales* from other *Sordariomycetes* taxa is well-supported (MLB/MPB/PP = 100/96/1). The order separates into 21 familial clades with good support values and two genera *incertae sedis* clades labelled as 5 and 18.

Clade 1 is represented by *Gnomoniaceae* with moderate support values (MLB/MPB/PP = 60/-/0.9) and comprised Alnecium, Ambarignomonia, Amphiporthe, Anisogramma, Apiognomonia, Apioplagiostoma, Asteroma, Cryptodiaporthe, Cryptosporella, Discula, Ditopella, Ditopellopsis, Gnomonia, Gnomoniella, Gnomoniopsis, Mamianiella, Marsupiomyces, Occultocarpon, Ophiognomonia, Phragmoporthe, Plagiostoma,

Pleuroceras, Sirococcus and Valsalnicola. Anisogramma and Mamianiella formed a distinct clade with high support value. Morphologically they are similar and these genera appear to be congeneric. Therefore we synonymise Anisogramma under Mamianiella giving priority to the older name and its taxonomic stability. In addition, Mamianiella is nested in between Anisogramma species and this supports that both genera should be synonymised. Here we introduce one new genus and six new species to Gnomoniaceae. We introduce Plagiostoma salicicola based on morphology and phylogeny. Plagiostoma jonesii, the second species, was a fully-supported clade sister to Plagiostoma salicellum, P. dilatatum and P. salicicola. It is morphologically distinct from other species in Plagiostoma. Sequences of the asexual morph of Apiognomonia veneta (= Discula nervisequa) is included here and clustered with other Apiognomonia veneta strains. Ditopella biseptata is introduced based on phylogeny as well as morphology. Ditopella biseptata formed a fullysupported clade sister to *D. ditopa*. We introduce a new genus *Marsupiomyces* with two phylogenetically well-supported species, *M. quercina* and *M. epidermoidea*. Gnomoniopsis agrimoniae represents a new species distinct from other species of *Gnomoniopsis*.

Clade 2 is represented by *Melanconidaceae sensu stricto* with good support values (MLB/MPB/PP = 93/91/0.9) and it is considered as *Melanconidaceae*. Most genera listed under *Melanconidaceae* in recent publications are excluded from this family, based on morphology and available sequence data. We introduce a new *Melanconis* species as *M. italica*.

Clade 3 (MLB/MPB/PP = 100/92/1) represents the new family *Apiosporopsidaceae* which is introduced to accommodate a single genus, *Apiosporopsis*.

Clade 4 is represented by *Juglanconidaceae* (MLB/MPB/ PP = 99/94/1), which was recently introduced by Voglmayr *et al.* (2017) based on a fungal species isolated from *Juglans nigra*.

Clade 5 is represented by *Diaporthella* species with low bootstrap support and is considered here as *Diaporthales* genera *incertae sedis*, pending the availability of sequence data for the type species *Diaporthella aristata*.

The family *Cryphonectriaceae* is represented by Clade 6 which is phylogenetically poorly-supported (MLB/MPB/PP = 63/ –/0.9) but morphologically distinct from other families in *Diaporthales*. Almost all taxa in this family have molecular data.

Clade 7 is represented by the *Harknessiaceae*, which is phylogenetically poorly-supported (MLB/MPB/PP = 60/68/–). Species of *Harknessia* and wuestneia-like sexual morphs have been linked by morphological characteristics (Crous & Rogers 2001, Crous *et al.* 2012b), but the types of both genera have not been linked by molecular data. *Dwiroopa lythri* clusters basal to *Harknessia* species with low support values (MLB/MPB/PP = 60/68/–; Fig. 1).

Schizoparmaceae (Clade 8) is phylogenetically wellsupported (MLB/MPB/PP = 94/88/–). We introduce a new *Coniella* species as *Coniella* pseudokoreana and it clusters sister to *Coniella* straminea.

Clade 9 (MLB/MPB/PP = 91/71/1) represents the new family *Erythrogloeaceae* which is introduced in this study to accommodate *Chrysocrypta*, *Disculoides* and *Erythrogloeum*.

Clade 10 (MLB/MPB/PP = 93/-/1) currently encompassies 6 genera within the Melanconiellaceae. In particular, Melanconiella sisters to Microascospora where as Greeneria is nested in between Dicarpella and Tubakia. Microascospora is introduced here based on Microascospora rubi collected from Italy and Microascospora fragariae (= Sphaeronaemella fragariae) which was already placed in Microascales. Other genera were previously placed in Melanconidaceae, but phylogenetically they do not cluster with M. stilbostoma, which is the family type of the Melanconidaceae. Dicarpella and Tubakia form a distinct clade within this family to represent both genera as holomorphs. Greeneria saprophytica is distant from Greeneria uvicola, which is the type of this genus. We introduce a new Tubakia species as T. thailandensis. A new genus Microascospora based on M. rubi is introduced here and *M. rubi* strains have high support as a distinct species. Microascospora rubi forms a sister clade to Microascospora fragariae (= Sphaeronaemella fragariae) and high bootstrap support values confirmed it as a species. In addition. we include sequences of Melanconiella chrysodiscosporina and *M. chrysomelanconium* from recently collected specimens.

Clade 11 is represented by the monotypic family *Auratiopycnidiellaceae*, which is newly introduced in this study based on *Auratiopycnidiella tristaniopsis*, and it is morphologically and phylogenetically well-supported (MLB/MPB/PP = 95/–/1).

Clade 12 comprises the monotypic family *Pseudoplagiostomaceae* with full-support (MLB/MPB/PP = 100/100/1).

Clade 13 (MLB/MPB/PP = 100/68/1) represents Apoharknessiaceae to accommodate Apoharknessia and Lasmenia.

Clade 14 is represented by the family *Diaporthaceae* with good support (MLB/MPB/PP = 86/91/0.9). We also introduce several new genera such as *Chiangraiomyces* which is typified by *C. bauhiniae*; *Paradiaporthe*, typified by *P. artemisiae* and *Hyaliappendispora* typified by *H. galii. Paradiaporthe* is nested with reliable support between *Chiangraiomyces* and *Phaeocytostroma* while *Chiangraiomyces*, clusters sister to *Ophiodiaporthe*. *Hyaliappendispora* grouped sister to *Phaeodiaporthe*. Here we included several new isolates of *Diaporthe* species and *Diaporthe litoricola* forms a fully-supported clade sister to *Diaporthe maytenicola*. In addition, we include a new collection of *Diaporthe eres* and a new collection of *Diaporthe rudis*.

Clade 15 represents the family *Macrohilaceae* with full-support (MLB/MPB/PP = 100/100/0.9).

Clade 16 is represented by *Cytosporaceae* with good support (MLB/MPB/PP = 88/51/1). In addition to *Cytospora*, we include *Waydora* and *Pachytrype* in *Cytosporaceae* based on molecular data. Here we introduce five *Cytospora* species viz., *Cytospora centrivillosa*, *Cytospora fraxini*, *Cytospora junipericola*, *Cytospora quercicola*, and *Cytospora rosae*. *Cytospora centrivillosa* forms a distinct clade that is sister to *Cytospora melanodiscus* is morphologically quite different having 1-septate ascospores. Here we added sequences of *C. salicina* from freshly collected specimens.

Prosopidicolaceae (Clade 17) is introduced to accommodate *Prosopidicola mexicana*.

Phaeoappendicospora thailandensis (Clade 18) forms separate fully-supported (MLB/MPB/PP = 100/100/0.9) clade. It currently does not have a high affinity with any known family in *Diaporthales*, therefore we consider this species as *Diaporthales* genera *incertae sedis*.

Clade 19 represents the family *Stilbosporaceae* that is fullysupported (MLB/MPB/PP = 100/100/1). Although *Crinitospora* is morphologically different from *Stegonsporium* and *Stilbospora*, inclusion of this genus in the family is phylogenetically wellsupported.

Clade 20 comprises the family *Coryneaceae* and includes molecular data for *Coryneum arausiaca* collected from Italy. *Coryneum arausiaca* has high support (MLB/PP = 100/96/1) as a separate species.

Clade 21 represents the family *Sydowiellaceae* with very good support (MLB/MPB/PP = 98/79/1) and here we introduce a new species *Sydowiella urticicola*. *Sydowiella urticicola* clade received high support values.

Lamproconiaceae is represented by clade 22 and comprises *Lamproconium* and *Hercospora*.

The new family *Asterosporiaceae* (23) is introduced to accommodate *Asterosporium asterospermum*. This monogeneric family received high support (MLB/MPB/PP = 100/96/1) and is sister to the *Sydowiellaceae* and *Lamproconiaceae*.

Fig. 1. Consensus tree resulting from a maximum likelihood analysis of a combined LSU nrDNA, ITS nrDNA, *rpb2* and *tef1* sequence alignment for taxa of *Diaporthales* and other species in *Sordariomycetes*. Families are indicated in coloured blocks. RAxML bootstrap support values (MLB above 50 %), maximum parsimony bootstrap support values (MPB above 50 %) and Bayesian posterior probabilities (BPP above 0.90) are given at the nodes (MLB/MPB/BPP). The scale bar represents the expected number of changes per site. The tree is rooted to *Eutypella* sp (MFLUCC 16–1215). All the new sequences used in this study are in blue bold and type sequences are in black bold. The nodes that received maximum support (MLB/MPB/BPP = 100/100/1) are indicate by *

Fig. 1. (Continued).

Fig. 1. (Continued).

Fig. 1. (Continued).

Fig. 1. (Continued).

Fig. 1. (Continued).

Taxonomy

Diaporthales Nannf., Nova Acta R. Soc. Scient. Upsal. 8: 53. 1932.

Saprobic or pathogenic in plants, and animals, including humans or inhabiting soil. Sexual morph: Pseudostromata or ascostromata well-developed, poorly developed or absent, scattered, immersed or erumpent, solitary to aggregated, valsoid to diatrypoid, broadly elliptical, oval to circular from above, yellowish orange, pale brown, dark brown to black, some species turning purple or umber in KOH. Entostroma normally limited to the region near the perithecial walls, prosenchymatous, pale-coloured, and slightly differentiated from the surrounding bark tissue. Ectostromatic disc well- or poorly developed, subhvaline, vellowish white, pale brown, rarely dark brown to black, pulvinate, flat or slightly convex, orbicular, circular or somewhat irregular, with or without black zone or a crust consisting of fungus tissue, sclerotioid, coriaceous. Central column present or absent, if present beneath the disc more or less conical, comprising hyaline or pigmented hyphae mixed with a pigmented, cream, yellow, olive, brownish or grey, powdery amorphous substance. Ascomata perithecial, scattered, solitary or aggregated, immersed to erumpent, rarely superficial, globose to subglobose, sometimes circinate, arranged in a valsoid to diatrypoid configuration or single, coriaceous, sometimes with plate-like ornamentation around ostiole, black to brown, ostiolate, papillate. Papilla lacking or upright, long or short, one or more, central or eccentric, slanted to horizontal on host tissue, sometimes converging, with neck swollen at the tips, fuscous black to umber, ostiole with hyaline periphyses. Peridium thin or thick, comprising outer, dark, thickwalled, cells of textura angularis and inner, mostly small, hyaline, thin-walled, flattened cells of textura angularis. Hamathecium aparaphysate or comprising few broad cellular, filiform to cylindrical, septate to aseptate, branched to unbranched, hyaline paraphyses and sometimes parenchymatous cells attached at the base and asci dissolving at maturity. Asci generally 2-32-spored, unitunicate, ellipsoid, cylindrical, fusiform, clavate, oblong-clavate, broadly fusoid to cylindrical-fusoid, short pedicellate, apex blunt, usually with distinct, J- refractive ring. Ascospores overlapping

uniseriate, biseriate, partially biseriate to fasciculately arrange, ovoid, ellipsoid, oblong, fusoid, cylindrical, filamentous or allantoid, aseptate to multi-septate, rarely distoseptate, constricted or not at the septa, hyaline, olivaceous to brown, smooth- to sometimes ornamented walled, ends mostly rounded, rarely pointed, multi-guttulate, straight or curved, smooth- to sometimes ornamented walled to rarely ornamented, hyaline to dark brown. Appendages absent or present: if present, apical or basal, subulate, navicular or whip-shaped, smooth, hvaline, Asexual morph: Coelomycetous. Stroma present or absent, immersed to superficial, opening by irregular rupture, globose, subglobose to irregular, solitary to gregarious, orange, brown to dark brown, sometimes loculate. Conidiomata amphigenous, eustromatic, punctiform, pycnidial or acervular, sometimes pyriform in section and divided into compartments by bending of peridium, subcuticular, peridermal or subepidermal, brown to black or orange with dark brown border, sometimes with a central, well-developed, pale brown, pseudoparenchymatous layer, becoming thinner or absent at the margin of the conidiomata, sometimes with pale coloured, ectostromatic disc and central column or with radiate scutella. Scutella convex, membranous, brown, somewhat translucent, with a central hyaline or pale disc, giving rise to radiating hyphae, thick-walled cells radiating from a central point, rounded to pointed at the tips. Peridium comprising pale to dark brown cells of textura angularis to textura globulosa. Paraphyses present or absent. If present, hyaline, cellular, subcylindrical, branched or not, with obtuse apex, septate, constricted at septa. Conidiophores reduced to conidiogenous cells or arising from the upper most cells of basal and parietal tissue or under the developing scutellum, densely aggregated or few, filiform, fusiform, cylindrical to globose, simple or branched, septate or aseptate, sometimes septate only at the base, smooth, hyaline or hyaline at the top, pale brown at the base, sometimes dimorphic. Alpha conidiophores tightly aggregated, subcylindrical, branched in mid region, consisting of few supporting cells, giving rise to septate, ampulliform, cylindrical to irregular conidiogenous cells or paraphyses, straight to sinuous, septate, cylindrical, hyaline to pale brown, branched only at the base, smooth, formed from the innermost layer cells of the conidiomatal wall, sometimes with

terminal and lateral apex, with minute periclinal thickening and collarette. Beta conidiophores interspersed among alpha conidiophores, hyaline, subcylindrical, branched, septate. Conidiogenous cells lining the inner cavity of conidioma, enteroblastic to holoblastic, annellidic or phialidic, discrete or integrated, hyaline to olivaceous, smooth, lageniform, subcylindrical to ampulliform, with terminal truncate locus, simple or branched, proliferating several times percurrently near apex, with flaring collarettes or apex truncate, with minute periclinal thickening or terminal truncate locus. Conidia broadly ellipsoid, oval, obovoid, allantoid, fusoid to sigmoid, sinuate to slightly angular, hyaline to brown, hyaline when immature, becoming medium brown to dark brown at maturity, smooth-walled, guttulate, aseptate to septate or distoseptate, apex obtuse, base truncate with a visible scar or a flat protruding scar at the base, sometimes the apical and basal cell darker than other cells or with hyaline tip in apical cell, sometimes with or without a longitudinal germ slit, sometimes with marginal frill or becoming golden brown at germination, with solitary, brown, wavy germ tubes.

Notes: The order Diaporthales was introduced to accommodate "true" diaportheen taxa and Eriksson & Winka (1997) accommodated Diaporthales in Sordariomycetidae. Barr (1978), Monod (1983), Castlebury et al. (2002), Rossman et al. (2007), Maharachchikumbura et al. (2015, 2016), Rossman et al. (2015) and Voglmayr et al. (2017) clarified the taxonomic and phylogenetic concepts. Maharachchikumbura et al. (2015) introduced the subclass Diaporthomycetidae to accommodate the order Diaporthales. Morphologically and phylogenetically this is a wellsupported order comprising Apiosporopsidaceae, Apoharknessiaceae, Asterosporiaceae, Auratiopycnidiellaceae, Coryneaceae, Cryphonectriaceae, Cytosporaceae, Diaporthaceae, Erythrogloeaceae, Gnomoniaceae, Harknessiaceae, Juglanconidaceae, Lamproconiaceae, Macrohilaceae, Melanconidaceae, Melanconiellaceae, Prosopidicolaceae, Pseudoplagiostomaceae, Schizoparmaceae, Stilbosporaceae, and Sydowiellaceae.

Apiosporopsidaceae Senan., Maharachch. & K.D. Hyde, fam. nov. MycoBank MB821538. Facesoffungi number FoF03455. Clade 3.

Parasitic on living leaves and twigs. Sexual morph: Ascomata scattered, black, oval to almost spherical, immersed in the leaf tissue beneath a thin, well-developed clypeus, neck lacking or only slightly papillate, periphysate. *Peridium* comprises 5–6 outer layers of dark, thick-walled cells of *textura angularis* and inner, thin-walled, strongly flattened cells of *textura angularis*. *Hamathecium* aparaphysate. *Asci* 8-spored, unitunicate, short-pedicellate, apex blunt with J- apical ring. *Ascospores* 1–2-seriate, elliptical to fusoid, often slightly flattened on one side, unicellular, hyaline. Asexual morph: Coelomycetous. *Stroma* loculate, globose to irregular, sometimes with beaks. *Conidiogenous cells* phialidic, short to elongate, simple or branched. *Conidia* oblong or cylindrical to allantoid, 1-celled, hyaline.

Type genus: Apiosporopsis (Traverso) Mariani.

Type species: Apiosporopsis saccardoana Mariani.

Apiosporopsis carpinea (Fr.) Mariani, Atti Soc. ital. Sci. nat. (Modena) 50: 165. 1911. Facesoffungi number FoF03456. Fig. 2.

Basionym: Xyloma carpini Fr., Observ. mycol. (Havniae) 2: 363. 1818.

Illustration: For asexual morph see Potebnia (1910).

Saprobic on over-wintered plants. Sexual morph: Clypeus 70-140 µm wide, 50-70 µm high, slight, prosenchymatous. Ascomata 112-250 µm diam, 140-170 µm high, globose or depressed, immersed, usually hypophyllous, apapillate, apex rounded with plane pore or short papillate or conic. Peridium 10-20 um wide, comprising brown cells of textura thick-walled. angularis. Asci 40-75 × 8-14 µm, 8-spored, unitunicate, cylindrical, sessile, apical ring bilobed, distinct, shallow. Ascospores 10-15 × 3.5-6.5 µm, overlapping uniseriate, ellipsoid, ovoid or fusoid, straight or often inequilateral, guttulate, hyaline, aseptate. Asexual morph: Conidiomata acervular, superficial, black, coriaceous. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 5-10 µm long, conical, wide, aseptate, hyaline. Conidia 12-15 × 8-9 µm, oblong to ellipsoid, hyaline, aseptate, with two small guttules (description of asexual morph from Potebnia 1910).

Material examined: Austria, Sonntagberg, New Rosenau, July, on leaves of Carpinus betulus (Betulaceae), P.P. Strasser, IMI 11662.

Notes: Traverso (1907) erected Apiosporopsis as a subgenus of *Guignardia* to accommodate *Guignardia carpinea* and *G. veneta* based on their distinct morphological characters. Mariani (1911) raised Apiosporopsis to generic rank describing *A. saccardiana* as a third species. Von Höhnel (1917) proposed Sphaerognomonia to accommodate Apiosporopsis carpinea. Reid & Dowser (1990) evaluated this genus and proposed Apiosporopsis as the correct name for Sphaerognomonia, retaining the type species as Apiosporopsis carpinea. Index Fungorum (2017) and MycoBank (2017) list another two species of Apiosporopsis as *A. saccardoana* and *A. coronillae*.

Apiosporopsis carpinea was recorded only on over-wintered living leaves. Gloeosporium robergei was reported as the asexual morph of A. carpinea (Potebnia 1910, Treigien & Markovska 2007). However, there are no molecular data to prove this. Gloeosporium robergei was reported as the causal agent of bud mortality and twig cankers on Ostrya virginiana (Sinclair & Hudler 1980). Sequences of this species (CBS 617.72 and CBS 738.68) placed the genus in the Diaporthales, but not in the Gnomoniaceae or Melanconidaceae (Sogonov et al. 2008). The molecular analysis of this study revealed that Apiosporopsis species formed a separate, well-supported clade (Fig. 1, Clade 3). Morphologically this clade is distinct from other families of Diaporthales having ascospores with pseudo-septate, sharply pointed ends, sessile unitunicate asci with a bilobed apical ring, and apapillate, immersed ascomata. Hence, we introduce the family Apiosporopsidaceae to accommodate these species.

Apoharknessiaceae Senan., Maharachch. & K.D. Hyde, fam. nov. MycoBank MB821881. Facesoffungi number FoF03457. Clade 13.

Endophytic, saprobic or pathogenic. Sexual morph: Undetermined. Asexual morph: *Conidiomata* stromatic or eustromatic, subepidermal to immersed, solitary to gregarious, subglobose to irregular, unilocular, pale brown. *Conidiomata wall* outer layer composed of thin-walled, pale brown cells of *textura*

Fig. 2. Apiosporopsis carpinea (IMI 11662). A. Packet of the herbarium specimen. B. Herbarium specimen. C. Ascomata on substrate. D, E. Vertical section of ascomata. F–I. Asci. J–M. Ascospores. Scale bars: C = 500 μm, D, E = 50 μm, F–M = 10 μm.

angularis, inner layer pale yellow to hyaline. Conidiophores reduced to conidiogenous cells or hyaline, septate, cylindrical, and sparingly branched. Conidiogenous cells holoblastic, cylindrical, lageniform to ampulliform, hyaline, smooth, invested in mucus. Conidia obclavate, conical, aseptate, pale brown, with a longitudinal band on the flat surface, thick and smooth-walled, guttulate, with short hyaline apiculus, with small globule of mucus on base or obtuse apex with a scar at the base.

Type genus: Apoharknessia Crous & S.J. Lee.

Type species: Apoharknessia insueta (B. Sutton) Crous & S.J. Lee.

Notes: Apoharknessia displays similar morphological characters to *Harknessia* but differs in having a hyaline, apical apiculus. Nag Raj (1993) listed *Mastigonetron*, as a synonym for *Harknessia*. *Mastigonetron* is typified by *M. fuscum* (= *H. insueta*). However, this species has a *Wuestneia* sexual morph, *W. fusca*, and it does not cluster with other *Harknessia* species. Therefore, *Apoharknessia* was introduced to accommodate *H. insueta* (Lee *et al.* 2004). The genus *Apoharknessia* presently accommodates two species (Crous *et al.* 2017).

Lasmenia species cause rachis necrosis, flower abortion and necrotic spots on leaves of *Nephelium lappaceum*. Several *Lasmenia* species associated with tropical fruits as pathogens have been isolated. DNA-based studies report a close affinity of *Lasmenia* to *Cryphonectriaceae* (Serrato-Diaz *et al.* 2011). Lasmenia was introduced in 1886 without designating any type species and *L. balansae* was selected as the lectotype species by von Höhnel (1910). There are 12 species recorded under *Lasmenia* in Index Fungorum (2017). *Lasmenia* species are reported as the causative agents of rachis necrosis, flower abortion, fruit rot, and leaf spots on *Nephelium lappaceum* (Serrato-Diaz *et al.* 2011). A few species have been transferred to *Lasmeniella*, but some species remain doubtful.

Phylogenetic analysis in the present study indicates that *Apoharknessia* and *Lasmenia* clearly belong to the *Diaporthales* in a well-supported clade (Fig. 1, Clade 13). However, the sequences of *Lasmenia* which are included in this study are not of a known species and given the sparse taxa in this family, any affinity between the two genera can not be ascertained.

Hence, we introduce a new family *Apoharknessiaceae* to accommodate these two genera. Morphologically species of this clade are distinct from other families of *Diaporthales* in having eustromatic to stromatic pycnidial conidiomata, blastic or phialidic conidiogenesis and ellipsoid to conical conidia with a longitudinal band on the flat surface or small globule of mucus at the base.

Apoharknessia insueta (B. Sutton) Crous & S.J. Lee, Stud. Mycol. 50: 240. 2004. Facesoffungi number FoF03458.

Illustration: See Lee et al. (2004).

Foliicolous forming bleached spots or saprobic on various substrates. Sexual morph: Undetermined. Asexual morph: *Conidiomata* stromatic, subepidermal to immersed, solitary to gregarious, subglobose to irregular, unilocular, pale brown. *Conidiomata wall* outer layer composed of thin-walled, pale brown cells of *textura angularis*, inner layer pale yellow to hyaline. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* $5-15 \times 4-6 \ \mu m (\overline{x} = 9 \times 4.8 \ \mu m)$, lageniform to ampulliform, hyaline, smooth, invested in mucus. *Conidia* $10-12 \times 7.5-9 \ \mu m (\overline{x} = 10.5 \times 8 \ \mu m)$, conical, aseptate, brown, with a longitudinal band on the flat surface, thick and smoothwalled, guttulate, with short hyaline apiculus, with small globule of mucus on base. *Basal appendage* 2 × 1–1.5 \ µm, often gelatinising and resulting in a minute marginal frill on the truncate base of the conidia (description based on Nag Raj 1993).

Notes: Apoharknessia was introduced and typified by *Apoharknessia insueta* and it clustered distant from *Harknessia sensu stricto* (Clade 7) (Lee *et al.* 2004). *Apoharknessia* is morphologically similar to *Harknessia* but distinct in having a hyaline apical apiculus in conidia and cultures on oatmeal or malt extract agar not forming fluffy aerial mycelium. In addition, it grows within the medium and sporulates directly on hyphae without forming conidiomata. Crous *et al.* (2017) introduced a new species as *Apoharknessia eucalyptorum*.

Asterosporiaceae Senan. Maharachch. & K.D. Hyde, fam. nov. MycoBank MB821539. Facesoffungi number FoF03459. Clade 23.

Endophytic or saprobic on *Betulaceae*, *Fagaceae*, *Juglandaceae* and *Sapindaceae*. Sexual morph: Undetermined. Asexual morph: *Conidiomata* acervular, subepidermal, erumpent at maturity, solitary, or occasionally confluent, unilocular, dark brown to black. *Conidiomata wall* composed of thin-walled,

brown cells of *textura angularis*. *Conidiophores* cylindrical, branched at the base, septate, hyaline to pale brown. *Conidiogenous cells* holoblastic, cylindrical, unbranched, integrated, determinate, hyaline to pale brown, smooth. *Conidia* terminal, transversely distoseptate, consisting of four arms, with reduced lumina, brown, smooth-walled.

Type genus: Asterosporium Kunze.

Type species: Asterosporium hoffmannii Kunze.

Notes: A molecular phylogenetic analysis based on SSU nrDNA, LSU nrDNA, ITS nrDNA and beta-tubulin positions Asterosporium species within Sordariomycetes (Tanaka et al. 2010). Wijayawardene et al. (2016) showed that Asterosporium species are related to Diaporthales forming a sister clade to species in Sydowiellaceae based on combined ITS nrDNA and LSU nrDNA sequence analyses. In this study, Asterosporium species are positioned in Diaporthales (Fig. 1, Clade 23) and constitute a well-supported sister clade to Svdowiellaceae and Lamproconiaceae. Morphologically, Asterosporium species are distinct from other members of Diaporthales in having star-like, brown conidia. Hence, we introduce a novel family Asterosporiaceae to accommodate Asterosporium species. We illustrate Asterosporium asterospermum collected from Italy.

Asterosporium asterospermum (Pers.) Hughes, Canad. J. Bot. 36: 738. 1958. Fig. 3.

Basionym: Stilbospora asterosperma Pers. [as 'asterospora'], Syn. meth. fung. (Göttingen) 1: 96. 1801.

Saprobic on twigs and branches of *Fagus sylvatica*. Sexual morph: Undetermined. Asexual morph: *Conidiomata* 2–2.5 mm high, 0.8–1 mm diam ($\bar{x} = 2.1 \times 0.86$ mm, n = 15), acervular, subepidermal, erumpent at maturity, solitary, or occasionally confluent, unilocular, dark brown to black. *Conidiomata wall* 25–30 µm ($\bar{x} = 29$, n = 20), composed of thin-walled, brown cells of *textura angularis*. *Conidiophores* 30–35 µm high, 5–8 µm wide ($\bar{x} = 29 \times 7$ µm, n = 20), cylindrical, branched at the base, septate, hyaline to pale brown. *Conidiogenous cells* 70–100 µm high, 4–7 µm wide ($\bar{x} = 80 \times 5$ µm, n = 20), holoblastic, cylindrical, unbranched, integrated, determinate, hyaline to pale brown, smooth-walled. *Conidia* 65–75 × 90–115 µm ($\bar{x} = 68 \times 100$ µm, n = 20), terminal, transversely distoseptate, consisting of four arms, with reduced lumina, brown, smooth-walled.

Specimen examined: Italy, Forlì-Cesena Province, Santa Sofia, near Passo la Calla, on dead branch of *Fagus sylvatica (Fagaceae)*, 29 Sep. 2012, E. Camporesi, IT 805, MFLU 15-3555, HKAS 92536.

Notes: Asterosporium was introduced and typified by Asterosporium asterospermum (= Stilbospora asterosperma and Asterosporium hoffmannii) and there are five species listed Fungorum А. Index (2017), namely acerinum, in asterospermum, A. attenuatum, A. hoffmannii and Α. A. strobilorum. However, only A. asterospermum has DNA sequence data in GenBank. There are no records for the sexual morph of Asterosporium (Tanaka et al. 2010). Species of this genus are associated with twigs and stems of overwintered plants as endophytes.

Fig. 3. Asterosporium asterospermum (MFLU 15–3555). A. Conidiomata on host substrate. B, C. Vertical section of conidiomata. D–H. Different stages of conidiogenesis. I–M. Conidia. Scale bars: A = 1 mm, B = 400 µm, C = 50 µm, D–H = 20 µm, I–M = 30 µm.

Auratiopycnidiellaceae Senan., Maharachch. & K.D. Hyde, fam. nov. MycoBank MB821540. Facesoffungi number FoF03460. Clade 11.

Foliicolous. Sexual morph: Undetermined. Asexual morph: *Conidiomata* amphigenous, pycnidia, globose, orange on leaves with dark brown border. *Peridium* comprises pale brown cells of *textura angularis. Paraphyses* hyaline, cellular, subcylindrical, branched or not, with obtuse apex, septate, constricted at septa. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* hyaline, smooth, lageniform to ampulliform, with terminal truncate locus, thick-walled, sometimes appearing to proliferate percurrently. *Conidia* ellipsoid, smooth, solitary, median 1-septate, constricted at septum, apex obtuse, base truncate, thickened, at times with marginal frill, becoming golden brown at germination with solitary, brown, wavy germ tubes.

Type genus: Auratiopycnidiella Crous & Summerell.

Type species: Auratiopycnidiella tristaniopsidis Crous & Summerell.

Notes: Crous *et al.* (2012a) described *Auratiopycnidiella* as a genus with subepidermal, orange, pycnidial conidiomata, forming hyaline, holoblastic conidiogenous cells, with or without a thickened scar and hyaline, ellipsoid, 1-septate conidia having a thickened hilum or minute marginal frill. Crous *et al.* (2012a)

reported that the genus is phylogenetically distant to *Melanconidaceae* based on LSU nrDNA sequence data and treated this genus as *Diaporthales* genera *incertae sedis* pending the availability of more molecular data. A megablast search of NCBI's GenBank nucleotide database using the calmodulin, ITS nrDNA, and beta-tubulin sequences retrieved sequence similarities with *Harknessiaceae* and *Cryphonectriaceae* (Crous *et al.* 2012a). Our phylogenies generated herein indicate that *Auratiopycnidiella* forms a single branch which is phylogenetically distinct from all other included families (Fig. 1, Clade 11) and hence we introduce *Auratiopycnidiellaceae* to accommodate *Auratiopycnidiella. Auratiopycnidiella* currently comprises a single species with a single isolate.

Auratiopycnidiella tristaniopsidis Crous & Summerell [as '*tristaniopsis*'], Persoonia 28: 69. 2012. Facesoffungi number FoF03461.

Illustration: See Crous et al. (2012a).

Foliicolous. Sexual morph: Undetermined. Asexual morph: *Conidiomata* up to 200 μ m diam, amphigenous, pycnidia, globose, orange on leaves with dark brown border, with irregular central opening. *Peridium* up to 25 μ m thick, comprising 4–7 layers of pale brown cells of *textura angularis*. *Paraphyses* hyaline, cellular, subcylindrical, branched or not, with obtuse apex, 2–6-septate, constricted at septa *Conidiophores* 10–25 × 3–6 μ m, reduced to

conidiogenous cells. *Conidiogenous cells* hyaline, smooth, lageniform to ampulliform, with terminal truncate locus, thick-walled, sometimes appearing to proliferate percurrently. *Conidia* $13-15 \times 5-5.5 \,\mu$ m, ellipsoid, smooth, solitary, medially 1-septate, constricted at septum, obtuse at apex, truncate at base, thickened at times with marginal frill, hyaline becoming golden brown during germination with solitary, brown, wavy germ tubes 90° to the long axis of the spore (description based on Crous *et al.* 2012a).

