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Abstract

Background. Abnormalities in the semantic and syntactic organization of speech have been
reported in individuals at clinical high-risk (CHR) for psychosis. The current study seeks to
examine whether such abnormalities are associated with changes in brain structure and
functional connectivity in CHR individuals.
Methods. Automated natural language processing analysis was applied to speech samples
obtained from 46 CHR and 22 healthy individuals. Brain structural and resting-state functional
imaging data were also acquired from all participants. Sparse canonical correlation analysis
(sCCA) was used to ascertain patterns of covariation between linguistic features, clinical
symptoms, and measures of brain morphometry and functional connectivity related to the
language network.
Results. In CHR individuals, we found a significant mode of covariation between linguistic and
clinical features (r=0.73; p=0.003), with negative symptoms and bizarre thinking covarying
mostly with measures of syntactic complexity. In the entire sample, separate sCCAs identified a
singlemode of covariation linking linguistic features with brainmorphometry (r=0.65; p=0.05)
and resting-state network connectivity (r=0.63; p=0.01). In both models, semantic and
syntactic features covaried with brain structural and functional connectivity measures of the
language network. However, the contribution of diagnosis to both models was negligible.
Conclusions. Syntactic complexity appeared sensitive to prodromal symptoms in CHR indi-
viduals while the patterns of brain-language covariation seemed preserved. Further studies in
larger samples are required to establish the reproducibility of these findings.

Introduction

Schizophrenia is a major psychiatric disorder presenting with positive, negative, and cognitive
symptoms [1]. Language disturbances are a cardinal feature of schizophrenia that manifest at all
levels, from comprehension to production [2,3]. Language production disturbances have been
reported in phonetics, morphology, syntax, semantics, and pragmatics; the most common
abnormalities include idiosyncratic semantic associations, neologisms and word approximation,
poverty of speech, and reduced grammatical complexity [2,4–7].

These language abnormalities implicate the corresponding brain networks. Currentmodels
of language processing support the dual-stream model, which specifies a ventral stream that
primarily supports comprehension, and a dorsal stream that primarily supports articulation
[8]. Typically, the ventral stream is largely bilateral while the dorsal stream is strongly left-
lateralized [8]. Within the ventral stream, speech sounds are initially processed within the
auditory regions of superior temporal gyrus while portions of themiddle and inferior temporal
lobe (including the fusiform gyrus) and the anterior temporal lobe correspond to the lexical
interface, which links phonological to semantic information [9–11]. The dorsal stream
includes Broca’s region in the inferior frontal gyrus, the insula, the parietotemporal sylvian
region (considered a sensorimotor interface region), and motor and premotor cortical regions
[9–11]. However, language does not simply involve language-specialized regions, but also
relies on brain networks that support general cognitive functions [12,13], mainly the executive
control network (ECN) [14], the salience network (SAL) [14], and the default-mode network
(DMN) [15], which forms the functional basis of brain organization [16].

Multiple functional and structural neuroimaging studies in patients with schizophrenia
[12,17–21], and in clinical and genetic high-risk groups [22–25], have established the presence
of abnormalities in the language-related brain regions and in the networks supporting language-
functions and their association with language dysfunction. By contrast, the corresponding
literature in clinical high-risk (CHR) individuals is just beginning to emerge. Indicators of
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semantic dysfunction have been associated with lower gray matter
density [26] and aberrant functional activation of brain regions
within the language network [25].

Linguistic profiling has benefited from computational
methods that enable the automatic and precise labeling of speech
features in patients with schizophrenia and CHR [27–32]. Our
group has demonstrated that semantic and syntactic abnormali-
ties may be useful in predicting syndromal transition in CHR
[27,28]; with measures of semantic coherence being the most
discriminant.

In the current study, we extend our previous work, as we seek to
relate automatically derived language features to brain structure
and functional connectivity in CHR individuals. As language is
supported by a wide range of regions and networks, we use a whole-
brain, multivariate approach to our analysis. Specifically, we
employ sparse canonical correlation analysis (sCCA) [33] to iden-
tify linked patterns of covariation between multiple linguistic fea-
tures and brain morphology and functional connectivity. sCCA is
an extension of traditional CCA, is more appropriate for smaller
samples, it is less susceptible to overfitting and has been extensively
used to describe brain-cognition associations by us [34,35] and
others [36–38]. Our initial hypotheses are that (a) amount of speech
and measures of syntactic complexity will show significant covari-
ation with symptoms; (b) both syntactic and semantic features will
covary with brain structural and functional measures of the lan-
guage network and its functional integration with cognitive control
networks; and (c) brain-language covariation patterns would be
altered by CHR status.