Notes: Auratiopycnidiella was introduced and typified by *Auratiopycnidiella tristaniopsis.* This is a monotypic genus comprising only the type species, *A. tristaniopsis. Auratiopycnidiella tristaniopsis* forms leaf spots on its host species. Morphologically this taxon shows some similarities to taxa of the *Cryphonectriaceae* in having orange conidiomata. However, phylogenetically it is distinct from *Cryphonectriaceae*.

Coryneaceae Corda, Icon. fung. (Prague) 3: 36. 1839. Clade 20. *Synonym: Pseudovalsaceae* M.E. Barr, Mycol. Mem. 7: 151. 1978.

Saprobic on dead wood or pathogenic. Sexual morph: Stromata solitary, erumpent, comprising pseudoparenchymatous cells. Ectostromatic disc well or poorly developed, brown to black, comprising small cells of textura prismatica cells. Ascomata perithecial, arranged in valsoid configuration, immersed, aggregated, globose to subglobose, coriaceous, brown to black, papillate, ostiolate. Papilla upright, central, broad, sometimes converging, comprising brown cells of textura porrecta. Peridium comprising outer, thick-walled, brown cells of textura angularis and inner, thick-walled, hvaline, compressed cells of textura angularis. Hamathecium comprising broad, cellular, septate paraphyses, attached to base, longer than asci. Asci 8-spored, unitunicate, ellipsoid to cylindrical, thin-walled, pedicellate, apex rounded with a J- apical ring. Ascospores overlapping uni- to biseriate, hyaline or initially hyaline, brown at maturity, irregularly fasciculate, ellipsoid, fusoid or elongate, 1-3-septate, often distoseptate, end cells pale brown or hyaline, sometimes end cells pointed, straight or curved not constricted at the septa, guttulate, smooth-walled. Asexual morph: Coelomycetous. Conidiomata acervular, solitary, erumpent through the outer periderm layers of host or immersed, scattered, surface tissues above slightly dome-shaped. Conidiomatal wall composed of thin-walled, vertically arranged dark brown cells of textura angularis. Conidiophores branched at the base or not, cylindrical to globose, septate or aseptate, hyaline or hyaline at the apex, pale brown at the base. Conidiogenous cells terminal, hyaline, annellidic, cylindrical, sometimes with setulose apical appendages. Conidia hyaline to dark brown, curved, broadly fusiform to cylindrical or clavate, smooth-walled, 4-6-distoseptate, sometimes the apical and basal cell darker than other cells with hyaline tip in apical cell.

Type genus: Coryneum Nees.

Type species: Coryneum umbonatum Nees.

Notes: The family *Coryneaceae* (Fig. 1, Clade 20) was introduced by Corda (1839) based on *Coryneum*. However, Barr (1978) introduced the family *Pseudovalsaceae* based on *Pseudovalsa lanciformis*, which is the sexual morph of *Coryneum umbonatum*. Hence *Pseudovalsaceae* must be synonymised under *Coryneaceae* giving priority to the older name. Rossman *et al.* (2015) protected the earliest name *Coryneum* (1816) over *Pseudovalsa* (1863) and conserved *Coryneum umbonatum* as the type species. This family comprises fungal taxa with upright, erumpent perithecia and central beaks. However, many genera previously included in *Coryneaceae* have been placed in various other families (Castlebury *et al.* 2002) and the only genus remaining in the family is *Coryneum*.

Coryneum arausiaca (Fabre) Senan., Maharachch. & K.D. Hyde, **comb. nov.** MycoBank MB821543. Facesoffungi number FoF03462. Fig. 4.

Basionym: Pseudovalsa arausiaca Fabre, Sphér. Vaucl.: 56. 1883.

Saprobic on branches of Quercus sp. Sexual morph: Stromata comprising loosely packed, black, hyphae mostly around the neck. Ascomata 600-700 µm high, 315-365 µm diam $(\overline{x} = 640 \times 340 \text{ µm}, \text{ n} = 20)$, immersed, 5–10 aggregated in one group, visible only as ostiolar opening through cracks in bark, valsoid, globose, brown to black, papillate, ostiolate, ostiole periphysate, periphyses hyaline, long. Peridium 25-50 µm $(\overline{x} = 45 \ \mu m, n = 10), 10-15$ layers of thick-walled, brown-walled cells of textura angularis and papilla comprising brown cells of textura porrecta. Paraphyses 5–10 μ m (\overline{x} = 7.6 μ m, n = 20), few, hyaline, septate, attached at base, longer than asci. Asci $145-155 \times 25-30 \ \mu m$ ($\overline{x} = 146 \times 25.6 \ \mu m$, n = 10), 8spored, unitunicate, clavate, short pedicellate, apically rounded, narrow, J-, without an obvious apical ring. Ascospores $70-90 \times 6.5-8.5 \ \mu m$ ($\overline{x} = 77 \times 7.5 \ \mu m$, n = 10), 2-3-seriate, broadly ellipsoidal, ends pointed, 1-3-septate, not constricted at the septa, hyaline, guttulate, smooth-walled. Asexual morph: Conidiomata acervular, 1-1.3 mm wide, 0.5-0.55 mm high $(\overline{x} = 1.1 \times 0.51 \text{ mm}, n = 20)$, solitary, erumpent through the outer periderm layers of host, scattered, surface tissues above slightly domed. Conidiomatal wall 100-150 μ m (\overline{x} = 135 μ m, n = 20), composed of thin-walled, vertically arranged, dark brown cells of textura epidermis. Conidiophores 20-35 µm long, 4-7 µm wide $(\overline{x} = 30 \times 6 \mu m, n = 20)$, branched at the base, cylindrical, septate, hyaline at the top, pale brown at the base. Conidiogenous cells 4–7 μ m long, 4.5–6 μ m wide (\overline{x} = 6 × 5 μ m, n = 20), formed from the apical cell of the conidiophore, holoblastic, cylindrical, hyaline. Conidia 42-56 × 13-16 µm $(\overline{x} = 48 \times 14 \ \mu m, n = 20)$, curved, broadly fusiform to fusiformcylindrical or clavate (rather variable in form), dark brown, smooth-walled, 4-6-disto-septate, with apical and basal cells darker than other cells, apical cell with a hyaline tip, truncate and black at base.

Culture characteristics: Ascospores germinating on MEA within 12 h and germ tubes produced from both ends, fast growing on MEA at 25 °C, after 1 wk reaching 3 cm diam, white, cottony, margin wavy, superficial, slightly effuse, radially striated, edges with more aerial mycelium than centre.

Specimens examined: **Italy**, Province of Forli-Cesena, Civitella di Romagna, Pian di Spino, on branch of *Quercus* sp. (*Fagaceae*), 25 Mar. 2013, E. Camporesi, IT 1144, (**neotype designated here** MFLU 14–0796, cultures exneotype, MFLUCC 13–0658); Province of Forli-Cesena, Civitella di Romagna, Pian di Spino, on branch of *Quercus* sp. (*Fagaceae*), 16 Feb. 2015, E. Camporesi, IT 1144A, **paraneotype** HKAS83943, cultures ex-paraneotype, MFLUCC 15–1110.

Fig. 4. Coryneum arausiaca (MFLU 14–0796). A, B. Ascostromata on substrate. C, D. Vertical section of ascoma. E. Peridium. F. Periphyses. G. Paraphyses. –J. Asci. K–S. Ascospores. T. Conidiomata on substrate. U. Vertical section of conidiomata. V. Conidiophores, conidiogeneous cells with conidia. W–ZB. Conidia. Scale bars: A, B = 500 µm, C, D, S = 100 µm, E–G, K, Q, U–Z = 10 µm, H–J = 20 µm, R = 1 mm, T = 50 µm.

Notes: We have re-collected and neotypified *Pseudovalsa arausiaca. Pseudovalsa arausiaca* has immersed, globose perithecia in a valsoid configuration with broadly ellipsoidal, 1–3septate, hyaline ascospores. The neotype is morphologically identical to *Pseudovalsa arausiaca* described by Fabre (1883). However, we could not locate the type specimens and assume that they are lost. Fortunately, we obtained fresh material from the same host genus and location. Therefore, a neotype is designated here with sequence data. Rossman *et al.* (2015) protected *Coryneum* over *Pseudovalsa arausiaca* as *Coryneum arausiaca.* Both sexual and asexual morphs of *Coryneum arausiaca* were obtained from the same specimen as well as cultures which indicate a holomorph connection. We illustrate both sexual and asexual morphs of *Coryneum arausiaca* and the combined gene analysis of LSU nrDNA, ITS nrDNA, *rpb2* and *tef1* shows the distinct placement of *C. arausiaca* within *Coryneaceae* (Fig. 1, Clade 20).

Cryphonectriaceae Gryzenh. & M.J. Wingf., Mycologia 98: 246. 2006. Clade 6.

Saprobic or pathogenic in forest trees and economic crops. Sexual morph: Ascostromata scattered, immersed or erumpent, aggregated, oval to circular from above, comprising two layers, upper layer of yellowish orange to pale brown cells, purpling in

Fig. 5. Cryphonectria parasitica (NY 01293321). A. Herbarium packet. B. Herbarium specimen. C. Ascostromata on substrate. D. Horizontal section of ascostroma. E. Vertical cross section of ascoma. F–I. Asci. J–M. Ascospores. N. Horizontal cross section of conidiomata. O. Vertical cross section of conidioma. P, Q. Conidia attached to the conidiogenous cells and conidiophore. R. Conidia. Scale bars: C, D = 1 mm, F–I, P–R = 10 μm, E, Q, O = 100 μm, N = 200 μm, J–M = 5 μm.

KOH and inner layer of hyaline cells, mixed with plant cells. Ascomata immersed, aggregated, several in one stroma, globose to subglobose, fuscous black to umber, with long neck, or ostiolar canal sometimes immersed in stromatic tissues, or superficial, necks covered in umber stromatic tissue of textura porrecta, inner wall of the necks or ostiolar canal covered with hyaline, filamentous periphyses. Peridium comprising inner layer of small, hyaline cells of textura angularis and outer layer of small, brown cells of textura angularis. Hamathecium comprising a few cellular paraphyses and parenchymatous cells, attached at the base and asci dissolving at maturity. Asci 8-spored, unitunicate, cylindrical-fusoid to clavate, pedicellate, with distinct, Jrefractive ring. Ascospores overlapping uniseriate to biseriate, ellipsoid, fusoid to cylindrical, aseptate to multi-septate, not constricted at the septa, hyaline, sometimes brown, smoothwalled. Asexual morph: Coelomycetous. Conidiomata occurring as a part of ascomata as conidial locules or solitary structures, uni- to multi-loculate, pyriform, subglobose to pulvinate, necks absent or present, if present, with one to several attenuated necks, superficial or semi-immersed, orange to fuscous-black. Conidiophores cylindrical, aseptate, hyaline, sometimes reduced to conidiogenous cells. Conidiogenous cells lining the

inner cavity of the conidiomata, phialidic, sometimes within flattened bases, ampulliform, inconspicuous, with attenuated or truncate apices, hyaline, smooth. *Conidia* minute, sometimes both micro- and macro-conidia present, sigmoid, broadly ellipsoid to fusoid, obovoid-cylindrical to allantoid, aseptate, hyaline.

Type genus: Cryphonectria (Sacc.) Sacc. & D. Sacc.

Type species: Cryphonectria parasitica D. Sacc.

Notes: Cryphonectriaceae (Fig. 1, Clade 6) is mostly a pathogenic family comprising some of the world's most important tree pathogens (Vermeulen *et al.* 2011). Cryphonectriaceous species are saprobes, endophytes and phytopathogens. They cause cankers, blights and dieback of economically important plants and forest trees. Castlebury *et al.* (2002) recognised the *Cryphonectria-Endothia* complex (a precursor to the *Cryphonectriaceae*) as a separate clade in *Diaporthales* based on analysis of LSU nrDNA sequence data. *Cryphonectriaceae* was formally established by Gryzenhout *et al.* (2006c) to accommodate the *Cryphonectria-Endothia* complex and other allied genera when analysing LSU nrDNA sequence data of fungal taxa in Diaporthales. Species of this family can be distinguished from other families of Diaporthales by orange stromatic tissues, which turn purple in KOH and yellow in lactic acid. Initially Amphilogia, Chrysoporthe, Cryphonectria, Endothia and Rostraureum were placed in the family (Gryzenhout et al. 2006c). Subsequently, several additional genera were added to the family, some associated with serious canker or foliar diseases, namely: Aurantiosacculus, Aurapex, Aurifilum, Celoporthe, Chromendothia, Chrysocrypta, Chrvsofolia, Crvptometrion, Diversimorbus, Foliocrvphia, Holocryphia, Immersiporthe, Lasmenia, Latruncellus, Luteocirrhus, Mastigosporella, Microthia, Prosopidicola and Ursicollum (Vasilyeva 1993, Gryzenhout et al. 2006a, b, Nakabonge et al. 2006, Begoude et al. 2010, Gryzenhout et al. 2010, Vermeulen et al. 2011, Crous et al. 2012a, Chen et al. 2013, Crane & Burgess 2013, Crous et al. 2013).

Endothia (1849) is typified by E. gyrosa and the asexual morph of this genus was reported as an Endothiella species (Barr 1978). However, Endothiella is congeneric with Cryphonectria and Endothiella eucalypti is the asexual morph of type species of Cryphonectria, C. eucalypti (Jackson 2003). Endothiella (1906) is based on the type species, Endothiella gyrosa, now placed in Cryphonectria as C. decipiens (Gryzenhout et al. 2009). Barr (1978) observed several specimens of Cryphonectria and Endothia and she used stromatic configuration and ascospore characters to differentiate these two genera. According to Barr (1978), Cryphonectria has a valsoid configuration of perithecia in prosenchymatous stromata and ellipsoid or ovoid, 1septate ascospores, while Endothia has a diatrypoid configuration of perithecia in pseudoparenchymatous stromata and allantoid, unicellular ascospores. Based on these characters, most Endothia species have been moved to Cryphonectria and the generic name Endothia was restricted to the species with a diatrypoid configuration of the perithecia and allantoid, unicellular ascospores. Combined analysis of LSU nrDNA, ITS nrDNA, rpb2 and tef1 sequence data in the present study shows Cryphonectriaceae is not well-supported (Fig. 1, Clade 6). Phylogenetic analyses of this study also place Cryphonectria and Endothia as two separate genera, as well as Chrysocrypta (Fig. 1, Clade 9), Lasmenia (Fig. 1, Clade 13) and Prosopidicola (Fig. 1, Clade 17) outside of Cryphonectriaceae. Hence, currently this family comprises Amphilogia, Aurantioporthe, Aurantiosacculus, Aurapex, Aurifilum, Celoporthe, Chromendothia, Chrysofolia, Chrysoporthe, Chrysoporthella, Cryphonectria, Cryptometrion, Diversimorbus, Endothia, Foliocryphia, Holocryphia, Immersiporthe, Latruncellus, Luteocirrhus, Mastigosporella, Microthia, Rostraureum and Ursicollum.

Cryphonectria parasitica (Murrill) M.E. Barr, Mycol. Mem. 7: 143. 1978. Facesoffungi number FoF03463. Fig. 5. *Basionym: Diaporthe parasitica* Murrill, Torreva 6: 189. (1906).

Pathogenic on branches of *Castanea dentata*. Sexual morph: *Ascostromata* 6.5–1 mm diam ($\bar{x} = 0.8$ mm, n = 20), comprising erumpent to superficial, orange epistromatic portion and immersed, hyaline, parenchymatous portion. *Ascomata* 650–715 µm high, 210–220 µm diam ($\bar{x} = 685 \times 216$ µm, n = 20), perithecial, immersed, globose to subglobose, with black to brown ostiole, ostiolar canal slender, covered with orange to fuscous-black stromatic tissue. *Hamathecium* aparaphysate, comprising parenchymatous tissues. *Asci* 20–35 × 5–8 µm ($\bar{x} = 28 \times 6.4$ µm, n = 20), 8-spored, unitunicate, fusiform to cylindrical base with small pedicel, apex oblong. Ascospores $5-6 \times 2-2.5 \ \mu m$ ($\overline{x} = 5.5 \times 2.2 \ \mu m$, n = 20), overlapping uni- or biseriate, hyaline, ellipsoid to fusiform, 1-septate. Asexual morph: Conidiomata 250–300 μm high, 180–200 μm diam ($\overline{x} = 280 \times 185 \ \mu m$, n = 20), eustromatic, erumpent, pyriform to pulvinate, orange to fuscous black, occurring in the same stroma as perithecia. Conidiophores $3-4 \times 1-1.5 \ \mu m$ ($\overline{x} = 3.4 \times 1.1 \ \mu m$, n = 20), cylindrical, unbranched, hyaline. Conidiogenous cells $2.5-5 \times 0.5-1 \ \mu m$ ($\overline{x} = 3.3 \times 0.8 \ \mu m$, n = 20), phialidic, simple or branched. Conidia $1.8-2.5 \times 0.5-1 \ \mu m$ ($\overline{x} = 2.1 \times 0.9 \ \mu m$, n = 20), hyaline, minute, allantoid to cylindrical, aseptate.

Materials examined: USA, New York. Bronx Co. Bronx. North of Botanical Museum, Bronx Park, on *Castanea dentata (Fagaceae)*, 26 Nov. 1905, W.A. Murrill (holotype 01293321, as *Diaporthe parasitica*, NY).

Notes: American chestnut blight, caused by *Cryphonectria parasitica*, destroyed American chestnut trees in the USA and Canada at the end of the 19th century. Scientists believed *Cryphonectria parasitica* arrived from north-east Asia in the late 19th century and they discovered that Japanese and Chinese chestnut varieties showed resistance to *C. parasitica*. Spores of this fungus are highly resistant to unfavourable environmental conditions and they can be produced at any time of year when conditions are suitable. The fungus can exist as a saprobe and a parasite. Mycelium can survive more than 10 mo in dried bark and soil (Hepting 1974). Conidia and ascospores of *C. parasitica* are sometimes forcibly ejected and spread in wind and rain. Spores of *Cryphonectria parasitica* are also dispersed by beetles and birds. In addition to chestnut species, some oak species and Chinquapin also are infected by *Cryphonectria parasitica*.

Cytosporaceae Fr. [as '*Cytisporei*'], Syst. orb. veg. (Lundae) 1: 118. 1825. Clade 16.

Synonym: Valsaceae Tul. & C. Tul. [as 'Valsarum'], Select. fung. carpol. (Paris) 1: 180. 1861.

Pathogenic or saprobic on plant tissues. Sexual morph: Stromata well or poorly developed. Ectostroma circular or irregular, usually well developed in the upper regions. Entostroma normally limited to the region near the perithecial walls. Ascomata perithecia, immersed to erumpent, solitary or 6-10 ascomata aggregated in valsoid configuration, globose to oblong, coriaceous, black to brown, with long neck swollen at the tips, ostiolate. Ostiole periphysate, open through the neck. Peridium thin, comprising outer, 4-6 layers of, dark brown, thick-walled, cells of textura angularis and 5-7 layers of, inner, small, hyaline, thin-walled, cells of textura angularis. Hamathecium comprising few, hyaline paraphyses limited only at young stage. Asci unitunicate, 8spored, clavate, short-pedicellate, apex round, with apical ring. Ascospores uni- to biseriate, unicellular or rarely bicellular, allantoid or ellipsoid, hyaline, smooth-walled. Asexual morph: Stromata uniloculate, black, circular in shape. Locule composed of numerous inter connecting chambers arranged radially or irregularly within a continuous mass of ectostromatic tissue, one conidioma per locule. Conidiomata pyriform in section, brown, divided into compartments by bending of peridium. Peridium consists of brown, 5-7 layers of textura angularis cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells arising from conidiomatal wall, phialidic, simple or branched, hyaline, cylindrical. Conidia unicellular, allantoid, hyaline, smooth-walled.

Type genus: Cytospora Ehrenb.

Type species: Cytospora chrysosperma (Pers.) Fr.

Notes: The Cytosporaceae (Fig. 1, Clade 16) comprises phytopathogenic species and saprobes. Most Cytospora species are plant pathogens and cause cankers and dieback of many hardwoods and coniferous trees, as well as rarely on herbaceous plants. Generally, Cytospora cankers are known as valsa-canker, Leucostoma-canker or perennial canker (Farr et al. 1989). Cytospora species have been reported as highly virulent and destructive pathogens on Prunus and Populus trees (Biggs 1989, Kepley & Jacobi 2000). A few Cvtospora species are considered as facultative wound parasites that attack damaged or weakened plants. Maharachchikumbura et al. (2015, 2016) listed 13 genera under this family as Amphicytostroma, Chadefaudiomyces, Cryptascoma, Cytospora, Ditopellina, Durispora, Harpostroma, Hypospilina, Kapooria, Leptosillia, Maculatipalma, Pachytrype, and Paravalsa. However, the type species of Amphicytostroma, A. tiliae is the asexual morph of the type species of Amphiporthe, A. hranicensis, and these generic names are synonyms (Sutton 1980). Amphiporthe is more widely used than Amphicytospora and it seems best to protect the former (Rossman et al. 2015). However, Amphiporthe belongs in Gnomoniaceae (Sogonov et al. 2008; Fig. 1, Clade 1) and we exclude this genus from Cytosporaceae. Rossman et al. (2015) proposed to use Cytospora (1818) rather than Valsa (1825), Valsella (1870), Leucostoma (1917), Valseutypella (1919), or Leucocytospora (1927). Xenotypa is a genus in Gnomoniaceae and typified by Xenotypa aterrima. This genus is characterised by having solitary or aggregated, erumpent, globose, papillate ascomata with allantoid to cylindrical, unicellular, hyaline ascospores. Morphologically this is similar to Paravalsa and Valsella. Ananthapadmanaban (1990) described the relationship between Xenotypa and Paravalsa, accommodating Paravalsa in Valsaceae. However, many of the fungal taxa listed in Maharachchikumbura et al. (2015) do not share similar morphological characters and it is necessary to restrict this family to Cytospora sensu-lato. Cytospora, Valsella, Leucostoma, Valsa and Pachytrype have sequence data in accessible data bases. Hence, we suggest to accommodate Cytospora, Paravalsa, Pachytrype, Waydora and Xenotypa in Cytosporaceae. However, the Cytospora sensu-lato complex still needs to be resolved using high resolution genes as it seems to comprise several genera.

Cytospora centrivillosa Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821567. Facesoffungi number FoF03464. Fig. 6.

Etymology: Name based on two Latin words "*centrum*" and "*villos*" meaning hamathecium comprising filiform paraphyses.

Saprobic on dead branch of *Sorbus domestica*. Sexual morph: *Stromata* poorly developed, comprising loosely packed parenchymatous cells, black. *Ascomata* 550–725 µm high, 160–215 µm diam ($\overline{x} = 611 \times 190 \mu$ m, n = 20), aggregated, immersed, globose to subglobose, dark brown, coriaceous, ostiolate, papillate. *Papilla* 285–430 µm high, 90–130 µm diam ($\overline{x} = 340 \times 101 \mu$ m, n = 20), long, central or asymmetrically located, wall thick, internally covered by hyaline periphyses. *Peridium* comprises brown, thick-walled cells of *textura angularis*. *Asci* 75–85 × 15–19 µm ($\overline{x} = 79 \times 18 \mu$ m, n = 20), 8-spored, unitunicate, clavate to fusiform, without apical ring and pedicel. *Ascospores*

16–20 × 4–6 μm (\bar{x} = 17 × 5 μm, n = 20), biseriate, allantoid, hyaline, smooth. Asexual morph: Coelomycetous. *Conidiomata* on MEA appears as pale yellow, slimy heads of conidial mass, immersed, black. *Conidiophores* 6.5–8 × 3–3.5 μm (\bar{x} = 7.4 × 3.1 μm, n = 20), cylindrical, unbranched, hyaline. *Conidiogenous cells* 10–13.5 × 1–2 μm (\bar{x} = 11.7 × 1.6 μm, n = 20), cylindrical, tapering towards the apices, bearing single conidia at each tip, hyaline. *Conidia* 4–6 × 1–1.5 μm (\bar{x} = 5.1 × 1.1 μm, n = 20), eguttulate, allantoid, aseptate, hyaline.

Culture characteristics: Colonies growing on MEA attenuated 1 cm incubated at 18 °C within 4 d, fast growing, circular, flat, entire, white, thin, tightly attached to the media, mycelia clots arrange radially from centre to margin.

Specimens examined: Italy, Province of Forlì-Cesena, Predappio, Monte Mirabello, on dead and aerial branch of *Sorbus domestica* (*Rosaceae*), 1 Oct. 2014, E. Camporesi, IT 2132 (holotype MFLU 17–0887, isotype BBH 42449, culture ex-type MFLUCC 16–1206); Province of Forlì-Cesena, Predappio, Monte Mirabello, on dead and aerial branch of *Sorbus domestica* (*Rosaceae*), 13 Oct. 2014, E. Camporesi, IT 2132B, MFLU 17–0999, culture MFLUCC 17–1660.

Note: Cytospora centrivillosa is morphologically and phylogenetically distinct from other species in Cytospora and our analysis results in a distinct clade with full support (Fig. 1, Clade 16).

Cytospora fraxinigena Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821568. Facesoffungi number FoF03465. Fig. 7.

Etymology: Named after the host genus Fraxinus.

Saprobic on dead branch of *Fraxinus omus*. Sexual morph: *Stromata* poorly developed, comprising loosely packed parenchymatous cells, black. *Ascomata* 350–500 × 150–230 µm ($\overline{x} = 429 \times 189 \mu$ m, n = 20), immersed in stromatic tissues, globose to subglobose, dark brown, coriaceous, ostiolate, papillate. *Papilla* 185–200 × 60–95 µm ($\overline{x} = 193 \times 79 \mu$ m, n = 20), long, central, wide, thick-walled, internally covered by hyaline periphyses. *Peridium* comprises brown, thick-walled cells of *textura angularis*. *Asci* 26–33 × 6.2–7.5 µm ($\overline{x} = 30 \times 6.7 \mu$ m, n = 20), 8-spored, unitunicate, clavate to fusiform, without apical ring and pedicel. *Ascospores* 5.5–7.5 × 1.5–2 µm ($\overline{x} = 6.4 \times 1.7 \mu$ m, n = 20), biseriate, allantoid, hyaline, smooth. Asexual morph: Not observed.

Culture characteristics: Colonies growing on MEA attenuated 1 cm incubated at 18 °C within 7 d, moderate fast growing, irregular, flat, undulate, white, woolly, loosely attached to the media.

Specimen examined: Italy, Province of Forlì-Cesena, Santa Sofia, near Corniolo, dead branch of *Fraxinus ornus* (*Oleaceae*), 6 Dec. 2013, E. Camporesi, IT 1562 (holotype MFLU 17–0880, isotype BBH 42442, culture ex-type MFLUCC 14–0868).

Notes: Cytospora fraxinigena forms a distinct clade which is sister to *Cytospora cedri* and *Cytospora rosae* (Fig. 1, Clade 16). Morphologically, *Cytospora fraxinigena* differs from those species in having slightly horizontal necks closely arranged at apex and hamathecium without paraphyses.

Cytospora junipericola Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821569. Facesoffungi number FoF03466. Fig. 8.

Fig. 6. Cytospora centrivillosa (MFLU 17–0887). A, B. Stromata on substrate. C, D. Vertical cross section of ascomata. E. Peridium. F–H. Asci. I. Paraphyses. J. Ascospores. K. Conidiomata on MEA. L–N. Conidiogenous cells, conidiophores, conidia. O. Conidia. Scale bars: A = 500 μm, B = 200 μm, C, D = 50 μm, E = 5 μm, I = 20 μm, F–H, J, L–O = 10 μm, K = 500 μm.

Etymology: Named after the host genus Juniperus.

Saprobic on dead branch of *Juniperus* sp. Sexual morph: *Stromata* poorly developed, comprising loosely packed parenchymatous cells, black. *Ascomata* 630–700 µm high, 150–250 µm diam ($\bar{x} = 670 \times 170$ µm, n = 20), immersed in stromatic tissues, globose to subglobose, dark brown, coriaceous, ostiolate, papillate. *Papilla* 300–500 µm high, 45–65 µm diam ($\bar{x} = 440 \times 58$ µm, n = 20), long, central, wide, thick-walled, internally covered by hyaline periphyses. *Peridium* comprises brown, thick-walled cells of *textura angularis*. *Asci* 30–35 × 5.5–7 µm ($\bar{x} = 32 \times 6$ µm, n = 20), 8-spored, unitunicate, clavate to fusiform, without apical ring and pedicel. *Ascospores* 5–10 × 1–2 µm ($\bar{x} = 7 \times 1.5$ µm, n = 20), biseriate, allantoid, hyaline, smooth. Asexual morph: Not observed.

Culture characteristics: Colonies growing on MEA attenuated 1 cm incubated at 18 °C within 7 d, moderate fast growing, irregular, flat, undulate, greenish ash, woolly, curled, loosely attached to the media.

Specimen examined: Italy, Province of Forlì-Cesena, Santa Sofia, near Cabelli, dead branch of *Juniperus communis* (*Cupressaceae*), 13 Jan. 2014, E. Camporesi, IT 1643 (holotype MFLU 17–0882, isotype BBH42444).

Notes: Cytospora junipericola forms a distinct clade that is sister to *Cytospora quercicola* with high bootstrap support (Fig. 1, Clade 16). Morphologically *Cytospora junipericola* produces tightly packed aggregated ascomata in poorly developed stromatic tissues. Papilla are asymmetrically located and only the ostiolar openings are close together.

Fig. 7. Cytospora fraxinigena (MFLU 17–0880). A. Ascomata on substrate. B. Vertical cross section of ascoma. C. Peridium. D–F. Asci. G–J. Ascospores. Scale bars: B = 100 μ m, C = 20 μ m, D–F = 10 μ m, G–J = 5 μ m.

Cytospora quercicola Senan., Camporesi, & K.D. Hyde, **sp. nov.** MycoBank MB821570. Facesoffungi number FoF03467. Fig. 9.

Etymology: Named after the host genus Quercus.

Saprobic on dead branch of *Quercus* sp. *Stromata* poorly developed, spread around the papilla, black. *Ascomata* 550–725 µm high, 160–215 µm diam ($\bar{x} = 611 \times 190$ µm, n = 20), scattered, aggregated, immersed, globose to subglobose, dark brown, coriaceous, ostiolate, papillate. *Papilla* 285–430 µm high, 90–130 µm diam ($\bar{x} = 340 \times 101$ µm, n = 20), long, central or asymmetrically located, papilla close to each other when open to host surface. *Peridium* comprises brown, thick-walled cells of *textura angularis*. *Asci* 75–85 × 15–19 µm ($\bar{x} = 79 \times 18$ µm, n = 20), 8-spored, unitunicate, clavate to fusiform, without apical ring and pedicel. *Ascospores* 16–20 × 4–6 µm ($\bar{x} = 17 \times 5$ µm, n = 20), biseriate, allantoid, hyaline, smooth.

Culture characteristics: Colonies growing on MEA becoming 1 cm within 7 d incubated at 18 °C, circular, flat, smooth colony with white mycelium, mycelia loosely attached to the substrate.

Specimen(s) examined: Italy, Province of Forli-Cesena, Santa Sofia, near Camposonaldo, on dead branch of *Quercus* sp. (*Fagaceae*), 10 Dec. 2013, E. Camporesi, IT 1568 (holotype MFLU 17-0881, isotype BBH 42443, culture extype MFLUCC 14-0867).

Notes: The *Cytospora quercicola* clade is fully-supported by the multi-gene phylogenetic analyses (Fig. 1, Clade 16). This species is sister to *Cytospora junipericola*.

Cytospora rosae Senan., Camporesi, & K.D. Hyde, **sp. nov.** MycoBank MB821571. Facesoffungi number FoF03468. Fig. 10.

Etymology: Named after the host genus Rosa.

Saprobic on Rosa canina. Sexual morph: Stromata restricted to around the ostiolar neck, black. Ascomata 235-255 µm high, 130–150 μ m diam (\overline{x} = 240 × 140 μ m, n = 20), solitary to rarely aggregated, scattered, immersed, globose, brown, coriaceous, ostiolate, papillate. Papilla 127-140 µm high, 70-90 µm diam $(\overline{x} = 135 \times 87 \ \mu m, n = 20)$, straight or curved, long, brown, internally covered by hyaline periphyses, wall comprising elongated, thick-walled cells. Peridium 16-23 μ m diam (\overline{x} = 20 μ m, n = 20), comprising outer, thick-walled, brown cells of textura angularis and inner, compressed, thick-walled, hyaline cells of textura angularis. Hamathecium comprising septate, hyphae-like, hyaline, 1.5–2.7 μ m diam (\overline{x} = 2.5 μ m, n = 20) paraphyses. Asci $20-23 \times 3.2-3.7 \ \mu m$ ($\overline{x} = 21 \times 3.7 \ \mu m$, n = 20), unitunicate, 8spored, clavate, short-pedicellate, apex round, with apical ring. Ascospores $4.2-6.3 \times 1-1.5 \ \mu m$ ($\overline{x} = 5.5 \times 1.3 \ \mu m$, n = 20), unito biseriate, unicellular, allantoid, or ellipsoid, hyaline, smoothwalled. Asexual morph: Conidiomata 100-200 µm diam

Fig. 8. Cytospora junipericola (MFLU 17–0882). A. Ascomata on substrate. B. Vertical cross section of ascoma. C. Peridium. D–G. Asci. H. Ascospores. Scale bars: A = 500 μm, B = 100 μm, C = 20 μm, D–H = 10 μm.

 $(\overline{x} = 150 \ \mu\text{m}, n = 20)$, solitary to aggregate, immersed, pyriform to subglobose, multi-loculate, black, coriaceous, ostiolate, papillate, peridium folded into centrum. *Pycnidial walls* 4–7 μ m diam ($\overline{x} = 6 \ \mu\text{m}, n = 20$), comprising small, thick-walled, brown cells of *textura angularis*. *Conidiophores* 8–12 × 1.5–2.5 μ m ($\overline{x} = 11 \times 2 \ \mu\text{m}, n = 20$), cylindrical, shorter than conidiogenous cells, branched, hyaline. *Conidiogenous cells* 10–15 × 1–1.5 μ m ($\overline{x} = 12 \times 1.2 \ \mu\text{m}, n = 20$), phialidic, cylindrical, tapering towards the apices, bearing single conidia at each tip. *Conidia* 3–5 × 0.5–1 μ m ($\overline{x} = 2 \times 1 \ \mu\text{m}, n = 20$), aguttulate, elongated to allantoid, slightly curved, aseptate, hyaline.

Culture characteristics: Colonies growing on MEA attained 2 cm within 7 d incubated at 18 °C, filamentous, flat, filiform, middle blackish ash, margin off white, cottony, tiny mycelium clots arrange radially from centre to margin.

Specimen(s) examined: Italy, Province of Forlì-Cesena, Galeata, near Passo delle Forche, on dead branch of *Rosa canina* (*Rosaceae*), 15 Apr. 2014, E. Camporesi, IT 1814 (holotype MFLU 17-0885, isotype BBH 42447, cultures extype MFLUCC 14–0845; Province of Forlì-Cesena, Galeata, near Passo delle Forche, on dead branch of *Rosa canina* (*Rosaceae*), 4 Jan. 2016, E. Camporesi, IT 1814 (paratype MFLU 15–3596, cultures ex-paratype MFLUCC 17–1664).

Notes: Combined ITS nrDNA, LSU nrDNA, *rpb2* and *tef1* sequence data in the current study shows that *Cytospora rosae*

forms a distinct clade with high bootstrap support, basal to *Cytospora fraxinigena* (Fig. 1, Clade 16). Morphologically, *Cytospora rosae* has unique characters of solitary ascomata and small asci with septate, wide, hyaline, hyphae-like paraphyses.

Cytospora salicina Norphanphoun *et al.*, Mycosphere 8: 80. 2017. Fig. 11.

Saprobic on twigs and branches of Cornus sanguinea. Sexual morph: Undetermined. Asexual morph: Stromata appear as black pinhead spots surrounding by yellow to pale brown tissues on the substrate, immersed, rosette, labyrinthine, pale brown to black, 1-5 pycnidia in a stroma, comprising loosely packed, pale brown cells of textura globosa, ostiole. Papilla narrow, short, internally covered by periphyses, converged, black, furfuraceous. Pvcnidial locules multi-chambered, subdivided by invaginations of common pycnidial walls. Conidiomata 530-600 µm high, $600-870 \ \mu m$ diam ($\overline{x} = 570 \times 705 \ \mu m$, n = 20), solitary to aggregate, immersed, pyriform to subglobose, black, coriaceous, ostiolate, papillate, peridium folded into centrum. Papilla 200–300 μ m high, 60–95 μ m diam (\overline{x} = 210 × 80 μ m, n = 20), internally covered by hyaline filiform periphyses. Pycnidial walls 7–11 μ m diam (\overline{x} = 9.2 μ m, n = 20), comprising small, thickwalled, brown cells of textura angularis, separates from

Fig. 9. Cytospora quercicola (MFLU 17–0881). A. Ascomata on substrate. B. Cross section of ascoma. C. Peridium. D–G. Asci. H. Ascospores. Scale bars: A = 200 μm, B = 100 μm, C = 20 μm, D–H = 10 μm.

stromata at maturity. *Conidiophores* 9–15 × 1.5–2.5 µm (\overline{x} = 11.4 × 2 µm, n = 20), cylindrical, shorter than conidiogenous cells, branched, hyaline. *Conidiogenous cells* 10–20 µm high, 1–1.5 µm diam (\overline{x} = 16 × 1.3 µm, n = 20), phialidic, cylindrical, tapering towards the apices, bearing single conidia at each tip. *Conidia* 4.5–6 × 0.5–1.5 µm (\overline{x} = 5 × 1.3 µm, n = 20), eguttulate, elongated to allantoid, slightly curved, aseptate, hyaline.

Culture characteristics: Colonies growing on PDA attenuated 2 cm incubated at 18 °C within 10 d, circular, flat, entire, white, thin, slightly aerial mycelia, loosely attached to the media.

Specimen examined: Russia, Rostov Region, Krasnosulinsky District, Donskoye forestry, Kabanya Balka (Boar gully), twigs and branches of *Cornus sanguinea* subsp. *australis* (*Cornaceae*), 27 Oct. 2015, T.S. Bulgakov, R1111, MFLU 17–0891, living culture MFLUCC 16–1190.

Notes: Cytospora salicina was introduced by Norphanphoun *et al.* (2017) from Russia causing canker on *Salix* sp. However, we collected this specimen from Russia associated with twigs and branches of *Cornus sanguinea*. *Cytospora salicina* is closely related to *C. chrysosperma*, *C. melnikii*, and *C. sordida* (Fig. 1, Clade 16). Diaporthaceae Höhn. ex Wehm., Am. J. Bot. 13: 638. 1926. Clade 14.

Pathogenic, endophytic or saprobic on terrestrial and rarely submerged plants. Sexual morph: Pseudostromata well- or poorly developed, pulvinate, erumpent, flat or slightly convex, orbicular, circular or somewhat irregular, sclerotioid, coriaceous, whitish to brownish black, with or without black zone or a crust consisting of fungus tissue, solitary or containing up to 10 ascomata in a stroma. Ectostromatic disk subhyaline to brown. Ascomata perithecial, immersed to erumpent, solitary or aggregated in a valsoid configuration, globose or compressed, coriaceous, black, ostiolate, papillate. Papilla short or long, erumpent, convergent, cylindrical to conical, black, internal wall covered by hyaline periphyses, composed of vertically arranged parenchymatous tissues. Peridium comprising outer layer of flattened, thick-walled, dark-brown cells of textura angularis and inner, hyaline, thin-walled cells of textura angularis. Hamathecium comprising septate, unbranched, cylindrical paraphyses. Asci 8-spored, unitunicate, clavate, oblong-clavate to broadly fusoid, sessile, with a distinct apical ring. Ascospores biseriate to partially biseriate, ellipsoid, oblong to fusoid, unicellular or 1-

Fig. 10. Cytospora rosae (MFLU 17–0885). A. Ascomata on substrate. B. Cross section of ascoma. C. Peridium. D–I. Asci. J. Paraphysis. K. Ascospores. L. Colony on MEA upper surface. M. Colony on MEA lower surface. N–P. Conidiomata on MEA. P. Horizontal cross section of conidioma. Q–R. Peridium with conidiogeneous cells, conidiophores and conidia. S. Conidia. Scale bars: A, P–N = 500 μm, B = 50 μm, C, I, Q–R = 10 μm, D–H, J, K, S = 5 μm, P = 100 μm, O = 1 mm.

septate, constricted at septum, with or without appendages at both ends, hyaline, dark brown, sometimes narrowly rounded ends and multi-guttulate, smooth-walled. Asexual morph: *Conidiomata* acervular or pycnidial, globose, initially immersed, erumpent at maturity, solitary, scattered, coriaceous, black, elongated ostiolar neck, sometime becoming multi-loculate with one to several clearly defined black necks extending above the stroma, often with yellowish, conidial mass extruding from ostiole. *Peridium* comprising 3–4 layers of pale brown cells of *textura intricata* to *textura angularis*. *Conidiophores* sometimes dimorphic. *Alpha conidiophores* tightly aggregated, subcylindrical, branched in mid region, consisting of 2–3 supporting cells, giving rise to septate, ampulliform, cylindrical to irregular conidiogenous cells or paraphyses, straight to sinuous, 1–5-septate, cylindrical, hyaline to pale brown, branched only at the base, smooth, formed from the inner most cell layers of the conidiomatal wall, sometimes terminal and lateral, apex with minute periclinal thickening and collarette. *Beta conidiophores* interspersed among alpha conidiophores, hyaline, subcylindrical, branched, 1–3-septate. *Alpha conidiogenous cells* enteroblastic, phialidic, cylindrical or subcylindrical, terminal and lateral, slightly tapering towards the apex or sometimes apex

Fig. 11. *Cytospora salicina* (MFLU 17–0891). A. Conidiomata on substrate. B. Horizontal cross section of conidioma. C, D. Vertical cross section of conidiomata. E. Conidiophore, conidiogenous cells arrangement. F. Peridium. G–M. Conidiophores, conidiogenous cells, conidia. Scale bars: A = 500 μ m, B = 200 μ m, C, D = 100 μ m, E, F = 15 μ m, G–M = 10 μ m, N = 5 μ m.

with minute periclinal thickening and collarette. Beta conidiogenous cells phialidic, integrated, terminal and lateral. Alpha conidia abundant, fusiform, ovate, subcylindrical to narrowly ellipsoid, straight or curved, occasionally irregular, smoothwalled, 0–2-septate, hyaline, base truncate to sub-truncate, apex obtuse, straight to curved, occasionally slightly sigmoid, pale to medium brown, with many guttules, sometimes short, hyaline, appendages at both ends. *Beta conidia* subcylindrical, fusiform to hooked, straight to slightly curved, aseptate, hyaline, smooth, base sub-truncate, sometimes widest in middle or in upper third, tapering to acutely rounded apex, truncate at base.

Type genus: Diaporthe Nitschke.

Type species: Diaporthe eres Nitschke.

Notes: The family Diaporthaceae (Fig. 1, Clade 14) comprises many endophytic and phytopathogenic fungal species (Udayanga et al. 2011) and it was introduced and accommodated in Diaporthales by von Höhnel (1917). Wehmeyer (1975) confined this family to Diaporthe and Mazzantia. However, Barr (1978) synonymised Diaporthaceae under Valsaceae. Castlebury et al. (2002) analysed LSU nrDNA sequence data of diaporthoid taxa and showed the distinct placement of Diaporthaceae in Diaporthales, forming a well-supported clade. Diaporthaceae previously comprised only Diaporthe (Phomopsis) and Mazzantia based on phylogenetic analysis (Castlebury et al. 2002). However, Lumbsch & Huhndorf (2010) included Apioporthella and Leucodiaporthe in this family. A LSU nrDNA sequences analysis by Lamprecht et al. (2011) indicates placement of Stenocarpella and Phaeocytostroma within Diaporthaceae. Pustulomyces was introduced based on a combined gene analysis of LSU nrDNA, SSU nrDNA and tef1 sequence data (Dai et al. 2014). Voglmavr & Jaklitsch (2014) confirmed the phylogenetic placement of Phaeodiaporthe in Diaporthaceae based on analysis of LSU nrDNA sequence data. Maharachchikumbura et al. (2015) listed Allantoporthe, Apioporthella. Clypeoporthella, Diaporthe, Diaporthella. Diaporthopsis, Leucodiaporthe, Mazzantia, Mazzantiella, Ophiodiaporthe and Pustulomyces as genera of Diaporthaceae. Rossman et al. (2015) synonymised Mazzantiella under Mazzantia based on greater usage of Mazzantia. The genus Clypeoporthella is based on C. brencklei, and a recently collected C. brencklei (BPI 843482) specimen was grown in culture and sequenced. DNA sequence data showed that C. brencklei clustered together with Diaporthe and it has a Phomopsis asexual morph. Thus, Clypeoporthella is considered as a synonym of Diaporthe (Sogonov et al. 2008). The genus Diaporthopsis was introduced to accommodate species that are similar to Diaporthe, with unicellular ascospores and was typified by D. angelicae. Molecular analysis of LSU nrDNA sequence data showed that D. angelicae clustered within the Diaporthe. In addition. Diaporthopsis angelicae has similar morphological characters of stromata, perithecia, and centrum to species of Diaporthe. Based on morphology and molecular data, Diaporthopsis was synonymised under Diaporthe (Castlebury et al. 2003, Gomes et al. 2013). The genus Diaporthella has aggregated perithecia within well-developed stromata and median, 1septate ascospores. Diaporthella corylina is strongly parasitic and causes dieback of Corylus stems. Morphologically Diaporthella corvlina shows similar characters to Anisogramma anomala. Anisogramma based on A. virgultorum is known to belong in the Gnomoniaceae (Castlebury et al. 2002, Vasilyeva et al. 2007). However, the LSU nrDNA, ITS nrDNA, rpb2 and tef1 combined gene analyses in the current study show (Fig. 1, Clade 5) the phylogenetic placement of Diaporthella is outside of Diaporthaceae and it does not show affinities with any families in Diaporthales. Hence Diaporthaceae comprises Allantoporthe, Apioporthella, Chaetoconis, Diaporthe, Leucodiaporthe, Mazzantia, Ophiodiaporthe, Phaeocytostroma, Phaeodiaporthe, Pustulomyces and Stenocarpella. Based on an LSU nrDNA phylogeny, Gao et al. (2017) showed Diaporthe sensu lato to be polyphyletic, including genera such as Mazzantia, Ophiodiaporthe, Pustulomyces, Phaeocytostroma, and Stenocarpella. In

the present study, we address this situation by proposing *Chiangraiomyces, Paradiaporthe, Hyaliappendispora* as new genera in *Diaporthaceae*. We collected and illustrate here several taxa in *Diaporthaceae* that are new to science or are poorly studied.

Chiangraiomyces Senan. & K.D. Hyde, **gen. nov.** MycoBank MB821544. Facesoffungi number FoF03469.

Etymology: Name related to the collection locality of Chiang Rai, Thailand.

Saprobic on dead wood. Sexual morph: Ascomata solitary, scattered, immersed to erumpent, globose to subglobose, coriaceous, black, papillate, ostiolate. Papilla long, internally covered by hyaline, periphyses. Peridium comprising outer, thick-walled, brown cells of textura angularis and inner, hyaline, thick-walled, compressed cells of textura angularis. Hamathecium comprising hyaline, aseptate, filamentous paraphyses. Asci unitunicate, 8-spored, fusiform, sessile to short pedicellate, with J-, funnel-shaped, apical ring. Ascospores biseriate to overlapping uniseriate, fusiform to ellipsoid, hvaline, smooth-walled, 1-septate, with two large guttules in the centre and two small guttules at the ends. Asexual morph: Conidiomata produced on PDA when incubated at 18 °C after 2 wk, pycnidial, globose, erumpent at maturity, black, coriaceous, short neck. Conidiomatal wall comprising pale brown, thick-walled cells of textura angularis. Conidiophores ampulliform, straight, branched, septate, hyaline, smooth. Conidiogenous cells phialidic, terminal, cylindrical, slightly tapering towards the apex. Hamathecium aparaphysate. Alpha conidia aseptate, hyaline, smooth, ovate to ellipsoidal, less in amount. Beta conidia fusiform to hooked, base subtruncate, aseptate, hyaline, smooth.

Type species: Chiangraiomyces bauhiniae Senan. & K.D. Hyde.

Chiangraiomyces bauhiniae Senan. & K.D. Hyde, **sp. nov.** MycoBank MB821545. Facesoffungi number FoF03470. Fig. 12.

Etymology: Name based on the host *Bauhinia*, from which it was collected.

Saprobic on Bauhinia sp. Sexual morph: Ascomata 200-300 µm high, $150-180 \ \mu m$ diam ($\overline{x} = 230 \times 240 \ \mu m$, n = 20), solitary, scattered, immersed to erumpent, globose to subglobose, coriaceous, black, papillate, ostiolate. Papilla 115-140 µm high, 75–90 μ m diam (\overline{x} = 130 × 85 μ m, n = 20), long, internally covered by hyaline, periphyses. Peridium 11-14 µm wide $(\overline{x} = 12.5 \ \mu m, n = 20)$, comprising outer, thick-walled, brown cells of textura angularis and inner, hyaline, thick-walled, compressed cells of textura angularis. Hamathecium 2.5-3 µm wide $(\overline{x} = 2.8 \ \mu m, n = 20)$, comprising hyaline, aseptate, filamentous paraphyses. Asci 75–90 × 12–13 μ m (\bar{x} = 78 × 12.5 μ m, n = 20), unitunicate, 8-spored, fusiform, with J-, funnel-shaped, apical ring, sessile to short pedicellate. Ascospores 17-18 × 3-4 µm $(\overline{x} = 17.8 \times 3.6 \mu m, n = 20)$, biseriate to overlapping uniseriate, fusiform to ellipsoid, hyaline, smooth-walled, 1-septate, with two large guttules in the centre and two small guttules at the ends. Asexual morph: Conidiomata 300–500 μ m diam (\overline{x} = 450 μ m, n = 20), produced on PDA when incubated at 18 °C after 2 wk, pycnidial, globose, erumpent at maturity, black, coriaceous, short neck. Conidiomatal wall comprising pale brown, thick-walled cells of textura angularis. Conidiophores 4-6 × 2-4 µm

Fig. 12. Chiangraiomyces bauhiniae (MFLU 17–0964). A, B. Ascomata on substrate. C. Cross section of ascoma. D. Peridium. E. Paraphyses. F–H. Asci. I–N. Ascospores. O. Conidiomata on MEA. P, Q. Alpha and beta conidiogeneous cells attached to conidiophores. R. Beta conidia. Scale bars: A, O = 500 μm, B = 200 μm, C = 100 μm, D–H, P–R = 10 μm, I–N = 5 μm.

 $(\overline{x} = 5 \times 3 \ \mu m, n = 20)$, ampulliform, straight, branched, septate, hyaline, smooth. *Conidiogenous cells* 7–10 × 2–3 μm $(\overline{x} = 8 \times 2.3 \ \mu m, n = 20)$, phialidic, terminal, cylindrical, slightly tapering towards the apex. *Hamathecium* aparaphysate. *Alpha conidia* 3–5 × 2–4 μm ($\overline{x} = 4.7 \times 3.3 \ \mu m, n = 20$), aseptate, hyaline, smooth, ovate to ellipsoidal, less in amount. *Beta conidia* 18–38 × 1.5–2 μm ($\overline{x} = 24 \times 1.7 \ \mu m, n = 20$), fusiform to hooked, base sub-truncate, aseptate, hyaline, smooth.

Culture characteristics: Colonies growing on MEA attained 1 cm within 7 d when incubated 25 °C, fast growing, circular, irregular, flat, white, forming aerial mycelia with hyphae loosely attached to the medium.

Specimen examined: **Thailand**, Chiang Rai, Mae Fah Luang University, near University President's house, on dead twigs of *Bauhinia* sp. (*Fabaceae*), I.C. Senanayake, 25 Dec. 2014, CHUNI 81 (**holotype** MFLU 17-0964, cultures extype MFLUCC 17–1669, MFLUCC 17–1670).

Notes: Chiangraiomyces bauhiniae has immersed, solitary ascomata, fusiform asci, with a J-, funnel-shaped, apical ring, and oval to fusiform ascospores with 2 large central guttules and 2 small marginal guttules. Phylogenetically, *Chiangraiomyces bauhiniae* forms a fully-supported clade that is sister to *Ophiodiaporthe cyatheae* (Fig. 1, Clade 14). Hence, we introduce *Chiangraiomyces* to accommodate this taxon.

Fig. 13. Paradiaporthe artemisiae (MFLU 17–0886). A. Ascomata on substrate. B. Cross section of ascoma. C. Peridium. D–G. Asci. H–L. Ascospores. Scale bars: A = 200 µm, B = 100 µm, C = 20 µm, D–G, H–L = 10 µm.

Paradiaporthe Senan., Camporesi & K.D. Hyde, gen. nov. MycoBank MB821546. Facesoffungi number FoF03471.

Etymology: The name reflects the morphological similarity to *Diaporthe*.

Saprobic on dead twigs of *Artemisia* sp. Sexual morph: *Ascomata* solitary, scattered, immersed, becoming erumpent when mature, globose to subglobose, black, coriaceous, ostiolate, papillate. *Papilla* periphysate with short, wide, prominent ostiole. *Peridium* thin at the base, gradually thickening towards the neck, comprising inner, hyaline, compressed, thin-walled cells of *textura angularis*

and outer, thick-walled, brown cells of *textura angularis*. *Hama-thecium* aparaphysate. *Asci* 8-spored, unitunicate, fusiform to clavate, sessile, apex rounded with a J-, apical ring. *Ascospores* biseriate, fusiform with pointed ends, medianly 1-septate, hyaline, smooth-walled. Asexual morph: Undetermined.

Type species: Paradiaporthe artemisiae Senan., Camporesi & K.D. Hyde.

Paradiaporthe artemisiae Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821547. Facesoffungi number FoF03472. Fig. 13.

Etymology: The name reflects the host genus Artemisia.

Saprobic on dead twigs of Artemisia sp. Sexual morph: Ascomata 280-300 µm high, 180-200 µm wide (x = 290 × 190 µm, n = 10), solitary, scattered, immersed, becoming erumpent when mature, globose to subglobose, black, coriaceous, ostiolate, papillate. Papilla 135-138 µm high, 110-140 µm wide, $(\overline{x} = 136 \times 115 \ \mu m, n = 10)$, comprising filiform, hyaline periphyses with short, wide, prominent ostiole. Peridium 8-13 µm $(\overline{x} = 10 \text{ µm}, \text{ n} = 10)$, thin at the base, gradually thickened towards the neck, comprising inner, hyaline, compressed, thin-walled cells of textura angularis and outer, thick-walled, brown cells of textura angularis. Hamathecium aparaphysate. Asci $45-60 \times 11-14 \ \mu m$ (x = 51 × 13.5 \ \mu m, n = 20) 8-spored, unitunicate, fusiform to clavate, sessile, apex rounded, with a J-, bilobed, apical ring. Ascospores 14-18.5 × 4-5 µm $(\overline{x} = 16 \times 4.2 \ \mu m, n = 20)$ biseriate to overlapping uniseriate, fusiform with two small globules at the ends and two large globules at the middle of spore, medianly 1-septate, hyaline, smooth-walled. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on MEA attained 1 cm within 7 d when incubated at 18 °C, irregular, circular, flat, woolly, white, mycelia loosely attached to the substrate.

Specimen examined: **Italy**, Province of Forlì-Cesena, Bagno di Romagna, Valbonella, on dead stem of *Artemisia* sp. (*Asteraceae*), E. Camporesi, 9 Jul. 2014, IT 1982 (**holotype** MFLU 17–0886, **isotypes** BBH 42448, cultures ex-type MFLUCC 14–0850, MFLUCC 17–1663).

Notes: Paradiaporthe artemisiae has erumpent, solitary ascomata with prominent, wide papilla. Morphologically, Paradiaporthe is similar to Diaporthe. However, Paradiaporthe artemisiae forms a distinct clade which is sister to Phaeocytostroma artemisiae (Fig. 1, Clade 14). Hence, we introduce Paradiaporthe as a new genus based on morphology and phylogeny.

Hyaliappendispora Senan., Camporesi & K.D. Hyde, **gen. nov.** MycoBank MB821548. Facesoffungi number FoF03473.

Etymology: Name reflects hyaline ascospores with long appendages.

Saprobic on dead stems. Sexual morph: Ascomata solitary to aggregate, immersed, globose to subglobose, black to brown, coriaceous, ostiolate, papillate. Papilla short, wide, internally covered by hyaline periphyses. Peridium comprising outer, dark brown, thick-walled cells of textura angularis and inner, thin-walled, hyaline, compressed cells of textura angularis. Hama-thecium comprising filiform, septate, hyaline paraphyses which are longer than asci. Asci 8-spored, unitunicate, cylindrical to fusiform, short pedicellate, apex rounded with a J- apical ring. Ascospores biseriate to overlapping biseriate, oval to ellipsoid, hyaline, medianly 1-septate, multiguttulate, with appendages. Appendages at both apical and basal ends, long, thread-like, covered by loose capsule. Asexual morph: Ceolomycetous. Sporulate on PDA at 20 °C after 1 mo, crowded at colony margin, appears at pale yellow bubbles when release the

conidial mass. *Conidiomata* globose, erumpent, black. *Peridium* comprising thick-walled, pale brown cells of *textura angularis*. *Conidiophores* ampulliform, septate, branched, hyaline. *Conidiogeneous cells* phialidic, terminal, cylindrical, elongate, hyaline. *Conidia* fusiform, unicellular, hyaline, smooth.

Type species: Hyaliappendispora galii Senan., Camporesi & K.D. Hyde.

Hyaliappendispora galii Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821549. Facesoffungi number FoF03474. Fig. 14.

Etymology: The name reflects the host genus Galium.

Saprobic on dead stem of Galium sp. Sexual morph: Ascomata $395-450 \ \mu m$ high, $180-200 \ \mu m$ wide ($\overline{x} = 419 \times 190 \ \mu m$, n = 10), solitary to aggregated, immersed, globose to subglobose, black to brown, coriaceous, ostiolate, papillate. Papilla 160-210 µm high, $100-185 \,\mu\text{m}$ wide ($\overline{x} = 172 \times 158 \,\mu\text{m}$, n = 10), short, wide, internally covered by hyaline periphyses. Peridium 15-25 µm wide ($\overline{x} = 20 \mu m$, n = 10), comprising outer, dark brown, thickwalled cells of textura angularis and inner, thin-walled, hyaline, compressed cells of textura angularis. Hamathecium comprising filiform, septate paraphyses $1.5-3.5 \,\mu\text{m}$ wide ($\overline{x} = 2 \,\mu\text{m}$, n = 10), which are longer than asci. Asci 110-125 × 20-25 µm $(\overline{x} = 116 \times 21 \ \mu m, n = 20)$, 8-spored, unitunicate, cylindrical to fusiform, short pedicellate, apex rounded with a J- apical ring. Ascospores $20-25 \times 7-10 \mu m$ ($\overline{x} = 22 \times 9 \mu m$, n = 20), biseriate to overlapping biseriate, oval to ellipsoid, hyaline, medianly 1septate, multiguttulate, with appendages. Appendages $6-11 \times 2-3 \ \mu m$ ($\overline{x} = 8 \times 2.3 \ \mu m$, n = 10), at both ends, long, thread-like, covered by loose capsule. Asexual morph: Ceolomycetous. Sporulate on PDA at 18 °C after 1 mo, crowded at colony margin, appears at pale yellow bubbles when release the conidial mass. Conidiomata globose, erumpent, black. Peridium comprising thick-walled, pale brown cells of textura angularis. Conidiophores $10-15 \times 1.5-2.5 \ \mu m$ ($\overline{x} = 13 \times 2.1 \ \mu m$, n = 10), ampulliform, septate, branched, hyaline. Conidiogeneous cells $8-16 \times 1.5-3 \ \mu m$ ($\overline{x} = 11 \times 2.5 \ \mu m$, n = 20), phialidic, terminal, cylindrical, elongate, hyaline. Conidia 7.5-9.5 × 1.5-2.5 µm $(\overline{x} = 8.3 \times 2.2 \,\mu\text{m}, n = 20)$, fusiform, unicellular, hyaline, smooth.

Culture characteristics: Colonies growing on PDA incubated at 18 °C attaining 1 cm diam within 14 d, irregular, undulate, umbonate, whitish ash clots with tightly arranged, short, aerial mycelium, erumpent, globose, pale brownish, with viscous droplets produced after 7 d, when colonies incubate further, conidiomata arised on culture media, concentrated at colony margin, appears as black, coriaceous bubbles at the beginning and later become yellow, slimy bubbles with conidial mass.

Specimen examined: Italy, Province of Arezzo, Quota, near Casuccia di Micheli, on dead stem of *Galium* sp. (*Rubiaceae*), E. Camporesi, 8 Jun. 2015, IT 2925 (holotype MFLU 15–2269, isotype BBH 42450, culture ex-type MFLUCC 16–1208).

Notes: Hyaliappendispora is morphologically distinct from other genera in Diaporthaceae in having biguttulate, uniseptate,

Fig. 14. Hyaliappendispora galii (MFLU 15–2269). A–C. Ascomata on substrate. D. Cross section of ascoma. E. Peridium. F. Paraphyses. G–J. Asci. K–N. Ascospores. O. Culture in upper surface view. P. Culture in lower surface view. Q. Conidiomata on PDA. R, S. Conidiogeneous cells, conidiophores and conidia. T. Conidia. Scale bars: A–C, Q = 200 µm, D = 100 µm, E = 20 µm, F–N, R–T = 10 µm.

hyaline ascospores with long filamentous apical and basal appendages and wall of the appendages makes a ring-like ornamentation at the proximal end. Phylogenetically *Hyaliappendispora galii* forms a fully-supported distinct clade that is sister to *Phaeodiaporthe* (Fig. 1, Clade 14).

Chaetoconis polygoni (Ellis & Everh.) Clem., Gen. fung. (Minneapolis): 176. 1909. Facesoffungi number FoF03475. Fig. 15.

Synonym: Amphorula polygoni (Ellis & Everh.) Petr., Sydowia 13: 181. 1959.

Saprobic on stem of Rumex acetosa. Sexual morph: Undetermined. Asexual morph: Conidiomata 175-250 µm high, $200-275 \,\mu\text{m}$ diam ($\overline{x} = 200 \times 250 \,\mu\text{m}$, n = 20), pycnidial, scattered, immersed to erumpent, globose to sub-globose, dark brown, unilocular or multilocular, ostiolate, papillate. Peridium 20-30 µm thick, comprising several layers of inner thin-walled, hyaline, compressed cells of textura angularis and outer, thick-walled, dark brown cells of textura angularis. Ostiole one or more, circular. Conidiophores $12-25 \times 2-3.5 \mu m$ ($\overline{x} = 20 \times 3 \mu m$, n = 20), hyaline, branched, septate, smooth, with acropleurogenous conidia, formed from the inner pycnidial wall cells. Conidiogenous cells $30-45 \times 9-11 \ \mu m$ ($\overline{x} = 32 \times 9.5 \ \mu m$, n = 20), enteroblastic, phialidic, determinate, integrated, cylindrical, hyaline, smooth, with minute channel and collarette. Conidia 35-50 × 4-5 um (x = 37 × 4.5 µm, n = 20), hyaline, 2-euseptate, continuous, base obtuse, apex extended into a filiform, cellular, unbranched appendage, thin-walled, smooth, guttulate, obclavate.

Specimen examined: **Germany**, on the edge of a mixed forest, 39 m asl, sandy, acid, fresh, mesotroph, on stem of *Rumex acetosa* (*Polygonaceae*), 9 May 2013, RK. Schumacher, CHUNI 73, MFLU 17–0965.

Notes: Chaetoconis polygoni has quite different morphological characteristics compared to other taxa in *Diaporthaceae*. Molecular analyses in this study showed that our collection clustered together with *C. polygoni* (CBS 405.95; Fig 1, Clade 14). However, we could not obtain a culture and therefore extracted DNA directly from the sporocarps. The sexual morph of *Chaetoconis polygoni* was reported as *Ceriospora polygonacearum* (Barney *et al.* 2006) which was assigned to *Sordariales* (Campbell *et al.* 2003) and later Senanayake *et al.* (2015) reassigned it to *Xylariales*. However, morphologically *Ceriospora polygonacearum* does not show any affinity to *Diaporthales*.