Methods

Sample

Individuals at CHR for psychosis and healthy individuals (HIs)
were recruited at Columbia University and at the Icahn School of
Medicine at Mount Sinai (ISMMS), both in New York, USA.
Individuals were characterized as CHR based on the Structured
Interview for Prodromal Syndromes/Scale of Prodromal Symptoms
(SIPS/SOPS) [39] if they met criteria for the attenuated positive
symptom syndrome, which requires at least 1 SIPS/SOPS-positive
item in the prodromal range (3–5) with symptoms beginning or
worsening in the past year, and symptoms occurring at an average
frequency of once per week in the prior month.

HIs had no personal history of any psychiatric disorders and no
family history of psychosis in their first-degree relatives. Addition-
ally, all participants were screened to exclude concomitant medical
and neurological disorders, lifetime history of significant head
trauma, current substance use disorders, contraindications to mag-
netic resonance imaging (MRI) scanning and were required to be
fluent in English. Further details on recruitment and eligibility
screening are presented in the Supplementary Material,
Section 1.1.1. The sample included 46 CHR and 22 HIs (Table 1)
of whom 30 (CHR=17; HI= 13) were recruited at Columbia Uni-
versity and 38 at the ISMMS (CHR=29; HI= 9) (Supplementary
Material, Section 1.1.2 and Table S1).

Clinical assessment

In addition to the SIPS/SOPS, all participants were assessed using
the Structured Clinical Interview for DSM-5 Axis 1 Disorders [40],
Global Functioning Scale [41], and the Edinburgh Handedness
Inventory [42] (Supplementary Material, Section 1.1.3).

Language assessment

Naturalistic speech samples were obtained from all participants via
open-ended 30–45min narrative interviews following our previous
work [27,28]. Interviews were transcribed by an independent
Health Insurance Portability and Accountability Act (HIPAA)
compliant company (https://sftp.transcribeme.com), and deidenti-
fied for analysis (Supplementary Material, Section 1.1.4). Interview
transcripts were preprocessed as previously described [27,28] using
the Natural Language Toolkit (NLTK; http://www.nltk.org/)
[43]. The NLTK was used to extract the minimum, maximum,
mean, and standard deviation of number of words per sentence
to assess the amount of speech. Latent Semantic Analysis was used
to quantify the minimum, maximum, mean, and standard devia-
tion of the semantic coherence between consecutive sentences to
assess semantics. Additionally, Part of Speech tagging based on the
Penn Tree Bank was used with NLTK [43,44] to extract the fre-
quencies of each tag in the speech specimens. Details of the process
and definitions of the linguistic variables are provided in the
Supplementary Material, Section 1.1.5 and Table S3.

Neuroimaging

Structural and functional MRI were acquired on a GE MR750 3T
scanner at Columbia University and on a 3T Siemens Skyra scanner
(Erlangen, Germany) at the ISMMS. Both high-resolution struc-
tural and resting-state functional imaging data (rs-fMRI) were
acquired in all participants using comparable protocols at each site
as described in detail in the Supplementary Material, Section 1.2.1.

Following standard preprocessing and quality control, brain
structural and rs-fMRI data were further analyzed to extract

Table 1. Demographic and clinical characteristics of the whole sample.

Variable

CHR
individuals
(N = 46)

Healthy
individuals
(N = 22)

Age (years)a 23.19 (5.09) 26.47 (3.65)

Sex (male/female) 22/24 13/9

Education (years)a 13.83 (2.23) 16.27 (1.55)

Handednessa

Right (%) 44 (95.65%) 17 (77.27%)

Left (%) 1 (2.17%) 5 (22.73%)

Mixed (%) 1 (2.17%) –

Antipsychotic medication use (%) 14 (30.43%) –

SIPS/SOPS

Total positivea 14.57 (3.45) 1.91 (2.29)

Total negativea 14.78 (6.71) 1.36 (1.56)

Total disorganizeda 7.59 (4.55) 0.91 (1.31)

Total generala 10.63 (5.56) 1.41 (1.68)

GFS

Rolea 5.70 (2.05) 8.32 (0.95)

Sociala 5.48 (1.49) 8.32 (0.95)

Continuous variables are shown as mean (standard deviation).
Abbreviations: CHR, clinical high risk; GFS, Global Functioning Scale; SIPS/SOPS, Structured
Interview for Prodromal Syndromes/Scale of Prodromal Symptoms.
aSignificant case–control differences at p < 0.05.