Diaporthe litoricola Senan., E.B.G. Jones & K.D. Hyde, **sp. nov.** MycoBank MB821550. Facesoffungi number FoF03476. Fig. 16.

Etymology: The name is based on the Latin words "litore" and "cola" meaning "beach-loving" since this fungus was collected from dead branches of beach plants.

Saprobic on dead stem of sea-shore plants. Sexual morph: Ascomata 800–900 µm high, 450–600 µm diam ($\overline{x} = 880 \times 475$ µm, n = 20), solitary, scattered, immersed, globose to subglobose, dark brown, coriaceous, ostiolate, papillate. *Papilla* 380–430 µm high, 110–140 µm diam ($\overline{x} = 420 \times 130$ µm, n = 20), conspicuous, long, black, with pale yellow apex, brown, unbranched seta in apex, internally covered by hyaline, filamentous periphyses. *Peridium* 7–12 µm wide, $(\overline{x} = 9.3 \ \mu m, n = 20)$, comprising several layers of compressed, thick-walled, olivaceous to brown cells of textura angularis. Hamathecium aparaphysate or sometimes with a few cellular paraphyses. Asci 80-90 × 11-12 μ m (\overline{x} = 87.5 × 11.1 μ m, n = 20), 8-spored, unitunicate, cylindrical, pedicellate, apex rounded, with bilobed, distinct apical ring. Ascospores $16-19 \times 4.5-5 \ \mu m$ (x = 18 × 4.8 μm , n = 20), biseriate, fusiform to ellipsoid, 1-septate, hyaline, guttulate. Asexual morph: Con*idiomata* 500–900 µm high, 800–1000 um diam $(\overline{x} = 880 \times 900 \text{ µm}, \text{ n} = 20)$, produced on PDA when incubated at 18 °C after 4 wk, pycnidial, globose, initially immersed, erumpent at maturity, black, coriaceous, elongated neck, often yellowish white, with conidial cirrus extruding from ostiole. Conidiomatal wall comprising pale brown, thick-walled cells of textura angu*laris.* Conidiophores $5-7 \times 4-7 \mu m$ ($\overline{x} = 6.3 \times 5.3 \mu m$, n = 20), ampulliform, straight to sinuous, unbranched, hyaline to olivaceous, smooth. Conidiogenous cells 14.5-21 × 1.8-2.8 µm $(\overline{x} = 17.3 \times 2.3 \,\mu\text{m}, n = 20)$, phialidic, terminal, cylindrical, slightly tapering towards the apex. Hamathecium aparaphysate. Alpha conidia $13-16 \times 2.8-3.8 \ \mu m$ ($\overline{x} = 14.7 \times 3.3 \ \mu m$, n = 20), aseptate, hyaline, smooth, ovate to ellipsoidal, base subtruncate, often biguttulate. Beta conidia 1.5-2 × 18-38 um $(\overline{x} = 1.7 \times 24 \mu m, n = 20)$, fusiform to hooked, base sub-truncate, aseptate, hyaline, smooth.

Culture characteristics: Colonies growing on PDA attained 1 cm diam within 7 d when incubated at 18 °C, flat, circular, smooth, white, slightly woolly, tightly attached to media, mycelial ends unbranched.

Specimen examined: UK, Hampshire, Eastney shore, on stem of undetermined sea-shore plant, 20 Mar. 2016, E.B.G. Jones, GJ 242 (holotype MFLU 17–0874, isotype BBH 42436, cultures ex-type MFLUCC 16–1195, MFLUCC 17–1657).

Notes: Diaporthe litoricola differs morphologically from *D. maytenicola* in having large, multi-guttulate ascospores, cylindrical asci, deeply immersed, long papillate, solitary ascomata and elongate, fusiform to cylindrical alpha conidia. Phylogenetically this fungus is closely related to *Diaporthe maytenicola*, *D. decedens* and *D. nobilis. Diaporthe litoricola* forms a moderately-supported clade in this study (Fig 1, Clade 14).

Diaporthe rudis (Fr.) Nitschke, Pyrenomycetes Germanici 2: 282. 1870. Facesoffungi number FoF03477. Fig. 17.

Saprobic on dead umbelliferous stems. Sexual morph: Clypeus appears as black, wide patches, forming a black mat on substrate connecting all the ascomata and spread around the individual ascomata. Ascomata 540-620 µm high, 250-275 µm wide $(\overline{x} = 590 \times 260 \ \mu m, n = 10)$, solitary or rarely aggregated, erumpent, globose to subglobose, black, coriaceous, ostiolate, papillate. Papilla 290-375 µm high, 75-95 µm wide $(\overline{x} = 330 \times 85 \ \mu m, n = 10)$, long, asymmetrically located, straight or curved, internally covered by hyaline periphyses, with apex of papilla pale brown, swollen, blunt, sometimes slightly covered by black, mycelial mat. *Peridium* 11–16 μ m wide (\overline{x} = 14 μ m, n = 10), comprising thick-walled, brown, compressed cells of textura angularis. Hamathecium aparaphysate. Asci 43-46 × 11-12 µm $(\overline{x} = 43 \times 11.6 \ \mu m, n = 10)$, 8-spored, unitunicate, clavate to fusiform, sessile, apex rounded, with a characteristic, bilobed, Japical ring. Ascospores $11-13 \times 3-4.5 \ \mu m$ ($\overline{x} = 12 \times 3.9 \ \mu m$, n = 10), biseriate, fusiform to elongate ellipsoid, 1-median septate,

Fig. 15. *Chaetoconis polygoni* (MFLU 17–0965). A. Conidiomata on substrate. B, D. Cross section of conidioma. C. Peridium. E–H. Conidiogenous cells attached to conidia. I–K. Conidia. Scale bars: A = 1 mm, B, D = 100 μ m, C, E–H = 50 μ m, I–K = 10 μ m.

Fig. 16. *Diaporthe litoricola* (MFLU 17–0874). **A–C.** Ascomata on substrate. **D.** Cross section of ascomata. **E.** Peridium. **F–I.** Asci. **J–L.** Ascospores. **M, N.** Conidioma. **O, P.** Conidiophores, conidiogenous cells and conidia arrangement. **Q.** Alpha conidia. **R, S.** Beta conidia. Scale bars: A = 500 μm, B–D, M, N = 200 μm, E = 50 μm, F–I, O, P = 20 μm, J–L, Q, S = 10 μm.

Fig. 17. Diaporthe rudis (MFLU 17–0895). A–C. Ascomata on substrate. D–E. Cross sections of ascoma. F. Peridium. G–J. Asci. K–P. Ascospores. Scale bars: A = 500 μ m, B, C = 200 μ m, D, E = 100 μ m, F = 20 μ m, G–P = 10 μ m.

with each cell containing two guttules, hyaline, smooth-walled. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on PDA attaining 2.5 cm diam within 10 d when incubated at 18 °C, circular, entire, flat, white, tightly attached to the media, aerial mycelia less or sparse, forming few, erumpent, globose, black, viscous droplets after 7 d.

Specimen examined: **UK**, Hampshire, Winchester, Whiteley, Botley Wood, on umbelliferous stem, 25 May 2016, E.B.G. Jones, GJ 301 (MFLU 17–0895, BBH 42452, living cultures MFLUCC 16–1197, MFLUCC 17–1658).

Notes: Diaporthe rudis was epitypified by Udayanga et al. (2014) based on morphology and phylogeny. Diaporthe rudis has a broad host range. This collection was obtained from umbelliferous woody stems and it forms very long, curved, narrow, papilla deeply immersed in substrate. They appear as pale yellow spots with black margins. Ostioles are blunt and covered by pale yellow cells. However, the base of the ascomata is immersed in deep layers of substrate. All *D. rudis* cluster together and phylogenetic affinities of these species are still unclear, but morphologically they are differing in terms of asci and ascospore morphology and size.

Diaporthe eres Nitschke, Pyrenomycetes Germanici 2: 245. 1870. Fig. 18.

Saprobic on stem of *Fraxinus pennsylvanica*. Sexual morph: Not observed. Asexual morph: Conidiomata 125-140 µm high, 265-300 μ m diam at base (\bar{x} = 135 × 280 μ m, n = 10), pycnidial, pyriform, initially immersed, erumpent at maturity, globose to pyriform, black, coriaceous, elongated neck, often with vellowish white, conidial cirrus extruding from ostiole. Conidiomatal wall 34–36 μ m diam (\overline{x} = 35 μ m, n = 10), parenchymatous, consisting of 4-7 layers of pale brown, thicktextura angularis. walled cells of Conidiophores $4-6 \times 4.5-8 \ \mu m$ ($\overline{x} = 4.6 \times 6.6 \ \mu m$, n = 20), ampulliform, straight to sinuous, unbranched, hyaline, smooth. Con*idiogenous cells* $8-14 \times 1.5-3 \ \mu m$ ($\overline{x} = 11.2 \times 2.2 \ \mu m$, n = 20), phialidic, terminal, cylindrical, slightly tapering towards the apex. Hamathecium aparaphysate. Alpha conidia $5.8-7.5 \times 2.5-3.5 \ \mu m$ (x = 6.4 × 2.8 \ \mu m, n = 10), aseptate, hyaline, smooth, ovate to ellipsoidal, base subtruncate, often biguttulate. Beta conidia not seen.

Culture characteristics: Colonies growing on MEA attenuated 2 cm within 10 d incubated at 18 °C, fast growing, entire, flat circular, white, with radially arranged minute mycelium clots later becoming creamy or pale yellow.

Specimen examined: Russia, Cotton Fabric urban micro district, on stem of *Fraxinus pennsylvanica* (Oleaceae), 14 May 2015, T.S. Bulgakov, T-400 (MFLU 15–2104, MFLU 17–0890, living cultures MFLUCC 17–1667, MFLUCC 17–1668).

Notes: Phylogeny depicts a close association between the two *D. eres* strains collected from *Fraxinus pennsylvanica*. In this study, *D. eres* has been treated as a "complex". It is noted herein that combined gene phylogeny also support such a complex as strains from different hosts/ regions are phylogenetically apart. We did not see beta conidia for this strain on the host or in culture.

Erythrogloeaceae Senan., Maharachch. & K.D. Hyde, fam. nov. MycoBank MB821551. Facesoffungi number FoF03478. Clade 9.

Foliicolous associated with leaf spots. Sexual morph: Undetermined. Asexual morph: Conidiomata epiphyllous, subepidermal, sometime eustromatic, acervular or subglobose, brown to black or yellow-orange, amphigenous, opening by irregular rupture, wall of 2-6 layers of orange-brown textura angularis, exuding slimy orange masses of conidia. Conidiophores reduced to conidiogenous cells. Conidiogenous cells lining the inner cavity of conidioma, hyaline to olivaceous, smooth, subcylindrical to ampulliform, tapering to a long, thin neck, at times apical part elongated into a long neck, proliferating several times percurrently near apex, with flaring collarettes, or apex truncate, with minute periclinal thickening. Conidia hyaline to olivaceous, smooth, guttulate or not, thin-walled, ellipsoid, fusoid, ovoid to somewhat obclavate, straight to curved, apex subobtuse, obtusely rounded, base truncate, with prominent marginal frill, or dimorphic, intermixed in same conidiomata. Macroconidia broadly ellipsoid to obovoid, hyaline, smooth, granular to guttulate, thick-walled, apex obtuse, base flattened, Microconidia hvaline, smooth, guttulate, fusoid-ellipsoid, acutely rounded at apex, truncate at base.

Type genus: Erythrogloeum Petr.

Type species: Erythrogloeum hymenaeae Gonz. Frag. & Cif. ex Petr.

Notes: Phylogenetic analyses from the current study based on combined LSU nrDNA, ITS nrDNA, *rpb2*, and *tef1* sequences showed that *Chrysocrypta* is basal to *Disculoides* and *Erythrogloeum* (Fig. 1, Clade 9). *Chrysocrypta* has previously been accommodated in the *Cryphonectriaceae* but the latter is distantly related (Fig. 1, Clade 6). Morphologically members of clade 9 depicts distinct characters in having epiphyllous acervuli, and subcylindrical to ampulliform conidiogenous cells. The sexual morphs of those taxa have not been reported. *Disculoides* was introduced and typified by *Disculoides eucalyptorum* (Crous *et al.* 2012a). *Disculoides eucalyptorum* was shown to be distinct from *Erythrogloeum hymenaeae*, which was sister to the *Greeneria-Melanconiella* complex based on rDNA sequence gene analyses (Crous *et al.* 2012a).

Chrysocrypta was introduced based on *Chrysocrypta corymbiae*, which was isolated from leaves of *Corymbia* species. *Chrysocrypta* is similar to *Foliocryphia* (*Cryphonectriaceae*), but is distinct in forming dimorphic conidia. Crous *et al.* (2012c) accommodated this taxon in *Cryphonectriaceae* based on morphology and rDNA sequence phylogeny. However, stromatic tissues of *Chrysocrypta corymbiae* do not turn purple with KOH, which is a basic characteristic of *Cryphonectriaceae*. In addition, DNA sequence data herein indicate that *Chrysocrypta corymbiae* does not belong in *Cryphonectriaceae*. Hence given the morphological distinctiveness and strongly supported clade (9), a new family *Erythrogloeaceae* is introduced to accommodate *Chrysocrypta, Disculoides* and *Erythrogloeum*.

Erythrogloeum hymenaeae Gonz. Frag. & Cif. ex Petr., Sydowia 7: 379. 1953. Facesoffungi number FoF03479. Fig. 19.

Foliicolous, associated with leaf spots. Sexual morph: Undetermined. Asexual morph: Conidiomata up to 250 µm

Fig. 18. Diaporthe eres (MFLU 15–2104). A, B. Conidiomata on substrate. C. Cross section of conidioma. D. Wall of conidioma. E-H. Conidiophore, conidiogenous cell attached to conidia. I, J. Conidia. Scale bars: A = 1 mm, B = 200 µm, C = 100 µm, D = 20 µm, E-H = 10 µm, I, J = 5 µm.

diam, acervular, epiphyllous, eustromatic, subepidermal, solitary, rupturing surface by irregular splits. *Peridium* comprises thin-walled cells of *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* $5-10 \times 2.5-4 \mu$ m, hyaline, smooth, phialidic with periclinal

thickening, discrete, lageniform to cylindrical, lining the inner walls of cavity. *Conidia* 7–9 × 2.5–3 μ m, hyaline, smooth, guttulate or not, thin-walled, ellipsoid to ovoid, apex obtusely rounded, tapering to a truncate base (description based on Crous *et al.* 2012a).

Fig. 19. Erythrogloeum hymenaeae (F45467). A. Packet of specimen. B. Herbarium specimen. C-D. Conidiomata on substrate. E. Peridium in KOH. F-H. Conidiophores, Conidiogeneous cells and conidia. I. Conidia. Scale bars: C = 100 µm, D = 200 µm, E-G = 10 µm, H-I = 5 µm.

Specimen examined: Costa Rica, San José, on leaves of *Hymenaea courbaril*, Nov. 1929, H. Schmidt (F45468 syntype).

Notes: The monotypic genus *Erythrogloeum* comprises the type species *Erythrogloeum hymenaeae*, which is validly described based on *Phyllosticta hymenaeae* by Petrak (1953). *Erythrogloeum hymenaeae* is associated with a severe anthracnose of apical twigs and seedlings of *Hymenaeae* species (Ferreira *et al.* 1992). This fungus has been reported from in Brazil and Costa Rica.

Gnomoniaceae G. Winter [as 'Gnomonieae'], Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.2: 570. 1886. Clade 1.

Saprobic on bark and leaves of overwintered plants. Sexual morph: *Stromata* lacking, or poorly to well-developed, scattered, erumpent, pustuliform with one or rarely two ascomata or valsoid, broadly elliptic to rounded, large. *Ectostromata* well-developed, brown to black, thick ectostromatic disc at perithecial necks. *Ascomata* immersed to erumpent, solitary or aggregated, globose to subglobose, black, coriaceous, thinwalled, with one or more long, central or eccentric necks with hyaline periphyses. *Peridium* comprising few layers of

brown, thick-walled cells of textura angularis. Hamathecium comprising few hyaline, septate, cellular paraphyses. Asci 8-32-spored, unitunicate, oval, fusiform to almost filiform, short pedicellate, with a distinct, J- apical ring. Ascospores biseriate, overlapping uniseriate to fasciculate, oval, fusiform, ovoid to subulate, small, unicellular to 1-septate, rarely multiseptate, ends mostly rounded, rarely pointed, appendages absent or subulate, navicular or whip-shaped, smooth. Asexual morph: Conidiomata acervulal or pycnidial, subcuticular, papillate or not, oblate to globose, black, thick-walled, with one chamber containing whitish conidial mass. Conidiophores simple, filiform to fusiform, annellation visible or invisible, densely branched. Conidiogenous cells usually phialidic, rarely with a few annellidic scars, irregular in shape, lageniform to cylindrical, gradually tapering to ends for one guarter to threequarters of their length, or abruptly narrowing to long neck at about half of the phialide length, or abruptly narrowing at apex, straight or curved, sometimes asymmetric swollen nodes, proliferating into other conidiogenous cells at basal or middle part. Conidia broadly ellipsoid to oval, sometimes obovoid, allantoid, occasionally curved or sinuate to slightly angular, hyaline, often unicellular.

Fig. 20. Plagiostoma salicicola (MFLU 17–0878). A. Ascomata on substrate. B. Ascomata distribution on bark epidermis (under surface). C. Cross section of ascoma. D. Papilla. E. Peridium. F–H. Asci. I–L. Ascospores. M. Culture on PDA, upper surface view. N. Culture on PDA, lower surface view. Scale bars: A, B = 500 μ m, C = 100 μ m, D = 50 μ m, E–L = 10 μ m.

Type genus: Gnomonia Ces. & De Not.

Type species: Gnomonia gnomon (Tode) J. Schröt.

Notes: Gnomoniaceae (Fig. 1, Clade 1) was introduced by Winter (1886). This family is characterised by immersed, rarely erumpent or superficial ascomata, without a stroma or aggregated with a rudimentary stroma. Species in *Gnomoniaceae* inhabit various hosts and substrates, including herbaceous plants, shrubs and trees as endophytes, pathogens and saprobes (Rossman *et al.* 2007, Walker *et al.* 2012). Pathogenicity of gnomoniaceous taxa is quite diversified, causing various diseases on plants. However, most gnomoniaceous species are restricted to overwintered plants in temperate and subtropical biomes.

Maharachchikumbura et al. (2015) accommodated 33 genera in *Gnomoniaceae*. Additionally, we introduce a new genus *Marsupiomyces* based on *M. quercina* and the second species *M. epidermoidea*. However, we exclude five genera from the family based on morphology and phylogeny and also included the additional genera *Mamianiella* and *Marsupiomyces* within this family. Hence, we accept 30 genera in this family: *Alnecium*, *Ambarignomonia*, *Amphiporthe*, *Anisomyces*, *Apiognomonia*, *Apioplagiostoma*, *Asteroma*, *Bagcheea*, *Cryptosporella*, Cylindrosporella, Diplacella, Ditopella, Ditopellopsis, Gloeosporidina, Gnomonia, Gnomoniella, Gnomoniopsis, Mamianiella, Marsupiomyces, Millerburtonia, Occultocarpon, Ophiognomonia, Phragmoporthe, Phylloporthe, Plagiostoma, Pleuroceras, Sirococcus, Spataporthe, Uniseta and Valsalnicola. Here we introduce, describe and illustrate new fungal taxa which belong to Gnomoniaceae.

Doubtful genera or genera excluded from *Gnomoniaceae*

Anisogramma was introduced and typified by Anisogramma virgultorum, and almost all characters of this genus are similar to Mamianiella. De Silva et al. (2009) analysed the phylogenetic relationship of Anisogramma species based on LSU nrDNA sequence data and reported its placement outside of Gnomoniaceae. Both Mamianiella and Anisogramma commonly occur on Corylus species. Combined LSU nrDNA, ITS nrDNA, rpb2 and tef1 gene analyses of the present study show that Mamianiella is nested in between Anisogramma species. Morphological comparison also reveals that both genera are characterised by Mamianiella and hence Mamianiella does not warrant generic status with high bootstrap support value (Fig. 1, Clade 1).

Mamianiella is an older name than Anisogramma. Therefore, we synonymise Anisogramma under Mamianiella giving priority to the older name. Mamianiella Höhn. was introduced and typified by *M. coryli*, (based on Sphaeria coryli) and Mamiania was introduced and typified by *M. fimbriata* (based on Sphaeria fimbriata). Von Arx & Muller (1954) suggested to retain both genera as one genus. However, Barr (1978) separated these two genera based on ascospore morphology as Mamianiella has unicellular ascospores, while Mamiania produces apiosporous ascospores. This is, however, not a strong character to differentiate these two genera, while almost all other characters are similar to each other. Hence, we synonymise Mamiania under Mamianiella giving priority to the older name Mamianiella.

Clypeoporthe, was reduced to synonymy in *Gnomonia* by Monod (1983). However, some species in this genus have eutypelloid configuration of ascomata in parenchymatous stromatic tissues. However, it is necessary to obtain DNA sequence data to resolve this genus. *Depazea* was typified by *D. frondicola* and it was assigned to *Mycosphaerellaceae* as *Sphaerulina frondicola* (Verkley *et al.* 2013). Hence, we exclude *Depazea* form *Gnomoniaceae*.

Phylloporthe, a plant parasitic, monotypic genus was introduced and is typified by *P. vernoniae*. There is no molecular data for *P. vernoniae* and it is not clear whether this genus belongs to *Gnomoniaceae* or not. Hence, we maintain this genus in *Gnomoniaceae* until molecular data for the type species are available.

Skottsbergiella was introduced and typified by *Skottsbergiella diaporthoides* which has large perithecia immersed in massive, externally crustose, pseudoparenchymatous stromata. Petrak (1971) assigned this genus to eutypoid fungi based on its stromatic consistency. This genus is morphologically similar to *Diaporthella*, which is placed in *Diaporthales incertae sedis* (Barr 1978). *Skottsbergiella diaporthoides* was renamed as *Diaporthe diaporthoides* and accommodated in *Diaporthaceae* (Barr 1978). Hence *Skottsbergiella* is not a valid genus.

Xenotypa is typified by X. aterrima. We observed a specimen of X. aterrima (as Hydnum aterrima, from S under accession no: F130640) on account of the elongated allantoid ascospores and solitary to aggregated ascomata, this taxon has closer affinity to Cytosporaceae than Gnomoniaceae. Hence, we exclude Xenotypa from Gnomoniaceae and include it in Cytosporaceae, until molecular data is available to confirm the placement.

Zythia is typified by *Z. resinae* which is synonymised under *Sarea resinae*. Molecular data demonstrate a placement of *Sarea resinae* within *Trapeliaceae* (*Baeomycetales*, *Ostropomycetidae*). Therefore, here we exclude *Zythia* from *Gnomoniaceae*. However, *Z. fragariae* shows an affinity to *Gnomoniaceae*. It is a common parasite on strawberry and Shipton (1967) reported *Zythia fragariae* as the asexual morph of *Gnomonia fragariae*. Walker *et al.* (2010) synonymised *Gnomonia fragariae* in *Gnomoniopsis* as *G. comari*. Hence *Zythia* is not considered to be a genus in *Gnomoniaceae*.

Plagiostoma salicicola Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821552. Facesoffungi number FoF03480. Fig. 20. *Etymology*: Based on the host genus *Salix* on which this fungus occurs and the Latin "-cola" which means loving.

Saprobic on dead twigs of Salix sp. Sexual morph: Stromata loosely packed comprising pseudoparenchymatous tissues. Ascomata 400-600 µm high, 250-400 um diam (\overline{x} = 580 × 300 µm, n = 20), perithecial, aggregated in groups of 3-10, immersed, oblate globose when moist and become convex with irregular dents around base of papilla when dry, coriaceous, black, ostiolate, papillate, Necks 420-700 µm long, 100-150 µm wide at base, 60-150 µm wide at apex, converged or not, eccentric to marginal, slightly curved. Asci $45-70 \times 10-20 \ \mu m$ ($\overline{x} = 62 \times 16 \ \mu m$, n = 20), 8-spored, unitunicate, fusiform, apex narrowly obtuse, sessile, with J- apical ring. Ascospores $15-25 \times 4-7 \ \mu m \ (\overline{x} = 17 \times 6 \ \mu m, \ n = 20)$, obliquely biseriate to fasciculate, ellipsoidal to fusiform, medianly 1-septate, constricted or not at the septum, ends rounded to tapering, with upper cell slightly wider than basal cell, hyaline. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on PDA attained 1 cm within 10 d incubated at 18 °C, circular, umbonate, undulate, white median region with ash outer margin, woolly, loosely attached to the substrate.

Specimen examined: **Italy**, Province of Trento, Val di Sole, near Croviana, on dead branch of *Salix* sp., 29 Jul. 2013, E. Camporesi, IT 1394 (**holotype** MFLU 17–0878, **isotype** BBH 42440, cultures ex-type MFLUCC 13–0656); Province of Trento, Val di Sole, near Croviana, on dead branch of *Salix* sp., 29 Jul. 2013, E. Camporesi, IT 1394 (**paratype** MFLU 15–2261, living cultures MFLUCC 17–1666).

Notes: Mejía et al. (2011) revisited the genus *Plagiostoma* and observed distinct grouping pattern of *Plagiostoma* species with expanded necks and species with cylindrical necks on *Salicaceae*. With species with expanded necks, *P. salicicola* is morphologically similar to *Plagiostoma dilatatum*. However, *P. dilatatum* has relatively small ascomata with short necks and long-pedicellate, cylindrical asci. The combined gene sequence analyses herein indicate a relationship of *P. salicicola* with other species of *Plagiostoma* separated with moderate support values, but sufficiently distinct of *P. dilatatum* (Fig. 1, Clade 1).

Plagiostoma jonesii Senan., & K.D. Hyde, **sp. nov.** MycoBank MB821553. Facesoffungi number FoF03481. Fig. 21.

Etymology: In honour of Prof. Gareth Jones, an eminent mycologist who collected this species.

Saprobic on umbelliferous stems. Sexual morph: Ascomata $380-420 \mu m$ high, $250-280 \mu m$ diam ($\overline{x} = 400 \times 270 \mu m$, n = 10), solitary or rarely aggregated, erumpent, globose to subglobose, black, coriaceous, ostiolate, papillate. Papilla 165-260 µm high, 70–100 μ m wide (\overline{x} = 200 × 80 μ m, n = 10), short, symmetrically or asymmetrically located, narrow at the base, widening towards the top, straight or curved, internally covered by hyaline periphyses. Peridium 15–25 μ m wide (\overline{x} = 18.5 μ m, n = 10), comprises thick-walled, brown, compressed cells of textura *porrecta.* Asci 40–50 × 8.5–9.5 μm (x = 48 × 8.8 μm, n = 10), 8spored, unitunicate, fusiform to clavate, apex with J-, bilobed, distinct apical ring, short pedicellate. Ascospores $12-14 \times 2.6-3.8 \,\mu m$ (x = 13 × 3.2 μm , n = 10), biseriate, fusiform to ellipsoid, hyaline, 1-septate, with two globules in each cell, with

Fig. 21. Plagiostoma jonesii (MFLU 17-0873). A. Ascomata on host surface. B. Cross section of ascoma. C. Peridium. D-G. Asci. H-L. Ascospores. Scale bars: A = 200 µm, B = 100 µm, C = 20 µm, D-L = 10 µm.

small spine-like appendages at both ends. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on PDA attenuated 1 cm within 7 d, incubated at 18 °C, fast-growing, flat, circular, smooth, less in aerial mycelia, white, tightly attached to the medium.

Specimen examined: UK, Sussex Ocidental, Arundel, river bank, on umbelliferous stem, 17 Feb. 2016, E.G.B. Jones, GJ 227 (holotype MFLU 17–0873, isotype BBH 42435, cultures ex-type MFLUCC 16–1189, MFLUCC 17–1654).

Notes: Plagiostoma jonesii is morphologically and phylogenetically distinct from other *Plagiostoma* species in having long, curved papilla arising out from the substrate appearing as spines and the opening is wider than base, ellipsoid to fusiform, 1septate, slightly or non-constricted ascospores with small, appendages. Our phylogeny shows that *Plagiostoma jonesii* is phylogenetically close to *P. salicellum* and *P. populinum*, but morphologically distinct from both species.

Gnomoniopsis agrimoniae Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821554. Facesoffungi number FoF03482. Fig. 22.

Etymology: Species epithet based on the host genus Agrimonia.

Saprobic on dead stems of *Agrimonia eupatoria*. Sexual morph: *Ascomata* 200–320 µm high, 245–400 µm diam ($\overline{x} = 273 \times 332$ µm, n = 20) solitary, scattered, erumpent, globose, black, coriaceous, ostiolate, papillate. *Papilla* 100–170 µm high,

Fig. 22. Gnomoniopsis agrimoniae (MFLU 17–0884). A, B. Ascomata on host substrate. C. Cross section of ascoma. D. Peridium. E–G. Asci. H. Ascospores. I. Culture growing on MEA, upper surface view. J. Culture growing on MEA, lower surface view. Scale bars: A = 100 μm, B = 200 μm, C = 50 μm, D = 10 μm, E–H = 5 μm.

70–105 µm diam ($\bar{x} = 160 \times 80$ µm, n = 20), short, comprising elongate brown cells of *textura porrecta*. *Peridium* 35–45 µm ($\bar{x} = 39$ µm, n = 10) comprising inner, hyaline, compressed cells of *textura angularis* and outer, brown, thick-walled, cells of *textura globosa*. *Asci* 28–32.5 × 5–5.5 µm ($\bar{x} = 30.5 \times 34.9$ µm, n = 20), 8spored, unitunicate, cylindrical to fusiform, short-pedicellate, apex obtuse with bilobed, J- apical ring. *Ascospores* 7–8 × 1.8–2.2 µm ($\bar{x} = 7.5 \times 2.1$ µm) overlapping uni- to biseriate, apiosporous, hyaline, uniseptate, smooth-walled. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on MEA becoming 2 cm within 7 d incubated at 18 °C, fast growing, circular, smooth mycelia concentrated at margins making a concave colony, off white, loosely attached to the substrate, wooly.

Specimen examined: Italy, Province of Forli-Cesena, near Santa Sofia, on dead stem of Agrimonia eupatoria (Rosaceae), 5 Apr. 2014, E. Camporesi, IT 1798 (holotype MFLU 17–0884, isotype BBH 42446, cultures ex-type MFLUCC 14–0844, MFLUCC 17–1662).

Notes: Gnomoniopsis agrimoniae has minute asci and ascospores compared to the other Gnomoniopsis species. Coriaceous, thick-walled ascomata and small apiosporous ascospores are prominent characters in this genus. Our combined gene analyses indicate a moderately supported phylogenetic distinction of *Gnomoniopsis agrimoniae* from other species with moderate support. Phylogeny analyses based on ITS sequence data following Walker *et al.* (2010) reported that *Gnomoniopsis agrimoniae* is distinct from other *Gnomoniopsis* species. *Gnomoniopsis* species are considered host specific and only *Gnomoniopsis agrimoniae* and *G. guttulata* are reported on *Agrimonia* species.

Apiognomonia veneta (Sacc. & Speg.) Höhn., Hedwigia 62: 47. 1920. Facesoffungi number FoF03483. Fig. 23.

Basionym: Laestadia veneta Sacc. & Speg., Michelia 1(no. 3): 351. 1878.

Pathogenic on living leaves of *Platanus acerifolia*. Sexual morph: Undetermined. Asexual morph: *Conidiomata* 180–200 µm high, 250–265 µm diam (\bar{x} = 188 × 260 µm, n = 10), acervular, irregularly round or oval, erumpent to immersed, solitary, scattered, conidiogenous layer covering the entire inner surface of acervular chambers and mostly in basal layer, yellowish-brown, initially developing under epidermis, then breaking through epidermis and forming thick whitish amorphous conidial masses. *Conidiophores* 10–15 × 2.5–4.5 µm (\bar{x} = 12 × 3.4 µm, n = 20), densely branched, ampulliform, hyaline. *Conidiogenous cells*

Fig. 23. Apiognomonia veneta (MFLU 15–3710). A–B. Conidiomata on host leaf surface. C. Cross section of conidioma. D–F. Conidiophore and conidiogenous cells attached to conidia. G, H. Conidia. I. Upper surface view of culture. J. Lower surface of culture. Scale bars: A, B = 1 mm, C = 100 μm, D–H = 10 μm.

14–21 × 2.7–3.5 µm (\overline{x} = 18 × 3 µm, n = 10), usually phialidic, rarely annellidic, lageniform to cylindrical, gradually tapering towards the apex, straight or curved, hyaline, smooth. *Conidia* 12–20 × 4–6 µm (\overline{x} = 15.6 × 5 µm, n = 10), broadly ellipsoid to oval, sometimes obovoid, occasionally curved or sinuate to slightly angular, hyaline, thick-walled, aseptate, guttulate.

Culture characteristics: Colonies growing on MEA attenuated 1 cm within 7 d, incubated at 18 °C, flat, circular, irregular, with circular ornamentations, margins concentrated with mycelial ends, white, rich in short aerial mycelia, loosely attached to the medium.

Specimen examined: Russia, Rostov region, Krasnosulinsky district, Donskoye forestry, lining-out nursery, on live leaves of *Platanus acerifolia (Platanaceae)*, 27

Oct. 2015, T.S. Bulgakov, R 1048, MFLU 15-3710, living cultures MFLUCC 16-1193, MFLUCC 17-1656.

Notes: Apiognomonia veneta is a common pathogen on *Plata-naceae*. Here we illustrate the asexual morph of *Apiognomonia veneta*. This is a common epifoliar pathogen. We could not obtain the sexual morph in culture or from the specimen.

Marsupiomyces Senan. & K.D. Hyde, gen. nov. MycoBank MB821555. Facesoffungi number FoF03484.

Etymology: Referring to the ascomata located in mycelial cavity not in stromatic tissues.

Saprobic on leaves of *Fagaceae*. Sexual morph: Appearing on the surface as black solitary swellings on the leaf surface. *Ascomatal cavity* pale in colour, tightly packed cells, forming a thin coating around ascomata. *Ascomata* solitary, scattered, immersed horizontally in the lower and upper leaf epidermis, globose to subglobose, coriaceous, black, ostiolate, papillate. *Papilla* long, asymmetrically located, slanted or on substrate, curved or erect. *Peridium* comprising thick-walled, brown, large cells of *textura globulosa* or *textura epidermoidea*. *Hamathecium* aparaphysate. *Asci* 8-spored, unitunicate, fusiform, with short, pointed pedicel, apex rounded with bi-lobed, distinct, apical ring. *Ascospores* uni- to tri-seriate, fusiform, cylindrical to elongate fusiform, straight or very slightly curved, 1-septate, hyaline, guttulate, smooth-walled. Asexual morph: Undetermined.

Type species: Marsupiomyces quercina Senan., Camporesi & K.D. Hyde.

Notes: Marsupiomyces is introduced and typified by *M. quercina*. Members of this genus occur on members of *Fagaceae*. Marsupiomyces comprises *M. quercina* and *M. epidermoidea*. Phylogenetically Marsupiomyces is closely related to Apioplagiostoma (Fig. 1, Clade 1). However, Apioplagiostoma differs from Marsupiomyces in having leaf lesions with dark purple to brown pigmentation, and apiosporous ascospores.

Marsupiomyces quercina Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821556. Facesoffungi number FoF03485. Fig. 24.

Etymology: Species epithet based on the host genus Quercus.

Saprobic on leaves of *Quercus*. Sexual morph: *Stromatic cavity* pale in colour, tightly packed cells, forming a thin, coating around ascomata. *Ascomata* 150–250 µm high 160–300 µm diam ($\bar{x} = 175 \times 200 \text{ µm}$, n = 10) solitary, scattered, immersed horizontally in the lower and upper leaf epidermis, globose to sub-globose, coriaceous, black, ostiolate, papillate. *Papilla* long, asymmetrically located, slanted or on substrate, curved or erect. *Peridium* 25–45 µm wide ($\bar{x} = 35 \text{ µm}$, n = 10), comprising thick-walled, brown, large cells of *textura globulosa*. *Hamathecium* aparaphysate. *Asci* 125–150 × 9–11 µm ($\bar{x} = 134 \times 9.8 \text{ µm}$, n = 30), unitunicate, 8-spored, fusiform, with short, pointed pedicel, apex rounded with bilobed, distinct, apical ring. *Ascospores* 15–21 × 6–8 µm ($\bar{x} = 17.4 \times 6.6 \text{ µm}$, n = 40), biseriate, cylindrical to elongate fusiform, 1-septate, hyaline, guttulate. Asexual morph: Undetermined.

Specimen examined: **Italy**, Province of Forlì-Cesena, San Paolo in Alpe, Santa Sofia, dead leaves of *Quercus* sp. (*Fagaceae*), 2 May 2013, E. Camporesi, IT 1214 (**holotype** MFLU 17–0876, **isotype** BBH 42438, cultures ex-type = - MFLUCC 14–0566, MFLUCC 13–0664).

Notes: The combined ITS nrDNA, LSU nrDNA, *rpb2* and *tef1* sequences analyses of this study shows that *Marsupiomyces quercina* forms a distinct clade which is sister to *Marsupiomyces epidermoidea* (Fig. 1, Clade 1).

Marsupiomyces epidermoidea R.H. Perera, Senan., Bulgakov & K.D. Hyde, **sp. nov.** MycoBank MB821557. Facesoffungi number FoF03486. Fig. 25.

Etymology: Fungal peridium comprising cells of *textura epidermoidea*.

Saprobic on dead leaves of Quercus robur. Sexual morph: Appearing on the surface as black solitary swellings on the leaf surface. Ascomatal cavity pale in colour, tightly packed cells, forming a thin, coating around ascomata. Ascomata 200-310 µm diam, depressed globose to irregular. Peridium 11-36 µm thick, comprising 3-8 layers of brown to hyaline cells of textura epidermoidea, outer cell laver brown to pale brown, inner cells hyaline, elongate. Asci 54–83 × 11–15 μ m (\overline{x} = 71 × 14 μ m, n = 25), 8-spored, unitunicate, clavate, apedicellate, with a J- refractive lying without paraphyses. apical ring, Ascospores $18-21 \times 3-3.6 \ \mu m$ (x = 19 × 3.4 μm , n = 30), uni- to tri-seriate, 1septate, not constricted at the septum, broadly fusiform, rounded at both ends, straight or very slightly curved, hyaline, guttulate, smooth-walled. Asexual morph: Undetermined.

Specimen examined: Russia, Rostov region, Shakhty city, Maisky, Cemetery Park, (47.6922302° E, 40.0925446° N), on dried leaf of *Quercus robur (Fagaceae)*, 21 Jun. 2015, T.S. Bulgakov, T 776 (holotype MFLU 15–2921, isotype BBH 42451).

Notes: Our new taxon, *Marsupiomyces epidermoidea* is a sister taxon to *Marsupiomyces quercina*, but sufficiently distinct. In addition, it is different from *Marsupiomyces epidermoidea* in having a distinct peridium comprising cells of *textura epidermoidea*.

Ditopella biseptata R.H. Perera, Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821558. Facesoffungi number FoF03487. Fig. 26.

Etymology: Species name refers to the ascospores that have two septa.

Saprobic on dead branch of Alnus glutinosa. Sexual morph: Stromata surrounding the perithecial necks, extending outward beneath the host periderm as a distinct clypeus, composed of dark brown thick-walled angular cells. Ascomata 500-900 um diam, immersed in the ectostroma, situated between the epidermis and the cortex of the host tissue, appearing as solitary swellings of the host epidermis, sometimes epidermis ruptures to expose the rounded apex of the ostiole, perithecial, depressed globose to oval, ostiolate. Ostiolar neck lined with thin-walled hyaline, septate periphyses. Peridium 44 µm thick, 2-layered, outer layer composed of angular, sometimes slightly compressed, dark brown, thick-walled cells of textura angularis, inner layer of elongate, hyaline, thin-walled, compressed cells of textura angularis, wider around the ostiole, composed of dark brown, thick-walled cells of textura angularis. Asci 63-90 × 15-19 µm (x = 79 × 18.3 µm, n = 10), 16- to 32-spored, elongate-ellipsoidal to clavate, apedicellate, with a J- refractive apical ring, lying without paraphyses. Ascospores $18-27 \times 3-4 \ \mu m \ (\overline{x} = 23.8 \times 3.6 \ \mu m, n = 30), multi-seriate, (1)$ 2(-3)-septate, not constricted at the septum, cylindrical to narrowly ellipsoidal, straight or very slightly curved, tapering slightly to bro2adly rounded ends, hyaline, guttulate, smoothwalled, with 2-polar appendages. Asexual morph: Undetermined.

Specimen examined: **Italy**, Province of Forlì-Cesena, Bagno di Romagna, near Lago Pontini, on dead branch of *Alnus glutinosa* (*Betulaceae*), 26 May 2014, E. Camporesi, IT 1891 (**holotype**, MFLU 15–2661).

Fig. 24. Marsupiomyces quercina (MFLU 17–0876). A. Ascomata on substrate. B. Stromatic cavity. C, D. Cross section of ascoma. E. Peridium. F. Apical ring. G–K. Asci. L–N. Ascospores. Scale bars: A, B = 500 μm, C = 200 μm, D = 50 μm, E = 5 μm, F, L–N = 10 μm, G–K = 20 μm.

Notes: Here we introduce a new species *Ditopella biseptata* based on phylogeny. *Ditopella biseptata* forms a distinct clade which is sister to *Ditopella ditopa* (Fig. 1, Clade 1). Morphologically *Ditopella biseptata* has 2-septa and minute appendages at both ends. We could not obtain a culture from this fungus and extracted DNA directly from the sporocarps.

Harknessiaceae Crous, Persoonia 28: 55. 2012. Clade 7.

Saprobic or pathogenic forming leaf spots. Sexual morph: Ascomata perithecial, solitary or aggregated, immersed,

globose, coriaceous, brown, papillate. *Papilla* emergent to depressed, wall comprising 3–5 layers of brown-walled cells of *textura angularis*. *Hamathecium* comprising hyaline, septate paraphyses. *Asci* 8-spored, unitunicate, cylindrical to clavate, short pedicellate, with J- apical ring. *Ascospores* unito biseriate, hyaline, ellipsoid to fusoid, aseptate, thick-walled, guttulate, smooth-walled. Asexual morph: Coelomycetous. *Conidiomata* eustromatic, pycnidial, scattered or aggregated, immersed, globose, coriaceous, with single or several locules, dark brown to black. *Peridium* comprising thin-walled, almost hyaline to brown cells of *textura angularis*. *Ostiole* wide,

Fig. 25. Marsupiomyces epidermoidea (MFLU 15–2921) A. Herbarium specimen. B, C. Appearance of ascoma on the leaf surface. D. Vertical section through ascoma. E. Peridium in surface view. F. Peridium. G-K. Asci. L-O. Ascospores. Scale bars: B = 1 mm, C = 500 μm, D = 100 μm, E = 50 μm, F-K = 20 μm, L-O = 10 μm.

central, surrounded by brown cells. *Conidiophores* lining the inner cavity or reduced to the basal layer, sometimes reduced to conidiogenous cells, sometimes septate, branched. *Conidiogenous cells* holoblastic, discrete, lageniform, sub-cylindrical to cylindrical, hyaline to pale yellow, smooth, producing macroconidia and sometimes microconidia from same conidiogenous cell, proliferating sympodially one or

several times. *Macroconidia* with a basal appendage, hyaline when young, brown at maturity, unicellular, although basal appendage separated by a septum thick-walled, smooth-walled, with or without pale and dark longitudinal bands, sometimes longitudinally striate, guttulate, basal appendage cellular, cylindrical to subcylindrical, hyaline, thin-walled, devoid of contents, apical appendage present or absent, if

Fig. 26. Ditopella biseptata (MFLU 15–2661). **A.** Herbarium specimen. **B, C.** Appearance of ascomata on host substrate. **D.** Vertical section through ascoma. **E.** Papilla. **G–J.** Asci (J in Melzer's reagent). **K–M.** Ascospores (M in Indian ink). Scale bars: C = 1 mm, D = 200 μm, E = 100 μm, F = 50 μm, G–J = 20 μm, K–M = 10 μm.

present elongated. *Microconidia* hyaline, oval to ellipsoid, aseptate, smooth-walled.

Type genus: Harknessia Cooke.

Type species: Harknessia eucalypti Cooke.

Notes: Harknessiaceae (Fig. 1, Clade 7) was introduced to accommodate Harknessia with its wuestneia-like sexual morph. Harknessia species, distributed in both tropical and temperate biomes, are associated with leaves and branches of host trees (Farr & Rossman 2001). Most pathogenic Harknessia species are associated with leaf spots, leaf tip dieback, leaf scorch and stem cankers (Crous *et al.* 1989, 1993, Yuan *et al.* 2000), but pathogenicity has not been properly studied (Crous *et al.* 2012b). Some saprobic species have also been isolated from asymptomatic plant tissues (Marincowitz *et al.* 2008, Crous *et al.* 2017). Twenty-one of the 60 species and seven of the 13 wuestneia-like sexual morphs have been linked to Harknessia asexual morphs

(Crous et al. 2012b, 2017). Ribosomal DNA sequence analysis of diaporthoid taxa revealed a distinct lineage for *Harknessia* sensu stricto within *Diaporthales* (Crous et al. 2012b). Crous et al. (2012b) introduced six novel species of *Harknessia* from *Eucalyptus* and phylogenetic relationships based on a multi-gene analysis of ITS nrDNA, calmodulin and beta-tubulin genes were provided for these species. However morphologically, *Dwiroopa lythri* has similar characters to *Harknessia* and phylogenetically it is moderately supported here. Hence, *Dwiroopa lythri* is accommodated within *Harknessiaceae* for now. Phylogeny herein, indicates support for the establishment of this family.

Harknessia eucalypti Cooke, Grevillea 9 (no. 51): 85. 1881. Facesoffungi number FoF03488. Fig. 27.

Saprobic on *Eucalyptus globulus* appearing as nearly circular, black distinct spots. Sexual morph: Undetermined. Asexual morph: *Conidiomata* $390-550 \mu$ m high, $400-600 \mu$ m diam, erumpent, scattered, pycnidial, unilocular, globose to

Fig. 27. Harknessia eucalypti (K (M) 195744). A. Packet of herbarium. B. Herbarium specimen. C. Cross section of conidioma. D–E. Conidia attached to the conidiogenous cells. F–K. Conidia. Scale bars: C = 100 μm, D–E = 20 μm, F–K = 10 μm.

subglobose, brown. *Peridium* 3–4 layers of brown cells of *textura angularis*. *Conidiophores* short, cylindrical, almost globose, branched, 1–2 layers, hyaline, mixed with peridium cells. *Conidiogenous cells* 8–13 × 4–6 µm, ampulliform, cylindrical, hyaline to brown. *Conidia* 11.5–15 × 8–9.5 µm ($\bar{x} = 13 \times 8.5 \mu$ m, n = 20), globose to ovoid with a truncate apiculate apex and an obtuse to blunt base, smooth, hyaline when young, brown at maturity, with longitudinal striations along the length of some conidia. *Basal appendages* 5–15 × 1.5–3 µm ($\bar{x} = 10 \times 2.5 \mu$ m, n = 20), hyaline, tubular, smooth, thin-walled, often collapsing.

Material examined: USA, California, on leaves of Eucalyptus globulus, Harkness 1280, isotype K (M) 195744.

Notes: Yuan & Mohammed (1997) observed the asexual morph of *Wuestneia epispora* from culture which was morphologically identical to *Harknessia eucalypti*, although this has not been proven based on sequences. *Harknessia* is associated with leaf spots, leaf tip dieback or leaf scorch, stem cankers and is also common on leaf litter (Crous *et al.* 1989, Marincowitz *et al.* 2008).

Juglanconidaceae Voglmayr & Jaklitsch, Persoonia 38: 142. 2017. Facesoffungi number FoF03489. Clade 4.

Synonym: Melansporellaceae C.M. Tian et al. Phytotaxa 305: 194. 2017.

Saprobic on dead corticated twigs and branches of Juglandaceae species. Sexual morph: Pseudostromata inconspicuous, ectostromatic disc pale yellow to pale brown, causing a more or less postulate bark surface. Central column more or less conical, beneath the disc. Ascomata surrounding the ectostromatic disc, with long, asymmetrical or symmetrical, lateral ostioles that emerge at the margin or within the ectostromatic disc, globose to subglobose, coriaceous, black. Hamathecium comprising hyaline paraphyses which deliquesce at maturity. Asci 8-spored, unitunicate, with a distinct apical ring, sessile. Ascospores hyaline, bicellular, with or without gelatinous appendages. Asexual morph: melanconium-like. Conidiomata acervular, with ectostromatic disc and central column. Conidiophores aseptate or few-celled, smooth, hyaline to brown. Conidiogenous cells annellidic, cylindrical, base swollen, hyaline to brown. Conidia ellipsoid to oval, brown, with gelatinous sheath. Conidial wall smooth on the outer surface, with inconspicuous to distinct irregular verrucae on the inner surface (description based on Voglmayr et al. 2017).

Type genus: Juglanconis Voglmayr & Jaklitsch.

Type species: Juglanconis juglandina (Kunze) Voglmayr & Jaklitsch.

Notes: Juglanconidaceae (Fig. 1, Clade 4) was introduced by Voglmayr et al. (2017) based on Melanconium juglandinum. This family comprises Juglanconis juglandina, J. oblonga, J. pterocaryae, and J. appendiculata. Juglanconidaceae is morphologically and phylogenetically distinct from other families of Diaporthales. Species in this family are mostly pathogenic on Juglandaceae tree species causing black pustular dieback disease (Graves 1923, Belisario 1999). Du et al. (2017) introduced a new family Melansporellaceae for Juglanconis species and here we synonymise Melansporellaceae under Juglanconidaceae.

Juglanconis juglandina (Kunze) Voglmayr & Jaklitsch, Persoonia 38: 144. 2017. Facesoffungi number FoF03490.

Illustration: See Voglmayr et al. (2017).

Saprobic on dead twigs and branches of Juglandaceae. Sexual morph: Pseudostromata 0.8-2 mm diam, typically inconspicuous, sometimes distinct, circular, slightly projecting, without perithecial bumps. Ectostromatic disc 0.5-1.2 mm diam, indistinct, circular or oblong, dark grey, brown or black, often covered by densely arranged ostioles, pulvinate. Central column yellowish to brownish grey. Entostroma indistinct. Ascomata 440-565 µm diam, perithecial, aggregated, immersed, globose to subglobose, coriaceous, black, arrange in various configurations. Asci 140-160 × 17-22 µm, 8-spored, unitunicate, clavate to fusoid, indistinct apical ring, with small narrow stalk. Ascospores 25-30 × 8-11 µm, uni- to irregularly biseriate, hyaline, inequilaterally ellipsoid or broadly fusoid, asymmetric, distinctly constricted at the septum, without appendages, upper cell mostly larger, with rounded to subacute end, lower cell subacute to narrowly rounded, multiguttulate, containing mostly one large and numerous small guttules per cell. Asexual morph: Conidiomata acervular, 1-4 mm diam, black, scattered or occasionally confluent, with central or eccentric stromatic column, at maturity covered by black discharged conidial masses, usually conspicuous. Conidiophores 25-35 µm high, 5-6.5 µm wide, cylindrical to lageniform, simple, rarely branched at the base, smooth, subhvaline to pale brown, Conidiogenous cells annellidic with distinct annellations, integrated. Conidia 20-25 × 12-15 µm, unicellular, hyaline when immature, brown to blackish when mature, broadly ellipsoid to broadly pipshaped, truncate with distinct scar at the base, multiguttulate, thick-walled, wall ornamented on the inside of the wall with irregular confluent verrucae and with gelatinous sheath.

Notes: Voglmayr *et al.* (2017) neotypified *Melanconium juglandinum* based on a freshly collected specimen due to misplacement or loss of the type specimen and poor condition of other authentic specimens. The conidiomata, conidiophores and conidia was nicely illustrated by Corda (1839) and the asexual morph is very common and conspicuous, while the sexual morph is infrequently found in fully-developed condition.

Lamproconiaceae C. Norphanphoun, T.C. Wen & K.D. Hyde, Phytotaxa 270: 94. 2016. Facesoffungi number FoF03491. Clade 22.

Pathogenic and saprobic on dead herbaceous branches. Sexual morph: Stromata prosenchymatous around perithecia, delimited

externally by greenish, blackened, dense pseudoparenchymatous zone, interior whitish, composed of interwoven hyphae mixed with substrate cells, 3-5 ascomata in a stroma. Ascomata perithecial, small, aggregated, scattered, globose to subglobose, pale to dark brown, coriaceous, ostiolate, papillate. Papilla converging and erumpent through stroma surface as single, large opening. Peridium comprises pale brown, compressed, cells of textura angularis. Asci 8-spored, unitunicate, cylindrical, short-stalked, Japical apparatus. Ascospores uniseriate, broadly ellipsoid, 1septate, not or slightly constricted at the septa, hvaline, smooth, Asexual morph: Conidiomata pycnidial, solitary, partly immersed in host tissue, uni- to multilocular or convoluted, dark blue or dark blackish brown, erumpent in the centre. Pycnidium thick-walled, thin at inner layer, hyaline or dark brown, comprising wall cells of textura angularis or textura intricata. Ostiole absent, dehiscence irregular. Paraphyses interspersed within conidiophores. Conidiophores filiform or cylindrical, pale-bluish or hyaline, septate, branched, smooth-walled, formed at the base of conidiomatal wall. Conidiogenous cells holoblastic, cylindrical to subcylindrical, each forming a single conidium at the apex, or annellidic, colourless to olivaceous, smooth-walled. Conidia fusiform, ellipsoid, thick-walled, contents granular, aseptate, bluish to glistening dark blue or hyaline, smooth-walled, produced in mucilage but without a distinct mucilaginous envelope or appendage.

Type: Lamproconium (Grove) Grove.

Type species: Lamproconium desmazieri (Berk. & Broome) Grove.

Lamproconium desmazieri (Berk. & Broome) Grove [as 'desmazieri'], British Stem- and Leaf-Fungi (Coelomycetes) (Cambridge) 2: 321. 1937. Facesoffungi number FoF03492. Fig. 28.

Pathogenic and saprobic on dead twigs and branches of lime trees (Tilia sp.). Sexual morph: Undetermined. Asexual morph: Conidiomata 0.8-1 × 0.4-0.55 mm, pycnidial, solitary, partly immersed in host tissue, uniloculate, dark blue, with a raised centre. Pycnidium 50-70 µm, with multi-layered wall, thin at inner layer, hyaline, wall cells of textura angularis. Paraphyses interspersed with conidiophores. Conidiophores 30-120 µm high, arising from the outermost wall layer at the basal of pycnidium, filiform or cylindrical, pale-bluish to hyaline, septate, branched, smooth-walled. Conidiogenous cells cylindrical to sub-cylindrical, annellidic, with flared periclinal thickenings in the collarette zone, colourless to oliva-8–10 smooth-walled. Conidia 22–28 x ceous, μm $(\overline{x} = 25.25 \times 9 \mu m, n = 30)$, fusiform, ellipsoid, infrequently slightly curved, aseptate, initially hyaline, bluish to glistening dark blue at maturity, narrowly rounded at ends, smooth-walled.

Material examined: **Russia**, Rostov region, Krasnosulinsky district, Donskoye forestry, artificial forest, on dead branches of *Tilia cordata (Tiliaceae)*, 21 May 2014, T. Bulgakov, MFLU 14–0780.

Notes: Melanconium desmazieri was reported as the asexual morph of Melanconis desmazieri from Tilia species (Petrak 1938). Grove (1937) re-circumscribed the species of Melanconium and postulated that Melanconium desmazieri differed from the type species of Melanconium in having 1-septate, bluish to glistening dark blue conidia. Therefore, Grove introduced a new genus Lamproconium to accommodate this taxon (Grove 1937, Sutton 1980), and Lamproconium desmazieri was placed in

Fig. 28. Lamproconium desmazieresi (MFLU 14–0780). A–C. Conidiomata on host. D. Vertical section of conidioma. E. Peridium and raised host. F. Apex of conidioma. G, H. Conidiogenous cells with attached conidia. I–M. Immature conidia. N. Mature conidium. Scale bars: A = 2 mm, B = 1 mm, C = 500 μm, D = 300 μm, E, F = 200 μm, G, H = 40 μm, I–N = 20 μm.

Diaporthales genera incertae sedis by Cannon & Minter (2014). Based on phylogenetic study, Norphanphoun *et al.* (2016) synonymised *Melanconis desmazieri* under *Lamproconium desmazieri* and introduced a new family *Lamproconiaceae* to accommodate *Lamproconium* and *Hercospora*. Morphologically *Lamproconiaceae* is distinct from other families of *Diaporthales* in having dark blue or dark blackish brown pycnidial conidiomata and fusiform to ellipsoid, aseptate, bluish to glistening dark blue or hyaline conidia. The sexual morph is reported only for *Hercospora*. Combined gene analysis of LSU nrDNA, ITS nrDNA, *rpb2*, and *tef1* shows that *Lamproconiaceae* is a distinct family that is sister to *Sydowiellaceae* (Fig. 1, Clade 22). Macrohilaceae Crous, IMA Fungus 6: 180. 2015. Clade 15.

Pathogenic forming leaf spots. Sexual morph: Undetermined. Asexual morph: Coelomycetous. *Conidiomata* pycnidial, immersed, becoming erumpent, medium brown, globose. *Conidiophore* reduced to conidiogenous cells. *Conidiogenous cells* lining the inner cavity, pale brown, cylindrical, proliferating percurrently near the apex. *Conidia* solitary, medium to dark brown, ovoid, smooth, guttulate, medianly septate, apex obtuse, base truncate with a visible scar.

Type genus: Macrohilum H.J. Swart.

Type species: Macrohilum eucalypti H.J. Swart.

Notes: The family Macrohilaceae was introduced and typified by Macrohilum (Crous et al. 2015) and its taxonomic placement in Diaporthales has been reported based on LSU nrDNA sequence data. In this study, our concatenated analysis on LSU nrDNA, ITS nrDNA, *rpb2* and *tef1* also indicates that the Macrohilum eucalypti strains cluster together with high support and belong to the Macrohilaceae (Fig. 1, Clade 15). Macrohilaceae differs from other families of Diaporthales in having single, dark brown, guttulate, thick-walled, medianly septate, oval conidia with obtuse apex and truncate base (Crous et al. 2015). This monotypic family comprises only a single species commonly associated with leaf spots of *Eucalyptus*.

Macrohilum eucalypti H.J. Swart, Trans. Br. mycol. Soc. 90: 288. 1988. Facesoffungi number FoF03493.

Illustration: See Crous et al. (2015).

Pathogenic forming leaf spots. Sexual morph: Undetermined. Asexual morph: *Conidiomata* immersed, becoming erumpent, medium brown, globose, to 300 µm diam. *Conidiogenous cells* lining the inner cavity, pale brown, cylindrical, finely roughened, proliferating percurrently near the apex, $10-15 \times 3-5$ µm. *Conidia* solitary, medium to dark brown, ovoid, smooth, guttulate, developing a single, dark brown, supra-median septum, thick-walled, frequently constricted at the septum, apex obtuse, base truncate and protruding, with a visible scar, 2-3 µm wide, $15-20 \times 10-12$ µm (description based on Crous *et al.* 2015).

Notes: Crous *et al.* (2015) epitypified *Macrohilum eucalypti* using an Australian specimen collected from *Eucalyptus piperita*. Although a New Zealand isolate (CPC 10945) differed from the Australian ex-epitype isolate (CPC 19421) by four base pairs in the ITS nrDNA, Crous *et al.* (2015) did not propose this isolate as a new species pending collection of more material.

Melanconidaceae G. Winter [as '*Melanconideae*'], Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.2: 764. 1886. Clade 2.

Saprobic or pathogenic on plants. Sexual morph: *Pseudostromata* well-developed, obvious, erumpent. *Ectostromatic disc* surrounded by bark or not, yellowish white, ostiolar canal opening around the disc. *Ascomata* perithecial, arranged as circles around the ectos-tromatic disc, oblique or horizontal, globose to subglobose, coriaceous, black, with long, periphysate, lateral ostiolar canals. *Peridium* comprising outer, thick-walled, brown cells of *textura globosa* to *textura angularis* and inner, thick-walled, flat, hyaline cells of *textura angularis*. *Hamathecium* comprising wide, hyphaelike, paraphyses, deliquescent at maturity. *Asci* 8-spored,

unitunicate, oblong to fusiform, short pedicellate, with distinct, Japical ring. *Ascospores* overlapping uni- to biseriate, hyaline, ellipsoid, 1-septate. Asexual morph: coelomycetous, melanconiumlike. *Conidiomata* acervular, scattered, solitary, superficial, black, coriaceous. *Conidiophores* branched at the base, septate, *Conidiogenous cells* annellidic, cylindrical. *Conidia* hyaline to brown, ellipsoid or subglobose, smooth-walled, thick-walled.

Type genus: Melanconis Tul. & C. Tul.

Type species: Melanconis stilbostoma (Fr.) Tul. & C. Tul.

Notes: The family Melanconidaceae was introduced by Winter (1886) to accommodate species having yellowish-white ectostromatic discs surrounding ascomata arranged in a circle. Members of this family are plant pathogens causing disease on as economic plant species. well as saprobes. Maharachchikumbura et al. (2016) listed 24 genera under this family based on morphology, following Lumbsch & Huhndorf (2010). However, most genera do not have any DNA sequence data, except Dicarpella, Melanconiella, Melanconis, Melanconium, and Prosthecium. Voglmayr & Jaklitsch (2014) synonymised Prosthecium under Stilbospora and included it in Stilbosporaceae. Crous et al. (2012b) have linked more than half of known wuestneia-like species to Harknessia species accommodating it in Harknessiaceae. Based on morphological and phylogenetic evidence, Castlebury et al. (2002) and Rossman et al. (2007) reported that this family is monogeneric with Melanconis and its asexual morph Melanconium. However, Rossman et al. (2015) synonymised Melanconium under Melanconis based on the poor phylogenetic resolution of Melanconium species and poor host-specificity. Phylogenies generated in this study position Dicarpella and Melanconiella (both in Melanconiellaceae; Fig. 1, Clade 10) outside the Melanconidaceae (Fig. 1, Clade 2). Considering the lack of molecular data, diverse ecological strategies and variable morphology, the family Melanconidaceae is restricted to Melanconis sensu stricto. Hence, we exclude all genera listed in Maharachchikumbura et al. (2016) from this family except Melanconis.

Melanconis apiocarpum and *M. marginale* have been reported from leaf spots of *Alnus* species in Canada, England, and Switzerland (Sieber *et al.* 1991). *Melanconium juglandinum* causes black pustular dieback of *Juglans* species in Europe and was consistently isolated from diseased twigs and branches of Persian walnut trees (*Juglans regia*), proving to be a virulent pathogen (Belisario 1999).

Melanconis italica Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821560. Facesoffungi number FoF03494. Figs 29, 30.

Etymology: Species epithet based on the country where the fungus was collected, Italy.

Saprobic on *Alnus cordata*. Sexual morph: *Pseudostromata* poorlydeveloped, erumpent. *Ectostromatic disc* 500–600 µm diam, surrounded by bark or not, yellowish-white, causing a coarse bark surface, inverted conical, ostioles open into margin and rarely middle of the disc. *Ascomata* 0.90–1 mm high, 0.4–0.5 mm diam ($\overline{x} = 0.98 \times 0.47$ mm, n = 20), perithecial, oblique, globose to subglobose, coriaceous, black, with long periphysate, lateral ostiolar canal. *Hamathecium* comprising wide, hyphae-like, hyaline, septate

Fig. 29. Melanconis italica (MFLU 17–0879). A. Stromata on substrate. B–D. Horizontal cross section of stroma. E. Vertical section of ascoma. F. Peridium. G. Paraphyses. H–K. Asci. L–O. Ascospores. Scale bars: A = 500 μm, B-D = 200 μm, E = 100 μm, F = 50 μm, G–O = 10 μm.