2 S. S. Haas et al.

https://sftp.transcribeme.com
http://www.nltk.org/


measures of brain morphometry and functional network connec-
tivity (details in Supplementary Material, Sections 1.2.2 and 1.2.3).
Segmentation and parcellation of the structural images were imple-
mented in Freesurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/) to
yield 68 cortical thickness measures and 20 subcortical volume
measures (defined in Supplementary Table S5). To enhance repro-
ducibility, resting-state networks were defined using the templates
available through the Functional Imaging in Neuropsychiatric
Disorders Lab at Stanford University, USA (https://findlab.stan
ford.edu/functional_ROIs.html) for the language network (LAN),
DMN, ECN, SAL, sensorimotor network (SMN), and auditory
network (AN) networks [13] (Supplementary Figure S1). In each
participant, Fisher Z-transformed Pearson’s correlation coefficients
were used to compute network cohesiveness (i.e., average correla-
tion of each voxel’s time series with every other voxel within each
network). Network integration was computed as the correlation
between the average time-series of each pair of networks. This
process yielded 11 network connectivity measures (Supplementary
Table S4). Prior to further analyses, imaging datasets were harmo-
nized using ComBat [45], a Bayesian batch adjustment approach
that accommodates the effect of site (https://github.com/Jfortin1/
ComBatHarmonization).

Statistical analyses

Conventional statistical analyses
Group differences in demographic, clinical, and linguistic features
were analyzed using univariate and multivariate analyses; age, sex,
and site were included as covariates when appropriate. Additional
group-level analyses were undertaken to assess group differences in
brain structure and functional connectivity that are described only
in the Supplementary Material, Section 1.3. For all analyses, results
are considered significant at p< 0.05 following Benjamini–Hoch-
berg false-discovery-rate correction for multiple testing.

Sparse canonical correlation analyses
We implemented sCCA [33] in MatlabR2018b using an in-house
script in accordance with our previously published work [34,35,46]
to test the association between the linguistic, clinical, and neuro-
imaging data (details in Supplementary Material, Section 1.4). We
considered four datasets; a nonimaging dataset comprising the
clinical variables (Supplementary Table S2), a nonimaging dataset
comprising the linguistic variables (Supplementary Table S3), a
functional dataset comprising the functional network connectivity
variables (Supplementary Table S4), and a structural dataset com-
prising the morphometric variables (Supplementary Table S5). All
datasets were normalized by calculating Z-scores for each variable
prior to entering the sCCA. We conducted separate sCCAs, using
identical procedures, to identify patterns of covariation between the
language and clinical datasets in CHR-individuals only, and
between the language dataset and each of the imaging datasets in
all participants. Diagnostic group was included in the language
dataset for each of the imaging sCCAs in order to examine group
effects. Brain morphometry and functional connectivity were con-
sidered separately because they represent different aspects of brain
organization (an analysis of the pooled imaging data is also pre-
sented in the Supplementary Material). For each sCCA, we selected
the optimal sparse criteria based on the parameters that maximized
the sCCA correlation. We then computed the optimal sCCAmodel
and determined its significance using permutations (n=10,000).
The p-value was defined as the number of permutations that
resulted in a higher correlation than the original data divided by

the total number of permutations. Thus, the p-value is explicitly
corrected for multiple testing as it is compared against the null
distribution of maximal correlation values across all estimated
sCCAs. In each sCCA model, each canonical variate relates a
weighted set of linguistic features to a weighted set of imaging
measures. The weights of each feature in each variate provide an
indication of their importance in the model.