4–12 µm wide ($\overline{x} = 9 \mu m$, n = 20) paraphyses. *Peridium* 15–28 µm diam ($\overline{x} = 21 \mu m$, n = 10), comprising thick-walled, brown cells of *textura angularis*. *Asci* 80–92 × 11–14 µm ($\overline{x} = 13 \times 8.5 \mu m$, n = 20), 8-spored, unitunicate, cylindrical, short pedicellate, with distinct, J-apical ring. *Ascospores* 18–21 × 2.8–4 µm ($\overline{x} = 19 \times 3.5 \mu m$), biseriate, hyaline, fusiform, 1-septate, slightly constricted at the septum, smooth-walled. Asexual morph: *Conidiomata* on MEA solitary, superficial, globose, appears as slimy bubbles of conidia mass, black. *Conidiophores* cylindrical, branched, thick-walled,

hyaline. *Conidiogenous cells* blastic, terminal or intercalary, bottle-shaped, narrowing towards the apex, hyaline, thick-walled. *Conidia* fusiform to ellipsoidal, aseptate, thick-walled, basal end pointed, apical end blunt, olivaceous.

Culture characteristics: Colonies growing on MEA attained 1 cm within 7 d incubation at 18 °C, flat, circular, smooth margin, white, tightly attached to the substrate, little aerial mycelia.

Fig. 30. Asexual morph of *Melanconis italica* (MFLUCC 16–1199). A, B. Conidiomata on PDA. C–F. Conidia attached to conidiogenous cells, and conidiophores. G. Conidia. Scale bars: A = 500 μm, B = 200 μm, C–F = 10 μm, G = 5 μm.

Specimen examined: Italy, Province of Forlì-Cesena, Fiumicello di Premilcuore, on dead branch of *Alnus cordata* (*Betulaceae*), 4 Dec. 2013, E. Camporesi, IT 1557 (holotype MFLU 17–0879, isotype BBH 42441, cultures ex-type, MFLUCC 16–1199, MFLUCC 17–1659).

Notes: Melanconis italica clusters in a clade with *M. alni* with high support (Fig. 1, Clade 2). Both *M. italica* and *M. alni* are associated with *Alnus* species. *Melanconis alnicola* is also reported from *Alnus* species. However, there are no DNA sequence data in GenBank for *Melanconis alnicola*. Morphologically, *M. alni* differs from *M. italica* in having short to long, hyaline, filiform appendages at both ends, and oval to ellipsoid ascospores. In contrast, *M. alnicola* has large, oval to ellipsoid ascospores $(25-45 \times 9-12 \ \mu m)$ and small asci $(50-60 \times 10-15 \ \mu m)$. Hence, a new species, *Melanconis italica*, is introduced to accommodate this taxon.

Melanconiellaceae Senan. & Maharachch., K.D. Hyde, fam. nov. MycoBank MB821561. Facesoffungi number FoF03495. Clade 10.

Synonym: Melanconiellaceae Locq., Mycol. gén. struct. (Paris): 210. 1984. (nom. inval., Art 39.1, Melbourne Code).

Phytopathogenic or saprobic. Sexual morph: *Stromata* present or absent. If present; *Pseudostromata* inconspicuous, erumpent, pale or dark coloured ectostromatic disc or pulvillus causing a more or less pustulate bark surface. *Ectostromatic disc* convex, flat to concave, surrounded by bark or not. *Central column* beneath the disc more or less conical, comprising hyaline or pigmented hyphae mixed with a pigmented, cream, yellow, olive, brownish or grey, powdery amorphous substance. *Perithecia* sometimes epiphyllous without stromatic tissues and immersed in host substrate, inconspicuous or appearing as rounded bumps beneath the bark surrounding the ectostromatic disc, oblique or horizontal, scattered or often arranged in a circle around the

central column, with long lateral ostioles that converge at the margin of the central column. Ostioles emerging in various positions in the ectostromatic disc, cylindrical. Peridium comprising dark, thick-walled cells of textura angularis. Hamathecium aparaphysate or comprising broad, hyaline paraphyses. Asci 2-8-spored, unitunicate, cylindrical-clavate, oblong or fusoid, with a J- distinct apical ring, tapering below to a short, narrow pedicel. Ascospores hyaline, yellowish or brown, oblong, fusoid or ellipsoid, 0-1-septate, septa central or slightly eccentric, slightly constricted or not, smooth, with or without short, blunt appendages and sometimes with a narrow gelatinous sheath. Asexual morph: Conidiomata acervular or pycnidia, punctiform, subcuticular, immersed or erumpent, sometimes with a central, well-developed, pale brown, pseudoparenchymatous layer becoming thinner or absent at the margin of the conidiomata, multiloculate, sometimes papillate, sometimes with pale coloured, ectostromatic disc and central column or with radiate scutella. Scutella convex, membranous, brown, somewhat translucent, with a central hyaline or pale disc, giving rise to radiating hyphae, thick-walled cells radiating from a central point, rounded to pointed at the tips. Conidiophores reduced to conidiogenous cells or branched, sometimes septate only at the base, few-celled, smooth, hyaline to pale brown, sometimes short, forming under the developing scutellum. Pseudoparaphyses filiform. Conidiogenous cells annellidic or phialidic. Conidia initially hyaline becoming brown, ellipsoid, obovoid, subglobose, ovoid or oblong, thick-walled, smooth to finely verrucose, with or without distinct hyaline sheath, each with a truncate base and obtuse to bluntly pointed apex, sometimes somewhat granular, sometimes with inconspicuous to conspicuous basal hilum, with or without distinct hyaline sheath or frill.

Type genus: Melanconiella Sacc.

Type species: Melanconiella spodiaea (Tul. & C. Tul.) Sacc.

Notes: The phylogenetic analyses of this study showed that *Greeneria*, *Melanconiella*, and *Dicarpella* (previously placed in *Melanconidaceae*), *Tubakia* (previously placed as *Diaporthales incertae sedis*), *Sphaeronaemella fragariae* (previously placed in *Microascales incertae sedis*) and *Microascospora* gen. nov. forms a distinct clade with moderate support, which we recognise as Melanconiellaceae (Fig. 1, Clade 10).

The genus Greeneria was introduced based on G. fuliginea (Scribner & Viala 1887) and was synonymised under Melanconium (Cavara 1889) as Melanconium fuligineum. Later van der Aa (1973) accommodated this genus in Phyllosticta as P. ampelicida. Punithalingam (1974) renamed this taxon as Greeneria uvicola providing a detailed description and illustration. A LSU nrDNA sequence analysis by Farr & Rossman (2001) showed the phylogenetic placement of Greeneria uvicola outside of Melanconidaceae, but within Diaporthales. Analyses in this current study showed the phylogenetic placement of G. uvicola and G. saprophytica within Melanconiellaceae (Fig. 1, Clade 10). However, G. saprophytica does not show a very close affinity to G. uvicola. Greeneria uvicola is one of the most common pathogens causing various diseases in grapes (Navarrete et al. 2009). Greeneria lacks a known sexual morph (Zhang & Blackwell 2001) and it differs from other diaporthalean asexual morphs in having holoblastic conidiogenesis, producing phialidic conidiogenous cells in acervuli or pycnidia, and pale brown conidia (Barr 1978). The fungus overwinters on stem lesions, mummified berries, leaves, and tendrils. It is known to attack several species of Vitis including V. aestivalis, V. labrusca, V. rotundifolia, and V. vinifera.

The genus *Dicarpella* is based on *Dicarpella bina* and the asexual morph of this genus was reported as *Tubakia* (Belisario 1991). *Tubakia* is typified by *Tubakia japonica*. The type species of these two genera are not linked to each other. However molecular data linked *Tubakia* and *Diplacella* together and a few *Diplacella* species have *Tubakia* asexual morphs (Sogonov *et al.* 2008). *Tubakia* is more commonly encountered compared with *Dicarpella* and it is also a more widely used name than *Dicarpella*. The phylogenetic analyses in this study indicate a plausible relationship of *Dicarpella dryina* and *Tubakia* are congeneric without analysing sequence data of the type species. Thus, here we retain *Dicarpella* and *Tubakia* as two separate genera until sequence data becomes available.

VogImayr et al. (2012) reviewed the genus *Melanconiella* based on herbarium material and recently collected specimens. The morphological and phylogenetic distinctness of *Melanconiella* from *Melanconis* was discussed. The generic type of *Melanconiella* was confirmed as *M. spodiaea*. Phylogenetic analysis in this study showed the distinct placement of *Melanconiella* within this new clade (Fig. 1, Clade 10).

A new genus *Microascospora* is introduced to this family based on *Microascospora rubi*. Phylogenetically *Sphaeronaemella fragariae* did not cluster with other *Sphaeronaemella* species and it forms a clade with *Microascospora rubi*. Hence *Sphaeronaemella fragariae* is excluded from *Sphaeronaemella* and accommodated in *Microascospora* as *M. fragariae*. However, *Melanconiellaceae* was originally invalidly published (Art. 39.1, Melbourne) by Locquin (1984). Hence *Melanconiellaceae* is herewith validated to accommodate *Dicarpella*, *Greeneria*, *Melanconiella*, *Microascospora* and *Tubakia*.

Melanconiella chrysodiscosporina Voglmayr & Jaklitsch, Fungal Diversity 57: 14. 2012. Facesoffungi number FoF03496. Fig. 31.

Saprobic on dead branch of Fagus sylvatica. Sexual morph: Pseudostromata indistinct, irregular or circular outline. Ectostromatic disc minute, circular, narrowly fusoid to oblong, yellow or grevish brown, central column vellow. Entostroma comprising subhyaline to yellowish hyphae. Ascomata 1.2-1.3 mm high, 0.3-0.5 mm diam ($\bar{x} = 1.25 \times 0.45$ mm, n = 20), immersed, aggregated, globose to subglobose, coriaceous, black, arranged in valsoid configuration. Papilla 600-950 µm high, 90-130 µm diam $(\overline{x} = 800 \times 117 \ \mu m, n = 10)$, long, asymmetrical or symmetrical, black, converging at upper region and make a common canal to open out, internally covered by hvaline periphyses. Peridium 14–17 μ m diam (\overline{x} = 15 μ m, n = 10), comprising outer few layers of thick-walled, brown, compressed cells of textura angularis and inner thick-walled, hyaline, compressed cells of textura angularis. Asci 85–100 × 13–17 μ m (\overline{x} = 95 × 15 μ m, n = 20), 8-spored, unitunicate, cylindrical to fusoid, with J- distinct apical ring, sessile or with short pedicel. Ascospores $17-20 \times 6-9 \mu m$ ($\overline{x} = 17.6 \times 7.5 \mu m$, n = 20), uni- or biseriate, broadly ellipsoid, not constricted at the septum, ends broadly rounded, hyaline, medianly 1-septate, multiguttulate with one large and numerous small guttules per cell, wall swelling and sometimes thicken and stuffed at the septum. Asexual morph: discosporina-like. Conidiomata 140-180 µm high, 490–600 µm diam (\bar{x} = 150 × 507 µm, n = 20), visible as darker spots marginated by a distinct dark brown to blackish marginal zone, with a central stromatic column, at maturity covered by whitish discharged conidial masses. Conidiophores 6-10 × 5-7.5 µm $(\overline{x} = 7.4 \times 6 \mu m, n = 20)$, few layers, cubic, thick-walled, hyaline. Conidiogenous cells $9-12 \times 1-2 \mu m$ ($\overline{x} = 11 \times 1.8 \mu m$, n = 20), phialidic, conical, base enlarged, narrowing towards the apex, thickwalled, hyaline. Conidia 10-12 × 4-6 μ m (\overline{x} = 10.8 × 5.2 μ m, n = 20), ellipsoid, oblong or cylindrical, with two large and numerous small guttules, hyaline, with gelatinous sheath.

Specimen examined: **Italy**, Province of Forlì-Cesena, Bagno di Romagna, near Riofreddo, on dead branches of *Fagus sylvatica (Fagaceae*), 14 Aug. 2016, E. Camporesi, IT 3066, MFLU 17–0893, living culture MFLUCC 17–1671.

Notes: Melanconiella chrysodiscosporina was introduced by Voglmayr et al. (2012). This fungus was mostly found in the summer season from late spring to autumn (Voglmayr et al. 2012). The holotype and other authentic specimens were collected from dead branches of *Carpinus betulus* (*Betulaceae*). However, we collected this specimen from dead branches of *Fagus sylvatica* (*Fagaceae*). This is the first host record of *Melanconiella chrysodiscosporina* on *Fagus sylvatica*.

Melanconiella chrysomelanconium Voglmayr & Jaklitsch, Fungal Diversity 57: 16. 2012. Facesoffungi number FoF03497. Fig. 32.

Saprobic on branches of *Carpinus betulus*. Sexual morph: Not observed. Asexual morph: melanconium-like. *Conidiomata* 0.4–1 mm diam, visible as blackish spots with central or eccentric ostiolar opening, pycnidial, epidermal to

Fig. 31. *Melanconiella chrysodiscosporina* (MFLU 17–0893). A. Herbarium specimen. B. Vertical cross section of ascoma. C. Peridium. D–F. Asci. G–J. Ascospores. K. Conidiomata on substrate. L. Vertical cross section of conidioma. M. Conidiophores, conidiogenous cells and conidia. N–Q. Conidia. Scale bars: A = 1 mm, B, L = 100 μm, C = 20 μm, D–J, M = 10 μm, K = 200 μm, N–Q = 5 μm.

subepidermal, globose to subglobose, black, coriaceous, at maturity covered by black discharged conidial masses. Ostiole present, pointed. Conidiomatal wall composed of thin-walled, brown cells of textura angularis. Conidiophores reduced to conidiogenous cells, arising from the uppermost layer of cells of the basal stromatic pycnidial wall. Conidiogenous cells 7–18 µm high, 2–6 µm diam ($\overline{x} = 14.4 \times 4 \mu m$, n = 20), annellidic, hyaline, cylindrical, thick-walled, determinate, integrated, with flared collarette and periclinal wall-thickening. Conidia 13–20 × 7–11 µm ($\overline{x} = 15 \times 8.5 \mu m$, n = 20), dark brown, broadly ellipsoid to globose, circular in outline, slightly

truncate at base, as eptate, multiguttulate with 1–2 large and numerous small guttules, thick-walled, with distinct gelatinous sheath, smooth.

Specimen examined: Italy, Province of Forlì-Cesena, Via Nenni, Forlì, on dead aerial branches of *Carpinus betulus* (*Betulaceae*), 2 Jan. 2015, E. Camporesi, IT 1622, MFLU 17-0966.

Notes: Melanconiella chrysomelanconium is morphologically similar and phylogenetically related to *M. chrysodiscosporina* (VogImayr *et al.* 2012). The combined gene analysis of this study

Fig. 32. Melanconiella chrysomelanconium (MFLU 17–0966). A, B. Conidiomata on substrate. C. Cross section of conidioma. D–F. Conidiophores, conidiogenous cells and attached conidia. G–J. Conidia. Scale bars: B = 200 µm, C = 500 µm, D–F = 20 µm, G–J = 10 µm.

illustrates its phylogenetic relationship to other *Melanconiella* species (Fig. 1, Clade 10).

Microascospora Senan. & K.D. Hyde, gen. nov. MycoBank MB821562. Facesoffungi number FoF03498.

Etymology: Name based on small ascospores (<20 µm in length).

Saprobic on dead stems. Sexual morph: *Ascomata* scattered, solitary, immersed, globose to subglobose, brown, coriaceous, papillate, ostiolate. *Papilla* narrow, long, straight or curved,

comprising thick-walled, brown, compressed cells of *textura* angularis, internally covered by hyaline periphyses. *Peridium* comprising thick-walled, brown, somewhat compressed cells of *textura angularis*. *Hamathecium* aparaphysate. *Asci* 8-spored, unitunicate, clavate to fusiform, J- apical ring, attached to base without a pedicel. *Ascospores* overlapping biseriate, ellipsoid to fusiform, hyaline, aseptate, with two large fat globules at ends, appendages long, filiform to wavy, hyaline. Asexual morph: Undetermined.

Fig. 33. *Microascospora rubi* (MFLU 15–1112). A. Herbarium specimen. B. Vertical section of ascoma. C. Peridium. D–F. Asci. G–J. Ascospores. K. Upper side of culture growing on MEA. L. Lower side of culture growing on MEA. Scale bars: A = 200 µm, B = 100 µm, C = 25 µm, D–F = 10 µm, G–J = 5 µm.

Type species: Microascospora rubi Senan., Maharachch. & K.D. Hyde.

Microascospora rubi Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821563. Facesoffungi number FoF03499. Fig. 33.

Etymology: Name based on host genus Rubus.

Saprobic on dead stems of Rubus ulmifolia. Sexual morph: Ascomata 250-290 × 205-255 µm (x = 269 × 230 µm), scattered, solitary, immersed, globose to subglobose, brown, coriaceous, papillate, ostiolate. Papilla 115-155 µm high, 55-67 µm diam ($\overline{x} = 139 \times 65 \mu m$, n = 10), narrow, long, straight or curved, comprising thick-walled, brown, compressed cells of textura angularis, internally covered by hyaline periphyses, Peridium $10-25 \ \mu m$ ($\overline{x} = 18 \ \mu m$), comprising thick-walled, brown, large, somewhat compressed cells of textura angularis. Hamathecium aparaphysate. Asci 68-70 × 15-18 µm (x = 69 × 16 µm, n = 20), 8-spored, unitunicate, clavate to fusiform, J- apical ring, attached to base without a pedicel. Ascospores 14-19 × 5-7 µm $(\overline{x} = 17 \times 6 \mu m, n = 20)$, overlapping biseriate, ellipsoid to fusiform, hyaline, aseptate, with two large fat globules at ends, appendages long, filiform to wavy, hyaline. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on MEA slow growing, becoming 1 cm within 10 d at 18 °C, circular, umbonate, irregular

margin, cream to olivaceous, cotton-like, loosely attached to the substrate.

Specimen(s) examined: Italy, Province of Forlì-Cesena, Bagno di Romagna, Ridracoli, on dead branch of *Rubus ulmifolia* (*Rosaceae*), 24 Jan. 2014, E. Camporesi, IT 1675 (holotype MFLU 15-1112, isotype BBH 42445).

Notes: A new genus *Microascospora* is introduced based on *M. rubi*. This genus is morphologically and phylogenetically distinct from other genera in *Melanconiellaceae* having small ascospores (<20 μ m length) with wavy, filiform long appendages, and immersed, solitary ascomata with wavy papilla.

Microascospora fragariae (F. Stevens & Peterson) Senan., Maharachch. & K.D. Hyde, **comb. nov.** MycoBank MB821631. Facesoffungi number FoF03500.

Basionym: Sphaeronaemella fragariae F. Stevens & Peterson, Phytopathology 6: 258. 1916.

Notes: The multi-gene sequence analysis in this study shows that Sphaeronaemella fragariae (Fig. 1, Clade 10) does not have any affinities to the type species of Sphaeronaemella, S. helvellae (incertae sedis in Microascales). Sphaeronaemella fragariae forms a well-supported clade that is sister to Micro-ascospora rubi in Melanconiellaceae. Hence, we exclude Sphaeronaemella fragariae from Sphaeronaemella and accommodate this taxon in Microascospora and propose a new combination as Microascospora fragariae.

Fig. 34. Tubakia thailandensis (MFLU 13–0260). A. Herbarium specimen. B. Conidiomata on the host surface. C. Vertical section of pycnothyrium. D. Top view of radiate scutellum and conidiogenous cells with developing conidia. E–H. Conidiogenous cells with developing conidia stained with lactophenol cotton blue. I–K. Conidia. L. Conidia stained with lactophenol cotton blue. M. Germinating conidium. N–O. Colonies on PDA from top. P–Q. Colonies on PDA from reverse. Scale bar: C = 50 µm, D, F–M = 10 µm, E = 5 µm.

Tubakia thailandensis Senan., Tangthir. & K.D. Hyde, **sp. nov.** MycoBank MB821564. Facesoffungi number FoF03501. Fig. 34.

Etymology: Name based on the country from which this species was collected, Thailand.

Saprobic on dead leaves. *Conidiomata* 40–50 µm high, 50–75 µm diam, pycnothyria with radiate scutella, scattered to gregarious, superficial on the substratum. *Scutella* convex, brown to dark brown, thick-walled cells, radiating from a central point. *Conidiophores* short, forming under the developing scutella. *Conidiogenous cells* 5–10 × 2–4 µm, phialidic, with a minute collarette and wide periclinal thickening. *Conidia* 10–12.4 × 7.4–8.7 µm (\overline{x} = 11.3 × 8.1 µm, n = 20), globose to subglobose, smooth, hyaline, thick-walled.

Specimen examined: **Thailand**, Chiang Rai, Doi Mae Salong, on dead leaf, 2 May 2012, K. Wisitrassameewong, NTCL059 (**holotype** MFLU 13–0260, culture ex-type MFLUCC 12–0303).

Culture characteristics: Mycelium white when young, dark green, pale grey to black from above and reverse when aged, with medium mycelium, flat, rhizoid to irregular form, labate margin, and attaining a diam of 46 mm on PDA in 7 d at 27 °C.

Notes: Tubakia comprises seven species (Index Fungorum 2017, MycoBank 2017). Braun *et al.* (2014) presented a taxonomic key to the genus *Tubakia* and according to that key, this species is morphologically quite similar to "*Tubakia* sp." which has a small scutellum (40–80 µm diam.) and hyaline or subhyaline conidia (9–11 × 7–9 µm) collected from *Castanea henryi* in China. Therefore, we introduce this species as *Tubakia* species in having small (length < 15 µm), globose or subglobose, hyaline conidia, without microconidial development. Tubakia shares close phylogenetic affinities to *Greeneria saprophytica* (Fig. 1, Clade 10).

Prosopidicolaceae Senan. & K.D. Hyde, fam. nov. MycoBank MB821565. Facesoffungi number FoF03502. Clade 17.

Pathogenic on species of *Fabaceae*. *Conidiomata* pycnidial, rarely acervular, solitary or aggregated in a eustromatic stroma with one to several ostioles or astromatic, grey to black, erumpent to immersed. *Peridium* comprising grey-brown cells of *textura angularis*. *Conidiophores* reduced to conidiogenous cells or lining the whole inner layer of the wall, subcylindrical, branched, septate, straight to irregularly curved, base pale brown, becoming medium green-brown at apex. *Conidiogenous cells* mono- to polyphialidic, tightly aggregated, hyaline, smooth, ampulliform, subcylindrical to lageniform, prominent periclinal thickening, at times with percurrent proliferation. *Conidia* solitary, subhyaline to brown, smooth, guttulate, straight to variously curved, ellipsoid to fusoid-ellipsoid, apex obtuse, base truncate to bluntly round.

Type genus: Prosopidicola Crous & C.L. Lennox.

Type species: Prosopidicola mexicana Crous & C.L. Lennox.

Notes: Prosopidicolaceae is a monotypic family introduced here to accommodate *Prosopidicola* species. *Prosopidicolaceae* (Fig. 1, Clade 17) is phylogenetically not associated with any support to known families of *Diaporthales*, but is morphologically well-delineated. Species in this family are pathogens on

Fabaceae host plants. This family comprises *Prosopidicola albizziae* and *P. mexicana* (Lennox *et al.* 2004, Crous *et al.* 2016).

Prosopidicola mexicana Crous & C.L. Lennox, Stud. Mycol. 50: 191. 2004. Facesoffungi number FoF03503.

Illustration: See Lennox et al. (2004).

Pathogenic causing pod rot disease on Prosopidis glandulosae. Lesions 2-3 mm wide and up to 7 mm long, covering the pod, irregular, extending across the width of the pod, pale brown with a raised, dark brown margin. Conidiomata up to 250 µm diam, amphigenous, pycnidial, rarely acervular, scattered, immersed to erumpent, globose to subglobose, unilocular, black. Peridium up to 15 µm thick, consisting of 3-4 layers of brown cells of textura angularis. Conidiophores 5-50 µm high, 3-4 µm diam, lining the whole inner layer of the wall, subcylindrical, branched, 0-3septate, straight to irregularly curved, base pale brown, becoming medium greenbrown at apex. Conidiogenous cells $5-16 \times 3-4 \mu m$, phialidic when young, with prominent periclinal thickening and proliferating percurrently with age, subcylindrical to lageniform, green-brown, smooth when young, becoming medium to dark green-brown and warty with maturity, apex obtaining flared collarettes, rarely with two loci per conidiogenous cell. Conidia 10–15 × 4.5–5.5 µm, solitary, broadly ellipsoidal, medium brown, straight to slightly curved, rounded at the apex, tapering to a subtruncate base, with an inconspicuous dehiscence scar, smooth, thin-walled, aseptate (description based on Lennox et al. 2004).

Notes: Prosopidicola mexicana is the cause of a severe pod rot disease on *Prosopidis glandulosa*. It appears as black lesions surrounded by a dark brown margin. Lennox *et al.* (2004) revealed it to group closely to *Cryphonectriaceae*. However in the phylogenetic analyses generated in this study, it forms a distinct clade which is basal to *Cytosporaceae*.

Pseudoplagiostomataceae Cheew. *et al.*, as "*Pseudoplagios-tomaceae*", Fungal Diversity 44: 95. 2010. Clade 12.

Pathogenic on leaves, forming spots. Sexual morph: Ascomata solitary, scattered, immersed, slanted to horizontal on host tissue, globose or elliptical, black, coriaceous, papillate, ostiolate. Papilla short, internally covered with hyaline, filamentous periphyses. Peridium comprising a few layers of thick-walled, brown cells of textura angularis. Hamathecium lacking paraphyses. Asci 8spored, unitunicate, cylindrical, sessile, with J-, subapical ring. Ascospores overlapping uni- to biseriate, hyaline, fusiform to ellipsoid, 1-septate, with terminal, elongate, hyaline appendages. Asexual morph: Coelomycetous. Conidiomata acervular or pycnidial, brown. Peridium comprising small, brown cells of textura angularis. Conidiophores absent. Conidiogenous cells cylindrical to ampulliform, enteroblastic, percurrently proliferating with periclinal thickening and collarette. Conidia holoblastic, hyaline to brown, ellipsoid, unicellular, subglobose to broadly allantoid, with obtuse apex and a flat protruding scar at the base.

Type genus: Pseudoplagiostoma Cheew. M.J. Wingf. & Crous.

Type species: Pseudoplagiostoma eucalypti Cheew., M.J. Wingf. & Crous.

Notes: Pseudoplagiostomaceae was introduced by Cheewangkoon *et al.* (2010). *Pseudoplagiostomaceae* is similar to *Gnomoniaceae* (Fig. 1, Clade 1) based on morphological characters of its sexual morph, such as solitary, immersed, non stromatic ascomata with lateral beaks, asci with a distinct apical ring and 1-septate ascospores (Sogonov *et al.* 2008). However, in our phylogenetic analyses it formed a fully-supported clade (Fig. 1, Clade 12) sister to *Apoharknessiaceae*.

Pseudoplagiostoma eucalypti Cheew., M.J. Wingf. & Crous, Fungal Diversity 44: 98. 2010. Facesoffungi number FoF03504.

Illustration: See Cheewangkoon et al. (2010).

Pathogenic on leaves forming leaf spots. Sexual morph: Ascomata 130-150 µm high, 100-130 µm diam, perithecia, immersed in host tissue, slanted to horizontal, globose to elliptical, coriaceous, brown to black, papillate, ostiolate. Papilla 60-65 µm diam, erumpent, internal wall lined by hyaline periphyses. Peridium comprising few layers of thick-walled, brown cells of textura angularis. Hamathecium aparaphysate. Asci 65-70 × 11-13 µm, 8-spored, unitunicate, subcylindrical to long obovoid, with wedgeshaped, J-subapical ring, apex blunt and without a distinct pedicel. Ascospores 17-19 × 5-7 µm, overlapping uni- to biseriate, ellipsoid, tapering towards rounded ends, hyaline, median 1septate, widest at septum, with terminal, elongate, hyaline appendages. Asexual morph: Conidiomata 180-200 µm high, 170–190 µm diam, acervular to pycnidial, subcutical to epidermal. Peridium comprising small, brown cells of textura angularis. Conidiophores absent. Conidiogenous cells 8-12 × 2-4 µm, cylindrical to ampulliform, enteroblastic proliferation with periclinal thickening. Conidia 17-19 × 7-8 µm, holoblastic, ellipsoid, unicellular, with obtuse apex and a flat protruding scar at the base (description based on Cheewangkoon et al. 2010).

Notes: The monotypic family Pseudoplagiostomataceae was introduced by Cheewangkoon et al. (2010) to accommodate a cryptosporiopsis-like fungus isolated from Eucalyptus. The type species, P. eucalypti (as Cryptosporiopsis eucalypti) and two other new species, P. oldii and P. variabile, were isolated as foliar pathogens from Eucalyptus leaf spots. However, Cryptosporiopsis eucalypti was not closely related to the generic type of Cryptosporiopsis, C. nigra (Dermateaceae, Helotiales), and hence Cheewangkoon et al. (2010) introduced Pseudoplagiostoma to accommodate this taxon. Pseudoplagiostoma corymbiae (Crous et al. 2012c) and P. dipterocarpi (Suwannarach et al. 2016) were introduced to this genus from Corymbia sp. and Dipterocarpus tuberculatus respectively. The ascospore morphology, in particular, is distinct and morphologically this family differs from other families in the order in having astromatic, slanted to horizontal, globose ascomata with aparaphysate hamathecium, ascospores with terminal, elongate, hyaline appendages and a cryptosporiopsis-like asexual morph. Cheewangkoon et al. (2010) analysed LSU nrDNA sequence data of the order Diaporthales, to show the distinct placement of Pseudoplagiostomaceae with 100 % bootstrap support.

Schizoparmaceae Rossman, Mycoscience 48: 137. 2007. Clade 8.

Saprobic, parasitic or pathogenic on woody, herbaceous plants. Sexual morph: Ascomata perithecial, solitary, scattered, subepidermal, immersed to erumpent, becoming superficial, globose, coriaceous, brown to black, short papillate, ostiole with hyaline periphyses, plate-like ornamentation around ostiole. Peridium comprising thick-walled, brown-cells of textura angularis. Hamathecium aparaphysate. Asci 8-spored, unitunicate, ellipsoid to fusiform, sessile, with a J- apical ring. Ascospores biseriate, hyaline to becoming pale brown at maturity, ellipsoidal, aseptate, with or without mucoid caps. Asexual morph: Coelomvcetous. Conidiomata pycnidial, subepidermal, immersed to erumpent, unilocular, globose, slightly depressed globose to subglobose. Conidiophores densely aggregated, slender, subulate, simple or branched, hyaline, smooth, occasionally septate and branched at base, invested in mucus, developing from basal pad. Conidiogenous cells discrete, simple, subcylindrical, obclavate or lageniform, smooth, proliferating percurrently or with prominent periclinal thickening. Conidia ellipsoid, globose, napiform, fusiform or naviculate with a truncate base and an obtuse to apiculate apex, hyaline or olivaceous brown to brown, unicellular, broadly or narrowly ellipsoidal, apices tapering, with or without a longitudinal germ slit, with or without a mucoid appendage.

Type genus: Coniella Höhn.

Type species: Coniella pulchella Höhn.

Notes: The monogeneric family *Schizoparmaceae* (Fig. 1, Clade 8) was introduced to accommodate *Coniella* (= *Pilidiella*, *Schizoparme*). Species of the asexual *Pilidiella* have been more widely reported than *Schizoparme* (Farr & Rossman 2017) and thus, *Schizoparme* was synonymised under *Pilidiella* giving priority to the older name (Rossman *et al.* 2015). Although van Niekerk *et al.* (2004) treated *Coniella* and *Pilidiella* as two distinct genera, the generic boundaries of the former were recently expanded to include "hyaline to dark brown conidia", as Alvarez *et al.* (2016) reported that conidial pigmentation was lost or gained several times during the evolution of species within *Coniella*.

Coniella pseudokoreana Senan., Tangthir. & K.D. Hyde, **sp. nov.** MycoBank MB821542. Facesoffungi number FoF03505. Fig. 35.

Etymology: Somewhat similar to *Coniella koreana*, however phylogenetically distant from this species.

Saprobic on dead leaves. *Conidiomata* pycnidial, solitary to gregarious, globose, brown, unilocular, ostiolate, 85–130 µm high, 78–106 µm diam ($\bar{x} = 108 \times 92 \mu$ m, n = 10), immersed, with a central short ostiolar canal on each conidioma. *Conidiomata wall* 2–4-layered, 6–15 µm wide ($\bar{x} = 10 \mu$ m), with outer brown to dark brown layers composed of thick-walled cells of *textura angularis*, with inner pale brown layer composed of thin-walled cells of *textura angularis*, with inner pale brown layer composed of thin-walled cells of *textura prismatica*, except at the base which has a pulvinate convex giving rise to conidiophores or conidiogenous cells. *Conidiophores* 4–8 µm high, 1.5–4 µm wide, short, branched at the base, hyaline, smooth. *Conidiogenous cells* 5–10 µm high, 1.5–2 µm wide, holoblastic to enteroblastic, phialidic. *Conidia* 18–26 × 3–4 ($\bar{x} = 23 \times 3.6 \mu$ m) fusiform, navicular, with one side slightly curved and another straight, smooth, hyaline, conidium length/width ratio = 6.5:1.

Culture characteristics: Colonies attaining a diam of 4 cm on PDA after 5 d at 27 °C; surface white with medium to sparse mycelium, flat, irregular, undulate or wavy margin.

Fig. 35. Coniella pseudokoreana (MFLU 13–0282). A. Specimen on dead leaf. B. Conidiomata on host surface. C–D. Longitudinal section of a conidioma. E–H. Conidiogenous cells with developing conidia. I. Conidiogenous cells with developing conidia stained in lactophenol cotton blue. J. Conidia. K. Conidia stained with lactophenol cotton blue. L. Germinating conidium. M. Colonies on PDA from top. N. Colonies on PDA from reverse. Scale bar: C = 100 µm, D = 50 µm, E–L = 10 µm.

Specimen examined: Thailand, Phitsanullok, Tung Salang Luang, on decaying leaf, 18 Jun. 2012, N. Tangthirasunun, NTCL093 (holotype MFLU 13–0282, culture ex-type MFLUCC 12–0427).

Notes: Coniella pseudokoreana displays somewhat similar morphological characters to *C. koreana* and *C. castaneicola* in having linear, falcate, pale brown conidia (Alvarez *et al.* 2016). The colony morphology of *Coniella koreana* described in Alvarez *et al.* (2016) on PDA is similar to the colony morphology of our strain. However, conidiomatal morphology and size of the conidia are different. We collected *Coniella pseudokoreana* on a decaying leaf in Thailand. Our phylogeny reveals, *C. pseudokoreana* is distant from *Coniella koreana* and shares a sister taxon relationship to *C. straminea* (Fig. 1, Clade 8).

Stilbosporaceae Link [as '*Stilbosporei*'], Abh. Königl. Akad.-Wiss. Berlin 1824: 180. 1826, emend. Clade 19.

Saprobic on bark of trees and shrubs. Sexual morph: Pseudostromata inconspicuous, immersed. Ectostromatic disc absent or present, if present inconspicuous, pale brown, rarely dark brown. Entostroma prosenchymatous, pale coloured, slightly differentiated from the surrounding bark tissue. Ascomata loosely arranged as valsoid groups in a single layer, immersed, aggregated, globose to subglobose, coriaceous, black, ostiolate, papillate. Ostiole not obvious, convergent in groups. Hamathecium comprising filiform, aseptate, hyaline paraphyses. Asci 8spored, unitunicate, cylindrical, initially attached to the base, later floating in centrum, with J- refractive, apical ring. Ascospores overlapping uni- to biseriate, brown, ellipsoid to oblong, distoseptate. Asexual morph: Coelomycetous. Conidiomata stromatic, acervular with circular outline, epidermal, immersed to semi-immersed, brown, basal stroma of textura angularis to textura globulosa, with simple, septate, hyaline paraphyses and hyaline, unbranched cylindrical conidiophores. Conidiophores arising from the uppermost cells of basal and parietal tissue, unbranched, cylindrical, septate at only the base, hyaline, smooth, invested in mucus. Conidiogenous cells annellidic, discrete or integrated, cylindrical to lageniform, hyaline, smoothwalled, proliferating several times percurrently at apex. Conidia ellipsoid or oblong, with an obtuse apex and broad truncate base, sometimes 3-euseptate or distoseptate, with a hyaline sheath, hyaline to brown, thick-walled, smooth, sometimes with several, tubular, unbranched, filiform, flexuous, apical appendages.

Type genus: Stilbospora Pers.

Type species: Stilbospora macrosperma Pers.

Notes: The family Stilbosporaceae was introduced by Link (1826) to accommodate Prosthecium and its asexual morph. However, it is not a phylogenetically well-supported family and hence, Stilbosporaceae has been synonymised under several different families. Voglmayr & Jaklitsch (2014) resurrected the family Stilbosporaceae in Diaporthales based on a phylogenetic analysis of LSU nrDNA sequence data and accommodated the genera Stegonsporium and Stilbospora within the family, synonymising Prosthecium under Stilbospora. This decision is also supported by our multi-gene phylogeny (Fig. 1, Clade 19). The type species of Stilbospora, S. macrosperma has been linked to its asexual morph Prosthecium ellipsosporum, the generic type of Prosthecium

(VogImayr & Jaklitsch 2008). This genus comprises opportunistic or moderately phytopathogenic fungal species that cause branch dieback or twig blight of various plants. Maharachchikumbura *et al.* (2015) included Natarajania in *Stilbosporaceae* based on LSU nrDNA, SSU nrDNA, *tef1* and *rpb2* sequence data. However, in other analyses (not shown here), phylogenies also indicated a close association to the genera *Crinitospora*, *Stilbospora* and *Stegonsporium*. This is rather interesting as up to date, this is the only hyphomycetous taxon affiliated to the diaporthean taxa which are known to have coelomyceteous asexual morphs. The reliability of the deposited sequences as well as the identification of that taxon needs further investigation.

Stilbospora macrosperma Pers., Syn. meth. fung. (Göttingen) 1: 96 (1801). Facesoffungi number FoF03506. Fig. 36.

Saprobic on branches of Acer pseudoplatanus. Sexual morph: Pseudostroma comprising white, grevish to yellowish hyphae. µm hiqh. Ascomata 300-350 350-465 um diam $(\overline{x} = 325 \times 420 \ \mu m, n = 20)$, immersed, aggregated, globose to subglobose, coriaceous, ostiolate, papillate. Papilla cylindrical, pale brown, emerging from perithecial apices and merging separately with the stromatal disc, inconspicuous, often invisible on the bark surface. Peridium 20-40 μ m diam (\overline{x} = 32 μ m, n = 20), comprising thick-walled, brown, large, cells of textura angularis and hyaline, thick-walled, compressed cells of textura angularis around the base of papilla. Hamathecium comprising multiguttulate, hyaline, septate paraphyses. Asci 165-200 × 35-50 µm $(\overline{x} = 182 \times 42 \mu m, n = 20)$, 8-spored, unitunicate, clavate to ellipsoidal, thick-walled, very short pedicellate, apex containing a Jrefractive canal usually wider towards its base. Ascospores $40-50 \times 20-26 \ \mu m$ ($\overline{x} = 46 \times 22 \ \mu m$, n = 20), biseriate, ellipsoidal, oblong or rarely pyriform, with (3-)5-distosepta and sometimes 1, longitudinal, distoseptum, appendages on both ends projecting, subglobose, outer margin becoming diffuse. Asexual morph: Conidiomata 340-450 µm high, 450-460 µm diam $(\overline{x} = 410 \times 453 \ \mu m, n = 20)$, immersed, acervular, solitary, with circular outline, dark brown to black. Paraphyses 2.5-4 µm diam $(\overline{x} = 3.2 \ \mu m, n = 10)$, unbranched, aseptate, hyaline. Conidiophores reduced to conidiogenous cells. Conidiogenous cells $25-35 \times 7-10 \ \mu m$ (x = 31 × 9 μm , n = 20), holoblastic, cylindrical, septate, hyaline. Conidia 40-45 × 20-25 μ m (\overline{x} = 43 × 23 μ m, n = 20), pyriform, oval, ellipsoid or oblong, base truncate and hyaline, brown, with several distosepta, 1(-2)-longitudinal distosepta, with hyaline sheath.

Material examined: **Austria**, Wien, Landstraße, 3rd District, Botanical Garden of the University of Vienna (HBV), grid square 7864/1, on dead corticated branches of *Acer pseudoplatanus* (*Sapindaceae*), holomorph, 4 Feb. 2006, H. Voglmayr, D39 (**epitype** WU 28068).

Notes: Voglmayr & Jaklitsch (2014) epitypified the type species of *Stilbospora, Stilbospora macrosperma* and *S. macrosperma* was confirmed as the asexual morph of *Prosthecium ellipsosporum*, the generic type of *Prosthecium* (Voglmayr & Jaklitsch 2008). *Stilbospora* (1801) is older than *Prosthecium* (1852) and therefore *Stilbospora* has priority (Voglmayr & Jaklitsch 2014).

Sydowiellaceae Lar.N. Vassiljeva, Pirenomits. Lokuloaskomits. Severa Dal'nego Vostoka (Leningrad): 210. 1987. Clade 21.

Fig. 36. Stilbospora macrosperma (WU 28068). A. Herbarium specimen. B. Stromata on host substrate. C. Cross section of ascoma. D. Peridium. E–H. Asci. I–M. Ascospores. N. Paraphyses. O. Cross section of conidioma. P. Conidia attached to conidiogenous cells. Q–S. Conidia. Scale bars: C–D = 500 μ m, E, O, P = 100 μ m, F = 50 μ m, H–K = 20 μ m, G, L–M, Q–S = 10 μ m.

Saprobic or parasitic on plant matter. Sexual morph: Stromata well- or poorly developed, prosenchymatous, scattered, immersed to erumpent, appearing as an aggregation of ostioles, rounded or elliptic in shape, dark brown to black, composed of compact pseudoparenchymatous tissues, several ascoma in a stromata, some species turn umber in 5 % KOH. Ascomata solitary or aggregated, immersed or erumpent. globose to sub-globose, sometimes circinate, coriaceous, central or asymmetrically located ostiolar canal opens through an individual or converged ostiole, internally covered by filamentous, hyaline periphyses, sometime ostiolar opening wider than canal, black to brown. Peridium comprising a few layers of brown, thick-walled cells of textura angularis. Hamathecium comprising cellular, septate, branched, hyaline paraphyses. Asci 8-spored, unitunicate, cylindrical to sub-globose, short pedicellate, apex blunt with J- apical ring. Ascospores uni- to multi-seriate, filamentous, ellipsoid or long fusoid-cylindrical, 1-11-septate, hyaline, pale brown to dark brown, sometimes with apical and basal appendages, wall smooth. Asexual morph: Conidiomata sometimes stromatic, pycnidia, uniloculate, superficial, aggregated 3-5 in one group, globose, orange to brown. Conidiomatal wall comprising thick-walled, orange cells of textura angularis. Conidiophores elongate, branched, hyaline, few conidiogenous cells arising from one conidiophore, attached to conidiomatal wall. Conidiogenous cells cylindrical, hyaline, ampulliform, septate, ends pointed, phialidic. Conidia ovoid to ellipsoid, unicellular, hyaline, smooth-walled.

Type genus: Sydowiella Petr.

Type species: Sydowiella fenestrans (Duby) Petr.

Notes: The family Sydowiellaceae (Fig. 1, Clade 21) was established to accommodate the genus Sydowiella, which is typified by S. fenestrans. Members of this family occur on herbaceous plants, dicotyledonous and hardwood trees as saprobes, parasites and pathogens. Initially, most genera in this family were placed in Diaporthales incertae sedis (Rossman et al. 2006). However, DNA sequence data analyses of different gene regions of taxa in the family Sydowiellaceae proved it to be a well-supported, and its relationships to other families have been clarified (Rossman et al. 2007, Maharachchikumbura et al. 2015, Senanayake et al. 2017). Sydowiellaceae comprises the genera Alborbis, Breviappendix, Cainiella, Calosporella, Chapeckia, Italiomyces, Hapalocystis, Lambro, Paragnomonia, Ranulospora, Rossmania, Sillia, Sydowiella, Tenuiappendicula and Tortilispora (Senanayake et al. 2017). Here we introduce a new Sydowiella species as S. urticicola. Sydowiella urticicola produce solitary ascomata and ascospores containing a large guttule in each cell which clearly demarcates it from other species. Phylogenetically it is also distinct from other Sydowiella species.

Sydowiella urticicola Senan., Camporesi & K.D. Hyde, **sp. nov.** MycoBank MB821566. Facesoffungi number FoF03507. Fig. 37.

Etymology: Named after the host genus Urtica.

Saprobic on dead branches of deciduous plants. Sexual morph: Ascomata 290–325 µm high, 290–395 µm diam ($\bar{x} = 309 \times 314$ µm, n = 20), perithecia, astromatic, scattered, solitary, superficial to erumpent, globose to sub-globose, coriaceous, black, papillate, ostiolate. *Papilla* 115–150 µm, 155–205 μm diam (\overline{x} = 133 × 173 μm, n = 20), short, wide, internally covered by hyaline periphyses. *Peridium* 15–25 μm diam (\overline{x} = 19 μm, n = 20) comprising inner, hyaline, thick-walled, compressed, 1–3 layers of cells of *textura angularis* and outer, dark brown, thick-walled, rigid, 3–7 layers of cells of *textura angularis*. *Hamathecium* comprising wide, cellular, septate paraphyses. *Asci* 125–145 × 10–15 μm (\overline{x} = 136 × 14 μm, n = 20) 8-spored, unitunicate, cylindrical, short pedicellate, distinct, Japical ring. *Ascospores* 20–25 × 10–15 μm (\overline{x} = 22 × 12 μm, n = 20), overlapping uniseriate, ends blunted, hyaline, 1-septate, slightly constricted at the septum, with a large fat globule in each cell. Asexual morph: Undetermined.

Culture characteristics: Colonies growing on MEA becoming 2 cm within 5 d at 18 °C, fast growing, circular, umbonate, margin irregular, white, tightly attached to the substrate without spreading aerial mycelium.

Specimen examined: Italy, Province of Forlì-Cesena, Monte Fumaiolo, dead stem of *Urtica dioica (Urticaceae)*, 16 May 2013, N. Camporesi, IT 1268 (holotype MFLU 17–0877, isotype BBH 42439, cultures ex-type MFLUCC 13–0665, MFLUCC 17–1665).

Notes: Here we introduce a new *Sydowiella* species as *S. urticicola. Sydowiella urticicola* produces solitary ascomata and ascospores containing a large guttule in each cell. Phylogenetically this is distinct from other *Sydowiella* species (Fig. 1, Clade 21).

Diaporthales genera incertae sedis

Phaeoappendicospora Senan., Q.R. Li & K.D. Hyde, **gen. nov.** MycoBank MB821572. Facesoffungi number FoF03508. Clade 18.

Etymology: Name based on three Latin words "*phaeo*", "*appendicem*" and "*spora*" referring to the brown spores with appendages.

Saprobic on dead stems of *Fagaceae* species. Sexual morph: *Stromata* forming thin weft of pale brown hyphae around upper part of perithecia. *Ascomata* immersed, aggregated, subglobose to globose, coriaceous, black, ostiolate, papillate. *Papilla* black, cylindrical, lateral, periphysate. *Periphyses* hyaline, filamentous. *Peridium* comprising few layers of black, thick-walled, cells of *textura angularis*. *Hamathecium* comprising few, septate, hyaline paraphyses attached to the base, longer than asci. *Asci* 8-spored, unitunicate, ellipsoid, with a short pedicel, inconspicuous, flat, J-refractive ring at the lower end of the thickened apical wall, apex narrow and blunted. *Ascospores* ellipsoidal to ovoid, with broadly rounded ends, pale brown, 1-septate, not constricted at the septa, thick and smooth-walled, guttulate, with short, hyaline, rounded appendages at both ends. Asexual morph: Undetermined.

Type species: Phaeoappendicospora thailandensis Q.R. Li, Senan. & K.D. Hyde.

Phaeoappendicospora thailandensis Senan., Q.R. Li & K.D. Hyde, **sp. nov.** MycoBank MB821573. Facesoffungi number FoF03509. Fig. 38.

Etymology: The species epithet is based on the collection locality.

Fig. 37. Sydowiella urticicola (MFLU 17–0877). A–C. Ascomata on host surface. D. Cross section of ascoma. E. Peridium. F. Papilla. G–I. Asci. J–N. Ascospores. Scale bars: A = 500 µm, B, C = 200 µm, D, E = 100 µm, F–I = 50 µm, J–N = 20 µm. www.studiesinmycology.org

Fig. 38. Phaeoappendicospora thailandensis (MFLU 12–2131). A. Appearance of fungus on host substrate. B. Horizontal cross section of stroma. C. Vertical cross section of stromata. D. Peridium. E. Apical ring in Melzer's reagent. F–I. Asci. J–M. Ascospores. Scale bars: A = 1 mm, B = 500 µm, C = 100 µm, D = 25 µm, F–M = 10 µm.

Saprobic on dead stems of *Quercus*. Sexual morph: *Stromata* 2–4 mm diam ($\overline{x} = 3$ mm, n = 15), forming thin weft of pale brown hyphae around upper part of perithecia. *Ascomata* 180–230 µm high, 170–220 µm diam ($\overline{x} = 208 \times 198$ µm, n = 25), immersed, aggregated, subglobose to globose, coriaceous, black, ostiolate, papillate. *Papilla* black, cylindrical, lateral, periphysate. *Periph*yses hyaline, filamentous. *Peridium* 20–35 µm wide ($\overline{x} = 28$ µm, n = 20), comprising few layers of black, thick-walled cells of *tex-tura angularis*. *Hamathecium* comprising few, septate, hyaline paraphyses attached to the base, longer than asci. *Asci* 195–265 × 18.5–27 µm ($\bar{x} = 223 \times 22.5$ µm, n = 30), 8-spored, unitunicate, ellipsoid, with a short pedicel, inconspicuous, flat, J-refractive ring at the lower end of the thickened apical wall, apex narrow and blunted. *Ascospores* 26–34.5 × 11–13 µm
$(\overline{x} = 30 \times 12.5 \mu m, n = 30)$, ellipsoidal to ovoid, with broadly rounded ends, pale brown, 1-septate, not constricted at the septa, thick and smooth-walled, guttulate, with short, hyaline, rounded appendages at both ends. Asexual morph: Undetermined.

Culture characteristics: Colonies on PDA reaching 5 cm in 7 d at 25 °C, fast growing, circular, flat, smooth, whitish cream in upper, pale yellow in reverse.

Specimen examined: Thailand, Chiang Rai, near Khun korn water fall, on branch of *Quercus* sp. (*Fagaceae*), 25 Dec. 2012, Q.R. Li, TL19 (holotype MFLU 12–2131, culture ex-type MFLUCC 13–0161).

Notes: The newly introduced monotypic genus *Phaeoappendicospora* is typified by *P. thailandensis* and it comprises brown ascospores with guttules and appendages. *Phaeoappendicospora thailandensis* is associated with dead plant parts may be as saprobes. This fungus is morphologically similar to *Hapalocystis berkeleyi* in *Sydowiellaceae*. However, phylogenetically it does not show an affinity to any of the families in *Diaporthales* (Fig. 1, Clade 18). Hence, we accommodate this species in *Diaporthales* genera *incertae sedis*.

Key to families and genera of Diaporthales

1.		Coelomycetous2
1.		Ascomycetous
2.		Conidia hyaline to olivaceous or bluish to glistening dark blue3
2.		Conidia brown to dark brown6
3.		Conidial wall thick, mostly specific on <i>Tiliaceae</i> host
3.		Conidial wall thin, mostly on Myrtaceae, Fabaceae host4
4.		Conidia aseptata5
4.		Conidia 1-septateAuratiopycnidiellaceae
5.		Conidiophores reduced to conidiogenous cells, conidia with acute apexErythrogloeaceae
	5a.	Conidia olivaceousDisculoides
	5a.	Conidia hyaline3b
	5b.	Conidiomata acervular, sides of conidiomatal wall appearing dark brown to black cells of <i>textura angularis</i> , conidiogenous cells lageniform to cylindrical, conidia monomorphic
	5b.	Conidiomata subglobose, conidiomatal wall uniformly comprises orange-brown cells of <i>textura angularis</i> conidiogenous cells ampulliform, conidia dimorphicChrysocrypta
5.		Conidiophores subcylindrical, branched, 0–3-septate, conidia with obtuse apexProsopidicolaceae
6.		Conidia ovoid, obclavate to conical7
6.		Conidia transversely distoseptate, consisting of four armsAsterosporiaceae
7.		Conidial wall smooth on the outer surface, with inconspicuous to distinct irregular verrucae on the inner surfaceJuglanconidaceae
7.		Conidial wall without ornamentation8
8.		Conidia ovoid, 1-septate
8.		Conidia obclavate to conical, aseptataApoharknessiaceae
	8a.	Conidia obclavate, with a scar at the baseLasmenia
		(continued on next page)

(Continued).

	8a.	Conidia conical, with small appendage at base and apical apiculus
9.		Stromata well-developed10
9.		Stromata absent or poorly developed
10).	Stromatic tissues orange, becoming purple in KOHCryphonectriaceae
	10a.	Asexual morph not reported, hamathecium paraphysate, ascospores brownChromendothia
	10a.	Asexual morph reported, hamathecium aparaphysate, ascospores hyaline10b
	10b.	Coelomycetes10c
	10b.	Ascomycetes10i
	10c.	Conidia sigmoid with obtuse to subobtuse apex and swollen, obtuse baseAurantiosacculus
	10c.	Conidia cylindrical, ellipsoid to fusoid, occasionally allantoid
	10d.	Conidiomata pulvinate10e
	10d.	Conidiomata rostrate, pyriform to globose10g
	10e.	Neck presentLuteocirrhus
	10e.	Neck absent
	10f.	Conidiomata superficial, pale to medium brown, conidiophores consisting of basal subglobular to angular cells, that branch irregularly, becoming cylindrical, transversely septate
	10f.	Conidiomata immersed to erumpent, orange, conidiophores aseptate, occasionally with separating septa and branching
	10g.	Conidiophores hyaline, cylindrical, delimited by septa or not, conidia cylindricalUrsicollum
	10g.	Conidiophores reduced to conidiogenous cells, conidia fusoid-ellipsoid or allantoid10h
	10h.	Conidia with apical appendageMastigosporella
	10h.	Conidia without apical appendageChrysofolia
	10i.	Conidiomata uniformly orange10j
	10i.	Conidiomata uniformly brown to black, with or without orange necks
	10j.	Conidiomata pulvinate to globose10k
	10j.	Conidiomata conical, rostrate, pyriform or convex10q
	10k.	Ascospores septate10I
	10k.	Ascospores aseptate10p
	101.	Ascostromata superficial, conidiomata paraphysate10m
	10I.	Ascostromata immersed to erumpent, conidiomata aparaphysate 10n
	10m.	Perithecia valsoidDiversimorbus
	10m.	Perithecia diatrypoidMicrothia
	10n.	Conidiomata usually more than 350 µm diam, ascospores with median septumCryphonectria
	10n.	Conidiomata usually less than 350 µm diam, ascospores with median to submedian septum10o
	10o.	Ascospores oval to ellipsoid, papilla parallel to each other and open individuallyCryptometrion
	10o.	Ascospores fusiform, sometimes curved, papilla close to each other and converge at the apexAurantioporthe
	10p.	Stromata strongly developed, large, erumpent, mostly superficial, numerous conidial locules, no paraphysesEndothia
	10p.	Stromata small to medium, semi-immersed, few conidial locules or one convoluted locule, paraphyses present
		(continued on next page)

(00111	nucu).
10q.	Conidiomata with necks10r
10q.	Conidiomata without necks10s
10r.	Conidiomata with prominent, delimited neckLatruncellus
10r.	Conidiomata with neck continuous with base, rostrate, white sheath of tissue surrounding perithecial necksRostraureum
10s.	Conidiomata conical, uniformly orangeAmphilogia
10s.	Conidiomata convex, with blackened ostiolar openingsAurifilum
10t.	Conidiomata uniformly black when mature10u
10t.	Conidiomata black with orange neckAurapex
10u.	Conidiomata base tissue of <i>textura globulosa</i> when sectioned longitudinally, perithecial necks long and covered with dark tissue, emerging from orange stromaChrysoporthe
10u.	Conidiomata base tissue prosenchymatous, apices of conidiomata can be orange to scarlet when young, perithecial necks short, orange to umber stromaCeloporthe
10.	Stromatic tissues dark brown to black, not becoming purple in KOH11
11.	Perithecia with very long, narrow, wavy ostiolar neck opening to or around ectostromatic disc12
11.	Perithecia with medium to short, somewhat wide, straight ostiolar neck opening to host surface14
12.	Ectostroma conspicuous
12.	Ectostroma inconspicuous13
13.	Ascospores distoseptataStilbosporaceae
13a.	Conidia hyaline with several tubular, unbranched, filiform apical appendagesCrinitospora
13a.	Conidia brown without any appendages13b
13b.	Ascospores and conidia with three transverse eusepta, ellipsoid to oblong; asci without a refractive canal in the apexStilbospora
13b.	Ascospores and conidia with more than three transverse distosepta, ascospores sometimes and conidia always with additional longitudina distosepta, ascospores ellipsoid to oblong, conidia mostly pyriform; asci with a cylindrical, slightly refractive canal in the apexStegonsporium
13.	Ascospores not distoseptata
13a.	Coelomycetous
13a.	Ascomycetous
13b.	Conidiomata subcuticular. acervularGreeneria
13b.	Conidiomata epiphyllous or hypophyllous with radiate scutella
	Tubakia
13c.	Astromatic with solitary ascomata13d
13c.	Stromatic with aggregated ascomataMellanconiella
13d.	Ascospores ellipsoid without appendagesDicarpella
13d.	Ascospores fusiform with appendagesMicroascospora
14.	Perithecia arranged in valsoid configuration15
14.	Perithecia not arranged in valsoid configuration16
15.	Conidiomata non-loculate and forming both alpha and beta conidia
15a.	Coelomycetes15b
15a.	Ascomycetes15e
15b.	Conidia olivaceous15c
15b.	Conidia brown15d
15c.	Conidia aseptate, guttulate, elongate fusiform to sigmoidPustulomyces

(Continued).

15d.	Conidia dimorphic, aseptate, ellipsoid to pyriformPhaeocytostroma
15d.	Conidia monomorphic, uniseptate, subcylindrical to narrowly ellipsoid
15e.	Ascospores brownPhaeodiaporthe
15e.	Ascospores hyaline15f
15f.	Ascospores aseptataMazzantia
15f.	Ascospores septate15g
15g.	Septa submedian, large cell usually 2-guttulate, small cell usually 1-guttulate
15g.	Septa median, with or without guttules15h
15h.	Ascospores with long slender, thread-like appendage at both ends
15h.	Ascospores without appendages15i
15i.	Papilla long-cylindrical, conidia globose to subglobose, multiguttulata
15i.	Papilla short, conidia absent or if present; ovate to ellipsoidal, biguttulata15j
15j.	Ascospores ovoid, not constricted at the septa15k
15j.	Ascospores fusiform to elongate-ellipsoid, constricted at the septa 151
15k.	Asci form long, pointed apex by narrowing towards the apical ring Chiangraiomyces
15k.	Asci form blunt apexLeucodiaporthe
151.	Ascospores overlapping uniseriate, often with 4 guttules, larger guttules at the center and smaller ones at the ends
151.	Ascospores biseriate, without guttulesAllantoporthe
15m.	Ascospores fusiform, ends pointed, papilla short and wideParadiaporthe
15m.	Ascospores elongate to elliptical, ends round, papilla long and narrowDiaporthe
15.	Conidiomata loculate forming numerous interconnecting chambers arranged radially or irregularly with in ectostromatic tissues and without forming beta conidiaCytosporaceae
15a.	CoelomycetesWaydora
15a.	Ascomycetes15b
15b.	Stromata inconspicuous, ascospores allantoids15c
15b.	Stromata conspicuous, well-developed, ascospores fusiform
15c.	Ascomata solitaryParavalsa
15c.	Ascomata aggregatedXenotypa
15d.	Perithecia in groups with convergent beaks; asci clavate to fusoid <i>Cytospora</i>
15d.	Perithecia in groups with non-convergent beaks; asci more or less rectangularPachytrype
16.	Conidia dark brown, broadly fusiform to cylindrical or clavate, 3-5-cellular, distoseptataCoryneaceae
16.	Conidia hyaline, ellipsoid, unicellularSydowiellaceae
16a.	Stromata conspicuous, well-developed16b
16a.	Stromata absent, inconspicuous, poorly developed16d
16b.	Ascomata valsoid, stromatic tissues do not turn any colour with 10 % KOH16c
16b.	Ascomata diatrypoid, stromatic tissues form dull red with 10 % KOH
16c.	Ascospores oval to fusoid-oval, 1-septate, hyaline or hyaline to brownChapeckia

16c.	Ascospores fusiform to ellipsoid with long filiform basal cell, 2-septate, hyalineRanulospora
16d.	Ascomata solitary16e
16d.	Ascomata aggregated16i
16e.	Asci 4-sporedBreviappendix
16e.	Asci 8-spored16f
16f.	Ascospores apiosporousLambro
16f.	Ascospores non-apiosporous16g
16g.	Ascospores oval, hyaline to brown, not constricted at the septa
16g.	Ascospores fusoid, hyaline, constricted at the septa16h
16h.	Ascospores non-appendaged, globules at the center of each cell Svdowiella
16h.	Ascospores appendaged, globules at the septa of the spore
16i.	Ascospores oval, short fusoid to ellipsoidal16j
16i.	Ascospores long fusoid cylindrical16n
16j.	Ascospores 1-septate16k
16j.	Ascospores multi-septate16m
16k.	Ascospores with long strip-like appendagesTenuiappendicula
16k.	Ascospores with short, appendages16
161.	Ascospores ellipsoid to cylindrical, usually 4-guttulateAlborbis
161.	Ascospores fusiform, usually multi-quttulateParagnomonia
16m	Ascospores hyaline to brown, ellipsoidal with broadly rounded ends, 1–3-septate, constricted at the septa
16m	Ascospores hyaline, fusoid to oblong, 3-4-eusepta, not constricted at the septa
16n.	Ascospores 0–5-septate
16n	Ascospores 6–11-septate Rossmania
17	Ascospores unicellular 18
17	Ascospores multicellular 19
18.	Ascomata superficial to erumpent, conidia elongate ellipsoidal to fusiform without appendages
18.	Ascomata immersed, conidia oval to globose with basal appendage
19.	Perithecia with 2–3 necks opening on both sides of the substrate/leaf blade
19.	Perithecia with one neck opening to upper side of the substrate/leaf blade
20.	Papilla short, conidia with microcyclic conidiation Pseudoplagiostomataceae
20.	Papilla long, conidia do not have microcyclic conidiation
	Gnomoniaceae
20a.	Coelomycetes20b
20a.	Ascomycetes
20b.	Conidia hyaline20c
20b.	Conidia brownUniseta
20c.	Conidiomata pycnidia20e
20c.	Conidiomata acervuli
20d.	Conidia 1-septateSirococcus
20d.	Conidia aseptateMillerburtonia
20e.	Conidia filiform to fusiformAsteroma
20e.	Conidia ellipsoidalCvlindrosporella
20f.	

(continued	on	next	page)
------------	----	------	-------

(Continued).