Results

Linguistic features in the cohort

Four linguistic features (foreign word, list item marker, plural
proper noun, possessive wh-pronoun) were not included in subse-
quent analyses because more than 50% of the sample achieved the
same score. The descriptive statistics of the remaining 38 linguistic
features in each group are presented in Table 2 (Supplementary
Table S6). No group differences were identified at PFDR < 0.05 for
the individual linguistic features.

Linked dimensions of language and clinical symptoms

This sCCAmodel identified a single significant mode (canonical r=
0.73; p=0.003) (Figure 1A). Theweights of all the variables examined
are provided in Supplementary Tables S7 and S8. The most heavily
weighted linguistic features involved measures of syntactic complex-
ity: use of coordinating conjunctions, adverbs, and verbs (Figure 1B).
The most heavily weighted clinical measures were avolition,
decreased experience of emotion, impaired tolerance to stress,
bizarre thinking, and decreased ideational richness (Figure 1C).

Linked dimensions of language and functional connectivity

This sCCA model identified a single significant mode (canonical r
=0.63; p=0.01) (Figure 2A); no further modes were significant
(unadjusted p> 0.05). The weights of all the variables examined
are provided in Supplementary Tables S9 and S10. We found
negligible effects of diagnosis (weight =�0.03) and handedness
(weight = 0). Themost heavily weighted linguistic features involved
measures of coherence (maximum semantic coherence) and mea-
sures of syntactic complexity involving the use of adjective, deter-
miners, verbs, and pronouns (Figure 2B). The most heavily
weighted connectivity measures were cohesiveness of the LAN,
ECN, SAL, AN, and DMN networks and integration between the
LAN and AN networks (Figure 2C).

Linked dimensions of language and brain structure

This sCCA model identified a single significant mode (canonical r
=0.65; p= 0.05); no further modes were significant (unadjusted p>
0.05) (Figure 3A). The weights of all the variables examined are
provided in Supplementary Tables S11 and S12. The contribution
of diagnosis (weight = 0.07) and handedness (weight = 0.02) were
negligible. The most heavily weighted linguistic features involved
measures of volume of speech relating to sentence length, mean
semantic coherence, and measures of syntactic complexity (inter-
jection and subordinating conjunction) (Figure 3B). The weights
for the cortical and subcortical features were generally low (range of
absolute values: 0.01–0.25). Amongst cortical regions with the
highest values observed were left pars opercularis and triangularis,
the bilateral superior temporal gyrus and rostral anterior cingulate
and on the right, themedial orbitofrontal gyrus and frontal pole, the
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temporal pole and the inferior temporal and fusiform gyri, and
inferior parietal lobule (Figure 3C). A large number of subcortical
regions negatively covaried with linguistic features including bilat-
eral thalamus, hippocampus, nucleus accumbens, pallidum and
ventral diencephalon, the right amygdala, and left caudate nucleus.

Discussion

We found no effect of diagnosis on individual linguistic features
obtained in CHR and HIs. Nevertheless, in the CHR individuals,
measures of syntactic complexity covaried with negative symptoms
reflecting avolition and poverty of thought and disorganized symp-
toms of bizarre thinking. Linguistic measures of the amount of
speech, semantic coherence, and syntactic complexity covaried
with the measures of brain structure and resting-state functional
connectivity that emphasized regions and networks involved in
speech and language processing. There was no diagnostic effect
on these patterns of covariation, although the study may not have
been sufficiently powered to detect such a difference.

Language features and clinical symptoms

In an independent sample of 34 CHR individuals, we have previ-
ously reported associations of the SIPS/SOPS total negative symp-
tom severity with maximum phrase length, minimum semantic
coherence, and use of determiners, respectively, implicating the
amount and the semantic and syntactic organization of speech
[27]. In our subsequent study involving 93 CHR individuals, no
association between language features and clinical symptomatology
was identified [28]. Here we found that predominantly negative
symptoms covaried mainly with measures of syntactic complexity.
One interpretation is that subtle disturbances in syntactic complex-
ity may bemore sensitive to clinical symptoms than other linguistic
features. Alternatively, linguistic-clinical associations may depend
on the specific characteristics of the CHR sample and should be
further investigated across samples.