Conta	nucu).
	Pseudostromata/ stromata absent; perithecia immersed in host tissues
20f.	Pseudostromata/ stromata present; perithecia immersed in stromatic tissues20u
20g.	Perithecial necks not parallel to substrate20h
20g.	Perithecial necks parallel to substrate and not fused
20h	Infected lesions distinct with dark number to brown normanization or
2011.	blackish area with pale brown sharp margin
20h.	Infected lesions indistinct20j
20i.	Ascospores apiosporousApioplagiostoma
20i.	Ascospores non-apiosporousDiplacella
20j.	Ascospores slightly isthmoid with a median septum, often readily separate as part sporesPleuroceras
20j.	Ascospores non-isthmoid, do not separate into part spores20k
20k.	Appendages generally present20I
20k.	Appendages generally absent200
201.	Perithecia mostly epiphyllous20m
201.	Perithecia mostly hypophyllous20n
20m.	Appendages ovoid to subulateAmbarignomonia
20m.	Appendages cuneiform with diffuse ends or ovoid, subulate acicular
20n.	Ascospores fusiform; arranged irregularly fasciculate or, obliquely in one longitudinal rowApiognomonia
20n.	Ascospores oval to filiform; arranged unevenly parallel, irregularly multiseriate or obliquely uniseriate, occasionally evenly parallel Onligonomonia
200	Perithecia occurring on both sides of the bost leaf
200.	Parithecia occurring on only upper or lower side of host leaf 20n
200. 20n	Necke present
20p.	Necks present
20p.	Necks absent
20q.	Spataporthe
20q.	Bell-shaped to hemispherical chamber at base of neck absent
20r.	Asci 32-spored;Ditopella
20r.	Asci 8-spored
20s.	Ascomata immersed in pale brownish, parenchymatous cellular cavity and ascomata easily separate from them <i>Marsupiomyces</i>
20s.	Ascomata not immersed in any, parenchymatous cellular pockets
20t.	Stromata blackGnomoniopsis
20t.	Stromata grey, brownish, cream, yellowish white
20u.	Ectostromatic disc presentDitopellopsis
20u.	Ectostromatic disc absent
20v.	Stromatic tissues grey to pale brown; on top of perithecia and cream yellow mycelium at bottom of peritheciaOccultocarpon
20v.	Stromatic tissues black; do not form any mycelium at bottom of perithecia
20w.	Ascospores septate20x
20w.	Ascospores aseptate
20x.	Cytoplasm of ascospores granular and divide into two parts with wide vacuous space forming diplastic polarity
20x.	Cytoplasm of ascospores does not divide into any parts20v
20y.	Ascospores apiosporous20z
	(continued on next page)

20y. Ascospores non-apiosporous20aa
20z. Ascospores form brown large cell and small hyaline cell at maturity
20z. Ascospores form both cells hyaline at maturity
20aa. Ascospores 3-septatePhragmoporthe
20aa. Ascospores 1-euseptate
20ab. Stromata immersed in host tissues in bark, ascospores fusiform
20ab. Stromata erumpent to superficial on leaves, ascospores ovalPhylloporthe
20ac. Ascospores oval to ellipsoidAmphiporthe 20ac. Ascospores allantoidValsalnicola

List of accepted families and genera in Diaporthales

Apiosporopsidaceae Senan. et al. Apiosporopsis (Traverso) Mariani Apoharknessiaceae Senan. et al. Apoharknessia Crous & S.J. Lee Lasmenia Speg. Asterosporiaceae Senan. et al. Asterosporium Kunze Auratiopvcnidiellaceae Senan. et al. Auratiopycnidiella Crous & Summerell Coryneaceae Corda = Pseudovalsaceae M.E. Barr Coryneum Nees Cryphonectriaceae Gryzenh. & M.J. Wingf. Amphilogia Gryzenh. et al. Aurantiosacculus Dyko & B. Sutton Aurapex Gryzenh. & M.J. Wingf. Aurifilum Begoude et al. Celoporthe Nakab. et al. Chromendothia Lar.N. Vassiljeva Chrysofolia Crous & M.J. Wingf. Chrysoporthe Gryzenh. & M.J. Wingf. =Chrysoporthella Gryzenh. & M.J. Wingf. Cryphonectria (Sacc.) Sacc. & D. Sacc. Cryptometrion Gryzenh. & M.J. Wingf. Diversimorbus S.F. Chen & J. Roux Endothia Fr. Foliocryphia Cheewangkoon & Crous Holocryphia Gryzenh. & M.J. Wingf. Immersiporthe S.F. Chen et al. Latruncellus M. Verm. et al. Luteocirrhus C.F. Crane & T.I. Burgess Mastigosporella Höhn. Microthia Gryzenh. & M.J. Wingf. Rostraureum Gryzenh. & M.J. Wingf. Ursicollum Gryzenh. & M.J. Wingf. Cytosporaceae Fr. =Valsaceae Tul. & C. Tul.

(Continued).

Cytospora Ehrenb. Pachytrype Berl. ex M.E. Barr et al. Paravalsa Ananthap Waydora B. Sutton Xenotypa Petr. Diaporthaceae Höhn. ex Wehm. Allantoporthe Petr. Apioporthella Petr. Chaetoconis Clem. Chiangraiomyces Senan. & K.D. Hyde Diaporthe Nitschke Hyaliappendispora Senan. et al. Leucodiaporthe M.E. Barr et al. Mazzantia Mont. Ophiodiaporthe Y.M. Ju et al. Paradiaporthe Senan. et al. Phaeocytostroma Petr. Phaeodiaporthe Petr. Pustulomyces D.Q. Dai et al. Stenocarpella Syd. & P. Syd. Erythrogloeaceae Senan. et al. Chrysocrypta Crous & Summerell Disculoides Crous et al. Erythrogloeum Petr. Gnomoniaceae G. Winter Alnecium Voglmayr & Jaklitsch Ambarignomonia Sogonov Amphiporthe Petr. Anisomyces Theiss. & Syd. Apiognomonia Höhn. Apioplagiostoma M.E. Barr Asteroma DC Bagcheea E. Müll. & R. Menon Clypeoporthe Höhn. Cryptosporella Sacc. Cylindrosporella Höhn. Diplacella Syd. Ditopella De Not. Ditopellopsis J. Reid & C. Booth Gloeosporidina Petr. Gnomonia Ces. & De Not. Gnomoniella Sacc. Gnomoniopsis Berl. Marsupiomyces Senan. & K.D. Hyde Millerburtonia Cif. Occultocarpon L.C. Mejía et al. Ophiognomonia (Sacc.) Sacc. Phragmoporthe Petr. Phylloporthe Syd. Plagiostoma Fuckel Pleuroceras Riess.

Sirococcus Preuss Spataporthe Bronson et al. Uniseta Ciccar Valsalnicola D.M. Walker & Rossman Harknessiaceae Crous Dwiroopa Subram. & Muthumary Harknessia Cooke Juglanconidaceae Voglmayr & Jaklitsch Juglanconis Voglmayr & Jaklitsch Lamproconiaceae C. Norphanphoun et al. Hercospora Fr. Lamproconium (Grove) Grove Macrohilaceae Crous Macrohilum H.J. Swart Melanconidaceae G. Winter Melanconis Tul. & C. Tul. Melanconiellaceae Senan. et al. Dicarpella Syd. Greeneria Scribn. & Viala Melanconiella Sacc. Microascospora Senan. & K.D. Hyde Tubakia B. Sutton Prosopidicolaceae Senan. & K.D. Hyde Prosopidicola Crous & C.L. Lennox Pseudoplagiostomataceae Cheew. et al. Pseudoplagiostoma Cheew. et al. Schizoparmaceae Rossman DF et al. Coniella Höhn. Stilbosporaceae Link Crinitospora B. Sutton & Alcorn Stegonsporium Corda Stilbospora Pers. Sydowiellaceae Lar.N. Vassiljeva Alborbis Senan. & K.D. Hyde Breviappendix Senan. & K.D. Hyde Cainiella E. Müll Calosporella J. Schröt Chapeckia M.E. Barr Italiomyces Senan. et al. Hapalocystis Auersw. ex Fuckel I ambro Racib Paragnomonia Senan. & K.D. Hyde Ranulospora Senan. et al. Rossmania Lar.N. Vassiljeva Sillia P. Karst. Sydowiella Petr. Tenuiappendicula Senan. et al. Tortilispora (Sacc.) Senan. & K.D. Hyde

(Continued).

Caudospora Starbäck Chadefaudiomyces Kamat et al. Cryptascoma Ananthap. Cryptoleptosphaeria Petr. Cytomelanconis Naumov Dictyoporthe Petr. Ditopellina J. Reid & C. Booth Durispora K.D. Hyde Fremineavia Nieuwl. Hypodermina Höhn. Hypophloeda K.D. Hyde & E.B.G. Jones Kapooria J. Reid & C. Booth Keinstirschia J. Reid & C. Booth Lollipopaia Inderbitzin Macrodiaporthe Petr. Maculatipalma J. Fröhlich & K.D. Hyde Massariovalsa Sacc. Mebarria J. Reid & C. Booth Melanamphora Lafl. Melanconiopsis Ellis & Everh. Natarajania Pratibha & Bhat Phaeoappendicospora Senan. et al. Phraqmodiaporthe Wehm. Plagiophiale Petr. Plagiostigme Syd. Prostratus Sivan. et al. Pseudocryptosporella J. Reid & C. Booth Pseudothis Theiss. & Syd. Pseudovalsella Höhn. Rabenhorstia Fr. Savulescua Petr. Skottsbergiella Petr. Stioclettia Dennis Trematovalsa Jacobesco Uleoporthe Petr. Vismaya V.V. Sarma & K.D. Hyde Wehmeyera J. Reid & C. Booth Wuestneia Auersw. ex Fuckel Wuestneiopsis J. Reid & Dowsett

ACKNOWLEDGEMENTS

We thank Elias Jonk, Westerdijk Fungal Biodiversity Institute, for DNA isolation and sequencing of some of the included CBS cultures. Alan J.L. Phillips acknowledges the support from Biosystems and Integrative Sciences Institute (BioISI, FCT/UID/ Multi/04046/2013). Kevin D. Hyde thanks to National Research Council of Thailand (Mae Fah Luang University) for the grant "Biodiversity, phylogeny and role of fungal endophytes of Pandanaceae" (Grant No: 592010200112) and Thailand Research Fund (TRF) grant no RSA5980068 entitled "Biodiversity, phylogeny and role of fungal endophytes on above parts of *Rhizophora apiculata* and *Nypa fruticans*", the National Research Council of Thailand (Mae Fah Luang University) grant no 60201000201 entitled "Diseases of mangrove trees and maintenance of good forestry practice", and the Chinese Academy of Sciences, project number 2013T2S0030, for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany. Samantha C. Karunarathna thanks to

Diaporthales genera incertae sedis

Anisomycopsis I. Hino & Katum.

(continued on next page)

Yunnan Provincial Department of Human Resources and Social Security funded postdoctoral project (number 179122).

REFERENCES

- Alexopoulus CJ, Mims CW (1978). Introductory mycology, 3rd ed. John Wiley, New York, USA.
- Alvarez LV, Groenewald JZ, Crous PW (2016). Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella and Schizoparme. Studies in Mycology 85: 1–34.
- Ananthapadmanaban D (1990). Paravalsa indica sp. nov. from India. Mycological Research 94: 275–276.
- Barney JN, Tharayil N, DiTommaso A, et al. (2006). The biology of invasive alien plants in Canada; Polygonum cuspidatum Sieb & Zucc [= Fallopia japonica (Houtt) Ronse Decr]. Canadian Journal of Plant Science 86: 887–905.
- Barr ME (1978). The *Diaporthales* in North America: with emphasis on *Gnomonia* and its segregates. *Mycologia Memoirs* **7**: 1–232.
- Begoude BAD, Slippers B, Wingfield MJ, et al. (2010). Botryosphaeriaceae associated with Terminalia catappa in Cameroon, South Africa and Madagascar. Mycological Progress 9: 101–123.
- Belisario A (1991). Dicarpella dryina sp. nov., teleomorph of Tubakia dryina. Mycotaxon 41: 147–155.
- Belisario A (1999). Cultural characteristics and pathogenicity of *Melanconium* juglandinum. European Journal of Forest Pathology **29**: 317–322.
- Biggs AR (1989). Integrated control of Leucostoma-canker of peach peach in Ontario. *Plant Disease* **73**: 869–874.
- Braun U, Bien S, Hantsch L, *et al.* (2014). *Tubakia chinensis* sp. nov. and a key to the species of the genus *Tubakia*. *Schlechtendalia* **28**: 23–28.
- Campbell J, Anderson JL, Shearer CA (2003). Systematics of Halosarpheia based on morphological and molecular data. Mycologia 95: 530–552.
- Cannon PF, Minter DW (2014). Lamproconium desmazieresii. IMI descriptions of fungi & bacteria: 1996. CABI Bioscience, Wallingford, UK: 1–3.
- Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* **91**: 553–556.
- Castlebury LA, Farr DF, Rossman AY, et al. (2003). Diaporthe angelicae comb nov, a modern description and placement of Diaporthopsis in Diaporthe. Mycoscience 44: 203–208.
- Castlebury LA, Rossman AY, Jaklitsch WJ, et al. (2002). A phylogeny overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94: 1017–1031.
- Cavara F (1889). Matériaux de mycologie Lombarde. *Revue Mycologique* 11: 173–1913.
- Chadefaud M (1960). Les Végétaux non Vasculaires (Cryptogamie). In: *Traité de Botanique Systématique* (Chadefaud M, Emberger L, eds). Masson, Paris: 1–1018.
- Cheewangkoon R, Groenewald JZ, Verkley GJM, et al. (2010). Re-evaluation of *Cryptosporiopsis eucalypti* and cryptosporiopsis-like species occurring on *Eucalyptus* leaves. *Fungal Diversity* **44**: 89–105.
- Chen SF, Wingfield MJ, Roux J (2013). *Diversimorbus metrosiderotis* gen. et sp. nov. and three new species of *Holocryphia* (*Cryphonectriaceae*) associated with cankers on native *Metrosideros angustifolia* trees in South Africa. *Fungal Biology* **117**: 289–310.
- Chomnunti P, Hongsanan S, Aguirre-hudson B, et al. (2014). The sooty moulds. Fungal Diversity 66: 1–36.
- Corda ACI (1839). Coniomycetes Nees ab Esenb. *Icones Fungorum hucusque Cognitorum* **3**: 1–55.
- Crane C, Burgess TI (2013). *Luteocirrhus shearii* gen. sp. nov. (*Diaporthales*, *Cryphonectriaceae*) pathogenic to *Proteaceae* in the South Western Australian Floristic Region. *IMA Fungus* **4**: 111–122.
- Crous PW, Carris LM, Giraldo A, *et al.* (2015). The Genera of Fungi: fixing the application of the type species of generic names G 2: *Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus* **6**: 163–198.
- Crous PW, Gams W, Stalpers JA, et al. (2004). MycoBank: an online initiative to launch mycology into the 21st century. *Studies in Mycology* **50**: 19–22.
- Crous PW, Knox-Davies PS, Wingfield MJ (1989). Newly-recorded foliage fungi of *Eucalyptus* sp. in South Africa. *Phytophylactica* **21**: 85–88.
- Crous PW, Rogers JD (2001). Wuestneia molokaiensis and its anamorph Harknessia molokaiensis sp. nov. from Eucalyptus. Sydowia 53: 74–80.
- Crous PW, Summerell BA, Alfenas AC, et al. (2012a). Genera of diaporthalean coelomycetes associated with leaf spots of tree hosts. *Persoonia* 28: 66–75.

- Crous PW, Summerell BA, Shivas RG, et al. (2012b). A re-appraisal of Harknessia (Diaporthales), and the introduction of Harknessiaceae fam. nov. Persoonia 28: 49–65.
- Crous PW, Summerell BA, Shivas RG, et al. (2012c). Fungal Planet description sheets: 107–127: molecular phylogeny and evolution of fungi. *Persoonia* 28: 138–182.
- Crous PW, Verkley GJM, Groenewald JZ, et al. (2009). Fungal biodiversity. CBS laboratory manual series: 1. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands: 1–269.
- Crous PW, Wingfield MJ, Burgess TI, *et al.* (2017). Fungal Planet description sheets: 558–624. *Persoonia* **38**: 240–384.
- Crous PW, Wingfield MJ, Guarro J, et al. (2013). Fungal Planet description sheets: 154–213. Persoonia **31**: 188–296.
- Crous PW, Wingfield MJ, Nag Raj TR (1993). *Harknessia* species occurring in South Africa. *Mycologia* **85**: 275–280.
- Crous PW, Wingfield MJ, Richardson DM, et al. (2016). Fungal Planet description sheets: 400–468. Persoonia **36**: 316–458.
- Dai DQ, Wijayawardene NN, Bhat DJ, et al. (2014). Pustulomyces gen. nov. accommodated in Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogamie, Mycologie 35: 63–72.
- De Silva H, Castlebury LA, Green S, *et al.* (2009). Characterisation and phylogenetic relationships of *Anisogramma virgultorum* and *A. anomala* in the *Diaporthales* (Ascomycota). *Mycological Research* **113**: 73–81.
- Du Z, Hyde KD, Yang Q, et al. (2017). Melansporellaceae: a novel family of Diaporthales (Ascomycota). Phytotaxa 305: 191–200.
- Eriksson OE (2001). Outline of Ascomycota. Myconet 6: 1-27.
- Eriksson OE, Winka K (1997). Supraordinal taxa of Ascomycota. Myconet 1: 1–16.
- Fabre JH (1883). Essai sur les Sphériacées du département de Vaucluse [concl]. Annales des Sciences Naturelles Botanique 6: 31–43.
- Farr DF, Bills GF, Chamuris GP, et al. (1989). Fungi on plant and plant products in the United States. APS Press, St Paul, MN.
- Farr DF, Rossman AY (2001). Harknessia lythri, a new species on purple loosestrife. Mycologia 93: 997–1001.
- Farr DF, Rossman AY (2017). Fungal databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA, Beltsville, MD. http://ntars-gringov/ fungaldatabases/.
- Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**: 783–791.
- Ferreira FA, Demuner NL, Rezende DV (1992). Mancha de folha, des folha e antracnose do Jatobá (*Hymenaea* spp) causadas por *Erythrogloeum hymenaeae*. *Fitopatologia Brasileira* **17**: 106–109.
- Gao Y, Liu F, Duan W (2017). *Diaporthe* is paraphyletic. *IMA Fungus* 8: 153–187.
- Glass NL, Donaldson G (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environmental Microbiology* **61**: 1323–1330.
- Gomes RR, Glienke C, Videira SIR, et al. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia **31**: 1–41.
- Graves AH (1923). The *Melanconis* disease of the butternut (*Juglans cinerea* L). *Phytopathology* **13**: 411–435.
- Grove WB (1937). British stem and leaf-fungi. Coelomycetes 2: 1-406.
- Gryzenhout M, Myburg H, Hodges CS, et al. (2006a). Microthia, Holocryphia and Ursicollum, three new genera on Eucalyptus and Coccoloba for fungi previously known as Cryphonectria. Studies in Mycology 55: 35–52.
- Gryzenhout M, Myburg H, Rodas CA, et al. (2006b). Aurapex penicillata gen. sp. nov. from native Miconia theaezans and Tibouchina spp. in Colombia. Mycologia 98: 105–115.
- Gryzenhout M, Myburg H, Wingfield BD (2006c). Cryphonectriaceae (Diaporthales), a new family including Cryphonectria, Chrysoporthe, Endothia and allied genera. Mycologia **98**: 239–249.
- Gryzenhout M, Tarigan M, Clegg PA, et al. (2010). Cryptometrion aestuescens gen. sp. nov. (Cryphonectriaceae) pathogenic to Eucalyptus in Indonesia. Australasian Plant Pathology 39: 161–169.
- Gryzenhout M, Wingfield BD, Wingfield MJ (2009). Taxonomy, phylogeny and ecology of bark-infecting and tree-killing fungi in the Cryphonectriaceae. APS Press, St Paul, Minnesota: 1–378.
- Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.
- Hawksworth DL, Kirk PM, Sutton BC, et al. (1995). Ainsworth & Bisby's dictionary of the fungi, 8th ed. CAB International, Wallingford.
- Hepting GH (1974). Death of the American chestnut. *Journal of Forest History* **18**: 60–67.

Index Fungorum (2017). Retrieved 24 April 2017, from http://wwwindexfungorumorg/Names/Namesasp.

- Jackson T (2003). Occurrence and variation of Endothiella eucalypti in Eucalyptus globulus plantations of south-western Australia and the influence of some biotic and abiotic factors on the response of the host to the pathogen. Ph.D. dissertation. School of Biological Sciences and Biotechnology, Murdoch University Perth, Western Australia.
- Jeewon R, Hyde KD (2016). Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. *Mycosphere* **7**: 1669–1677.
- Jeewon R, Liew ECY, Hyde KD (2002). Phylogenetic relationships of *Pestalotiopsis* and allied genera inferred from ribosomal DNA sequences and morphological characters. *Molecular Phylogenetics and Evolution* 25: 378–392.
- Jones EBG, Suetrong S, Sakayaroj J, *et al.* (2015). Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. *Fungal Diversity* **73**: 1–72.
- Kepley JB, Jacobi WR (2000). Pathogenicity of Cytospora fungi on six hardwood species. Journal of Aboriculture 26: 326–332.
- Kishino H, Hasegawa M (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data. *Journal of Molecular Evolution* **29**: 170–179.
- Lamprecht SC, Crous PW, Groenewald JZ, et al. (2011). Diaporthaceae associated with root and crown rot of maize. IMA Fungus 2: 13–24.
- Lee S, Groenewald JZ, Crous PW (2004). Phylogenetic reassessment of the coelomycete genus *Harknessia* and its teleomorph *Wuestneia* (*Diaporthales*), and the introduction of *Apoharknessia* gen. nov. *Studies in Mycology* **50**: 235–252.
- Lennox CL, Serdani M, Groenewald JZ, et al. (2004). Prosopidicola mexicana gen. et. sp. nov., causing a new pod disease of Prosopis species. Studies in Mycology 50: 187–194.
- Link HF (1826). Entwurf eines phytologischen Pflanzensystems nebst einer Anordnung der Kryptogamen. Abhandlungen der königlichen Akademie der Wissenschaften zu Berlin aus dem Jahre 1824: 145–194.
- Liu Y, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. *Molecular Biology and Evolution* **16**: 1799–1808.
- Locquin MV (1984). Mycologie Générale et Structurale. Masson, Paris.
- Lumbsch HT, Huhndorf SM (2010). Myconet volume 14 part one outline of Ascomycota – 2009 part two notes on Ascomycete systematics nos 4751–5113. Fieldiana Life Earth Sciences 1: 1–64.
- Luttrell ES (1951). Taxonomy of Pyrenomycetes. University of Missouri Studies 24: 1–120.
- Maharachchikumbura SS, Hyde KD, Jones EBG, et al. (2015). Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72: 199–301.
- Maharachchikumbura SSN, Hyde KD, Jones EBG, et al. (2016). Families of Sordariomycetes. Fungal Diversity 79: 1–317.
- Mariani (1911). Pyrenomycetae, Sphaeriaceae, Guignardia. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 50: 1–165.
- Marincowitz S, Crous PW, Groenewald JZ, et al. (2008). Microfungi occurring on *Proteaceae* in the fynbos. *CBS Biodiversity Series* **7**: 1–166.
- Mejía LC, Castlebury LA, Rossman AY, et al. (2011). A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, hostassociations, and a four-gene phylogeny. Studies in Mycology 68: 211–235.
- Monod M (1983). Monographie taxonomique des *Gnomoniaceae* (Ascomycetes de l'ordre des *Diaporthales*) | Beih. *Sydowia* 9: 1–315.
- Mostert L, Groenewald JZ, Summerbell RC, et al. (2006). Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 54: 1–115.
- MycoBank (2017). http://wwwmycobankorg/defaultinfoaspx?Page=Home.
- Nag Raj TR (1993). Coelomycetous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo, Canada: 1–1101.
- Nakabonge G, Gryzenhout M, Roux J, et al. (2006). Celoporthe dispersa gen. et sp. nov. from native Myrtales in South Africa. Studies in Mycology 55: 255–267.
- Nannfeldt JA (1932). Studien über die Morphologie und Systematik der nichlichenisierten inoperculaten Discomyceten. Nova Acta Regiae Societatis Scientiarum Upsaliensis Series 4(8): 1–368.
- Navarrete F, Abreo E, Bettucci L, *et al.* (2009). First report of *Greeneria uvicola* as cause of grapevine dead-arm dieback in Uruguay. *Australasian Plant Disease Notes* **4**: 117–119.
- Norphanphoun C, Doilom M, Daranagama DA, *et al.* (2017). Revisiting the genus *Cytospora* and allied species. *Mycosphere* **8**: 51–97.

- Norphanphoun C, Hongsanan S, Doilom M, et al. (2016). Lamproconiaceae fam. nov. to accommodate Lamproconium desmazieri. Phytotaxa 270: 89–102.
- Nylander JAA (2004). *MrModeltest*. Program distributed by the Author. Evolutionary Biology Centre, Uppsala University. v. 2.
- Petrak F (1938). Beiträge zur Kenntnis der Gattung Hercospora mit besonderer Berücksichtigung ihrer Typusart Hercospora tiliae (Pers) Fr. Annales Mycologici 36: 44–60.
- Petrak F (1953). Erythrogloeum nov gen, eine neue Gattung der Sphaeropsideen. Sydowia 7: 378–380.
- Petrak F (1971). Ergebnisse einer Revision der Grundtypen verscheidener Gattungen der Ascomyzeten und Fungi Imperfecti. Sydowia 24: 249–255.
- Phillips AJL, Alves A, Pennycook SR, et al. (2008). Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the *Botryos-phaeriaceae*. Persoonia 21: 29–55.
- Potebnia A (1910). Beiträge zur Micromycetenflora Mittel-Russlands (Gouv Kursk und Charkow). Annales Mycologici 8: 42–93.
- Punithalingam E (1974). Studies on Sphaeropsidales in culture II. Mycological Papers 136: 1–63.
- Rambaut A (2012). Fig.Tree. Tree figure drawing tool. v. 1.4.0. http://tree.bio.ed. ac.uk/software/figtree/.
- Rayner RW (1970). A mycological colour chart. CMI and British Mycological Society, Kew, UK.
- Réblová M, Mostert L, Gams W, et al. (2004). New genera in the Calosphaeriales: Togniniella and its anamorph Phaeocrella, and Calosphaeriophora as anamorph of Calosphaeria. Studies in Mycology 50: 533–550.
- Rehner SA, Samuels GJ (1994). Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycological Research* 98: 625–634.
- Reid J, Dowsettj A (1990). On Dicarpella, Sphaerognomonia and Apiosporopsis. Canadian Journal of Botany 68: 2398–2407.
- Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
- Rossman AY, Adams GC, Cannon PF, et al. (2015). Recommendations of generic names in *Diaporthales* competing for protection or use. *IMA Fungus* 6: 145–154.
- Rossman AY, Castlebury LA, Samuels GJ (2006). Phylogeny and biodiversity of the Hypocreales and Diaporthales. In: Eighth International Mycological Congress, 21–25, August 2006, Cairns Congress Handbook & Abstracts, Book 2.
- Rossman AY, Farr DF, Castlebury LA (2007). A review of the phylogeny and biology of the Diaporthales. Mycoscience 48: 135-144.
- Scribner FL, Viala P (1887). Le Greeneria fuliginea, nouvelle forme de rot des fruits de lab vigne observee en Amärique. Comptes rendus Hebdomadaires des Séances de l'Académie des Sciences 105: 473.
- Seifert KA, Rossman AY (2010). How to describe a new fungal species. *IMA Fungus* 1: 109–116.
- Senanayake IC, Maharachchikumbura SSN, Hyde KD, et al. (2015). Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity 73: 73–144.
- Senanayake IC, Maharachchikumbura SSN, Jeewon R, et al. (2017). Morphophylogenetic study of Sydowiellaceae reveals several new genera. Mycosphere 8: 172–217.
- Serrato-Diaz LM, Rivera-Vargas LI, Goenaga R, et al. (2011). First report of a Lasmenia sp causing rachis necrosis, flower abortion, fruit rot, and leaf spots on rambutan in Puerto Rico. Plant Disease 95: 1311–1313.
- Shipton PJ (1967). A fruit rot of strawberries caused by *Zythia fragariae*. *Plant Pathology* **16**: 123–125.
- Sieber TN, Sieber-Canavesi F, Petrini O, et al. (1991). Characterization of Canadian and European *Melanconium* from some *Alnus* species by morphological, cultural and biochemical studies. *Canadian Journal of Botany* 69: 2170–2176.
- Silvestro D, Michalak I (2012). raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335–337.
- Sinclair WA, Hudler GW (1980). Tree and shrub pathogens new or noteworthy in New York state. *Plant Disease* **64**: 590–592.
- Sogonov MV, Castlebury LA, Rossman AY, et al. (2008). Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Studies in Mycology 62: 1–79.
- Stamatakis A, Hoover P, Rougemont J (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771.
- Suetrong S, Klaysuban A, Sakayaroj J, et al. (2015). Tirisporellaceae, a new family in the order Diaporthales (Sordariomycetes, Ascomycota). Cryptogamie, Mycologie 36: 319–330.

- Sutton BC (1980). The Coelomycetes Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, UK.
- Suwannarach N, Kumla J, Lumyong S (2016). *Pseudoplagiostoma dipterocarpi* sp. nov., a new endophytic fungus from Thailand. *Mycoscience* **57**: 118–122.
- Swofford DL (2003). PAUP* phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts. Version 4.
- Tanaka K, Mel'nik VA, Kamiyama M, et al. (2010). Molecular phylogeny of two coelomycetous fungal genera with stellate conidia, *Prosthemium* and *Asterosporium*, on Fagales trees. *Botany* 88: 1057–1071.
- Taylor JW, Jacobson DJ, Kroken S, et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology **31**: 21–32.
- Traverso GB (1907). Flora Italica Cryptogama Pars 1: Fungi Pyrenomycetae Sphaeriaceae: Allantosporae, Hyalosporae, Phaeosporae: 1. Società Botanica Italiana, Rocca S Casciano, Italy: 353–492.
- Treigien A, Markovskaja S (2007). Microscopic fungi on *Carpinus Betulus* in Lithuania 2. *Anamorphic Fungi Botanica Lithuanica* **13**: 45–50.
- Udayanga D, Castlebury LA, Rossman AY, *et al.* (2014). Insights into the genus *Diaporthe*: phylogenetic species delimitation in the *D. eres* species complex. *Fungal Diversity* **67**: 203–229.
- Udayanga D, Xingzhong L, McKenzie EHC, *et al.* (2011). The genus *Phomopsis*: biology, applications, species concepts and names of common pathogens. *Fungal Diversity* **50**: 189–225.
- Van der Aa HA (1973). Studies in Phyllosticta I. Studies in Mycology 5: 1-110.
- Van Niekerk JM, Groenewald JZ, Verkley GJ, et al. (2004). Systematic reappraisal of Coniella and Pilidiella, with specific reference to species occurring on Eucalyptus and Vitis in South Africa. Mycological Research 108: 283–303.
- Vasilyeva LN (1993). Chromendothia, a new genus of the family Hypocreaceae. Mikologiya i Fitopatologiya 27: 1–7.
- Vasilyeva LN, Rossman AY, Farr DF (2007). New species of the Diaporthales from eastern Asia and eastern North America. Mycologia 99: 916–923.
- Verkley GJM, Quaedvlieg W, Shin HD, et al. (2013). A new approach to species delimitation in Septoria. Studies in Mycology 75: 213–305.
- Vermeulen M, Gryzenhout M, Wingfield MJ, et al. (2011). New records of the Cryphonectriaceae from southern Africa including Latruncellus aurorae gen. sp. nov. Mycologia 103: 554–569.
- Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* **172**: 4239–4246.

- Voglmayr H, Castlebury LA, Jaklitsch WM (2017). Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales). Persoonia 38: 136–155.
- Voglmayr H, Jaklitsch WM (2008). Prosthecium species with Stegonsporium anamorphs on Acer. Mycological Research 112: 885–905.
- Voglmayr H, Jaklitsch WM (2014). Stilbosporaceae resurrected: generic reclassification and speciation. *Persoonia* 33: 61–82.
- VogImayr H, Rossman AY, Castlebury LA, et al. (2012). Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales). Fungal Diversity 57: 1–44.
- Von Arx JA, Müller E (1954). Die Gattungen der amerosporen Pyrenomyceten. *Beiträge zur Kryptogamenflora der Schweiz* **11**: 1–434.
- Von Höhnel FXR (1910). Fragmente zur Mykologie no. 538. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 119: 632–633.
- Von Höhnel FXR (1917). Über die Benennung Stellung und Nebenfruchtformen von Sphaerella Fries. Berichte der Deutschen Botanischen Gesellschaft 35: 627–631.
- Walker DM, Castlebury LA, Rossman AY, et al. (2010). Systematics of genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations and morphology. Mycologia 102: 1479–1496.
- Walker DM, Castlebury LA, Rossman AY, et al. (2012). Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus. Fungal Diversity 57: 85–147.
- Wehmeyer LE (1975). The Pyrenomycetous Fungi. Mycologia Memoirs 6: 1–250.
- White T, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR protocols: a guide to methods and applications* (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California: 315–322.
- Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. (2016). Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77: 1–316.
- Winter G (1886). Fungi Australienses. Revue Mycologique Toulouse 8: 207-213.
- Yuan ZQ, Mohammed C (1997). Wuestneia epispora sp. nov. on stems of eucalypts from Australia. Mycological Research 101: 195–200.
- Yuan ZQ, Wardlaw T, Mohammed C (2000). Harknessia species occurring on eucalypt leaves in Tasmania, Australia. Mycological Research 104: 888–892.
- Zhang N, Blackwell M (2001). Molecular phylogeny of dogwood anthracnose fungus (*Discula destructiva*) and the *Diaporthales*. *Mycologia* **93**: 355–365.