Language and functional connectivity

The pattern of covariation between language features and resting-
state connectivity was comparable in CHR and HIs. As expected,
the cohesiveness of the LAN network emerged as one of the vari-
ables most strongly associated with language features. The cohe-
siveness of the DMN in connection to language is supported by
prior studies linking introspective functions with verbal resources
[47]. Efficient language and speech processing depend on multiple
other cognitive functions, notably attention/salience, working
memory, and cognitive control [48]. Aligned with this notion, the
sCCA results underscore the importance of the cohesiveness of the
ECN for language, which supports goal-directed behaviors [49] and

Table 2. Linguistic features of the sample.

Language variable
CHR individuals

(N = 46)
Healthy individuals

(N = 22)

Volume of speech

Sentence length, mean 13.52 (2.85) 13.14 (3.92)

Sentence length, standard
deviation 10.17 (2.58) 10.05 (2.89)

Sentence length, maximum 63.43 (18.11) 66.86 (15.6)

Semantic properties

Semantic coherence, mean 0.81 (0.04) 0.79 (0.05)

Semantic coherence,
standard deviation 0.18 (0.03) 0.19 (0.03)

Semantic coherence,
minimum 0.02 (0.18) �0.03 (0.17)

Semantic coherence,
maximum 0.99 (0.01) 1 (0.01)

Parts of speech-tagging

Coordinating conjunction 0.03 (0.01) 0.03 (0.01)

Cardinal number 0.01 (0.003) 0.01 (0.003)

Determiner 0.06 (0.01) 0.06 (0.01)

Existential there 0.002 (0.001) 0.003 (0.001)

Preposition or subordinating
conjunction 0.07 (0.01) 0.07 (0.01)

Adjective 0.04 (0.01) 0.04 (0.01)

Adjective, comparative 0.002 (0.002) 0.002 (0.001)

Adjective, superlative 0.001 (0.001) 0.001 (0.001)

Modal verb 0.01 (0.004) 0.01 (0.003)

Noun, singular or mass 0.08 (0.01) 0.09 (0.01)

Noun, plural 0.02 (0.01) 0.02 (0.01)

Proper noun, singular 0.02 (0.01) 0.02 (0.01)

Predeterminer 0.001 (0.001) 0.001 (0.001)

Possessive ending 0.0003 (0.0003) 0.0005 (0.0005)

Personal pronoun 0.11 (0.01) 0.1 (0.01)

Possessive pronoun 0.01 (0.003) 0.01 (0.003)

Adverb 0.09 (0.01) 0.08 (0.01)

Adverb, comparative 0.002 (0.001) 0.001 (0.001)

Adverb, superlative 0.0002 (0.0003) 0.0002 (0.0002)

Particle 0.004 (0.001) 0.004 (0.001)

“To” 0.02 (0.004) 0.02 (0.003)

Interjection 0.04 (0.02) 0.05 (0.03)

Verb, base form 0.04 (0.01) 0.03 (0.01)

Verb, past tense 0.03 (0.01) 0.03 (0.01)

Verb, gerund or present
participle 0.02 (0.005) 0.02 (0.004)

Verb, past participle 0.01 (0.003) 0.01 (0.003)

Verb, non-third person
singular present 0.05 (0.013) 0.04 (0.01)

Verb, third person singular
present 0.03 (0.01) 0.03 (0.01)

Table 2. Continued

Language variable
CHR individuals

(N = 46)
Healthy individuals

(N = 22)

Wh-determiner 0.003 (0.002) 0.003 (0.001)

Wh-pronoun 0.01 (0.003) 0.01 (0.002)

Wh-adverb 0.01 (0.002) 0.01 (0.002)

Variables are shown as mean (standard deviation).
Abbreviation: CHR, clinical high risk; detailed definition of each variable is provided in
Supplementary Table S3.

4 S. S. Haas et al.



is modulated by general cognitive effort [50]. The ECN and SAL
networks are considered dissociable respectively supporting sus-
tained and adaptive cognitive control [51]. In the context of the
current results, the role of the ECN involves the moment-to-
moment monitoring of speech production while SAL connectivity

may be relevant to the adaptive control of semantic and syntactic
organization of speech as dictated by contextual demands. We note
the positive weight of the integration between LAN and AN for
language processing. Studies of patients with schizophrenia have
repeatedly found that the functional integration of these two

Figure 1. Sparse canonical correlation analysis (sCCA) for language features and clinical symptoms in individuals at clinical high-risk (CHR) for psychosis. (A) sCCA of linguistic
features and clinical symptoms in CHR individuals identified a single significant mode; (B) linguistic features with the highest absolute weights; and (C) clinical symptoms with the
highest absolute weights. Additional information in Supplementary Tables S7 and S8.

Figure 2. Sparse canonical correlation analysis (sCCA) for language features and resting-state network functional connectivity in the entire study sample. (A) sCCA of linguistic
features and resting-state network functional connectivity in the entire sample identified a single significant mode. The weight of diagnosis was �0.03; (B) linguistic features with
the highest absolute weights; and (C) connectivity measures with the highest absolute weights. Additional information in Supplementary Tables S9 and S10.

Figure 3. Sparse canonical correlation analysis (sCCA) for language features and brainmorphometry in the entire study sample. (A) sCCA of linguistic features and brain structure in
the entire sample identified a single significant mode. The weight of diagnosis was negligible (w = 0.07); (B) linguistic features with the highest absolute weights; and (C) brain
morphometry measures with the highest absolute weights. Additional information in Supplementary Tables S11 and S12.
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networks is reduced but this feature maymainly arise in the context
of hallucinations [52]. Generally, the absence of an effect of CHR
status in this analysis suggests that this effect is either too small to be
detected in the current sample or that the mapping of linguistic
features to the resting-state connectivity is not disturbed in CHR
individuals.

Language features and brain structure

The sCCA links semantic coherence and syntactic complexity with
variation mainly in prefrontal, and temporal regions and subcorti-
cal volumes. It is currently thought that semantic processing in the
brain follows a “spoke-and-hub” model [53,54]; modality-specific
content, primarily involving attributes, is represented in the spokes
while more-abstract, amodal representations, referring mainly to
semantic significance, are held in the hubs. Further, modality-
specific representations are mainly left-lateralized for verbal con-
tent and right-lateralized for visual content while amodal repre-
sentations are distributed in hubs in both hemispheres. Although
there is debate about the number and locations of semantic hubs,
plausible candidates have been proposed in different cortical
regions, including the anterior-inferior-temporal lobe [54,55] the
anterior-inferior-parietal [56] and the inferior-frontal cortex [57–
61]. Of note, the top weighted regions, map closely to temporal and
prefrontal sematic hubs. The neural correlates of syntactic proces-
sing are also debated [62] but there is general agreement that the key
regions involved are the left opercular and left triangular portions of
the inferior frontal cortex [63]. Our results therefore conform to
current expectations regarding brain structure-language mapping.
No effect of group was detected in this analysis which may relate to
issues of power or may indicate that the mapping of linguistic
features to brain structural measures is not disturbed in CHR
individuals.

Limitations

The main limitation of the current study is the small sample size
particularly with regards to HIs. Additionally, site effects may have
further influenced the power of the study to detect diagnostic
differences. We therefore consider our data preliminary pending
replication in larger samples. The linguistic and neuroimaging
features examined were chosen for their potential translational
value because of the relative ease in collecting such data in clinical
settings. Brain structural and resting-state data acquisition have the
advantage of brevity and does not require active patient engage-
ment. Similarly, linguistic features were selected according to our
prior data and were based on free natural speech which is easy to
elicit in clinical settings. Future studies could expand the range of
features to include speech graphs [64], prosody, pragmatics, meta-
phoricity [65], and discourse or conversations. Some CHR individ-
uals were prescribed antipsychotics at the time of testing although
their cumulative exposure was minimal. Nevertheless, an effect of
medication cannot be conclusively excluded.

Conclusion

Overall, we identified significant patterns of covariation between
linguistic features and clinical symptoms in CHR individuals.
The linguistic features were predominantly linked with negative
symptoms and bizarre thinking, suggesting these symptoms
co-occur with alterations in language processing in CHR. Future
studies will be necessary to determine whether symptoms and

language processing changes emerge simultaneously, or the onset
of one precedes the other. No diagnostic effect was noted in the
pattern of covariation between linguistic features and brain mor-
phometry and resting-state network connectivity. These findings
suggest relatively intact patterns of brain-language covariance.
Further studies are needed to confirm the reproducibility of these
findings.
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