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Abstract: Diabetic kidney disease is a microvascular complication that occurs in patients with
diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause
mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing
enhancement of insulin secretion after oral glucose intake, participate in many other metabolic
processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like
peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-
lowering properties but also have nephroprotective functions. The aim of this article is to present
the latest information about incretin-based therapy and its influence on diabetic kidney disease
appearance and progression, point its potential mechanisms of kidney protection and focus on future
therapeutic possibilities bound with these two antidiabetic drug classes.
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1. Introduction

Incretins are peptide hormones derived mainly from the gastrointestinal tract which
are responsible for the so-called ‘incretin effect’. This is defined as the enhancement of
the amount of insulin secreted after oral glucose intake in comparison with the level of
insulin secreted after intravenous glucose infusion resulting in the same glycaemia [1].
This phenomenon is known to be crucial to the regulation of postprandial glucose increase,
being responsible for up to 70% of insulin secretion in healthy individuals [1]. Therefore,
glucose-dependent insulinotropic polypeptide (or, as previously called, gastric inhibitory
polypeptide) (GIP) and glucagon-like peptide 1 (GLP1), hormones mostly involved in the
incretin effect, are still under deep investigation which could point to possible methods of
treating diseases of civilization [2]. The first medical indication of incretin-based therapy
was the management of type 2 diabetes (T2D), as it results from the functional failure of
β-cells triggered by insulin resistance [3]. It was demonstrated that GLP1 infusion, but
not GIP administration, may restore the proper incretin effect in T2D-affected patients
in whom it is reduced or even absent [4,5]. This resulted in the development of two
antidiabetic drug classes—the glucagon-like peptide receptor (GLP1R) agonists (GLP1RAs)
and the dipeptidyl peptidase 4 inhibitors (DPP4is). From then on, scientists’ attention has
been drawn to the additional properties of incretin-based therapy, such as treatment of
overweight and obesity, nephroprotective features, the reduction of cardiovascular risk, or
beneficial effects in liver diseases and neurodegenerative disorders.

Diabetic kidney disease (DKD) is a microvascular complication that develops in ap-
proximately 30% of patients with type 1 diabetes (T1D) and approximately 40% of patients
with T2D [6,7]. Nowadays, it has become the main reason for end-stage renal disease
(ESRD) in the United States [6]. The presence of DKD is strongly associated with the
excess risk of all-cause and cardiovascular disease mortality for patients with diabetes [8].
Hyperglycaemia and other metabolic changes coexisting with diabetes cause glomerular
hypertrophy, glomerulosclerosis, tubulointerstitial inflammation and fibrosis [9]. The next
stages of DKD consist of glomerular hyperfiltration, progressive albuminuria, declining
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glomerular hyperfiltration rate (GFR) and finally ESRD [9]. However, the majority of
patients die from infections and cardiovascular diseases before they require kidney replace-
ment therapy (KRT) [9]. Besides the fact that the diagnosis of DKD is frequently based
on clinical symptoms and blood sample analysis, it may be precisely identified only by
histological examination of the kidney biopsy [9]. Incretin-based therapy may be a key
target to delay the occurrence of DKD and its consequences thanks to incretin’s cardio-
and nephroprotective properties and ability to reduce inflammation and fibrosis [10]. In
this article, we summarize the physiology of incretin hormones and the drugs based on
incretins used in T2D treatment. We focus on their role in DKD to underline their potential
nephroprotective properties.

2. Metabolism of Glucagon-Like Peptide 1

GLP1 is a peptide produced from proglucagon by proprotein convertase subtilisin-
kexin type 1 (PCSK1) or type 3 (PCSK3) in a post-translational process in L cells which
are located mainly in the terminal ileum and colon [11]. Moreover, GLP1 production
has also been documented in neurons within the nucleus of the solitary tract [12]. The
secretion of GLP1 is strongly stimulated by the digested products of consumed food,
glucose, amino acids and free fatty acids, as well as by bile acids secreted after food intake,
via the mechanism connected with intracellular calcium and/or cAMP levels [13,14]. Not
only do the nutrients take part in the exocytosis of incretins, but also a lot of other different
stimuli contribute to this complicated process, a lot of them not fully understood.

GLP1 acts through its receptor, GLP1R, one of the class B G protein-coupled recep-
tor families [15]. The receptors are expressed in various tissues, which indicates a huge
role of GLP1 in maintaining the homeostasis of the whole organism, related not only to
glucose metabolism, but also other aspects of the proper functioning of the human body.
They are found in the pancreas, intestine, central and peripheral nervous system, kidneys,
heart, lungs, stomach, smooth muscle, adipose tissue and skin [16,17]. Acting through
pancreatic GLP1Rs, GLP1 potentiates insulin secretion induced by glucose, as well as
promoting growth and inhibiting the apoptosis of β-cells [1,18,19]. It also induces the
release of somatostatin from δ-cells and, as a consequence, inhibits the release of glucagon
from α-cells [20]. Moreover, GLP1 participates in the mechanism called ‘the ileal brake’
which delays gastric emptying and inhibits intestinal motility via vagal afferent stimulation,
which results in a gastroparesis-like situation and a decrease in postprandial glycaemia
excursion [21,22]. Incretin also promotes satiety, reduces food intake, and consequently,
induces loss of body weight via activation of centres related to food intake in the central ner-
vous system [11,23]. In kidneys, GLP1 reduces the activity of sodium–hydrogen exchanger
3 and thus increases natriuresis [24]. It may have independent nephroprotective and car-
dioprotective properties—GLP1 increases natriuresis, regulates glomerular filtration rate,
declines renal inflammation and oxidative stress, as well as protects against myocardial
infarction by activation of pro-survival kinases [25,26]. GLP1 ameliorates cardiac output
and promotes vasodilatation in adipose tissue and skeletal muscle, increasing insulin-
stimulated glucose uptake in muscle [27,28]. What is more, GLP1 is also able to increase
bone formation in overweight or obese people [29]. The actions of GLP1 are presented
in Figure 1.

GLP1 circulates in two bioactive forms: carboxy-terminal-amidated GLP1 (7-36) and
non-amidated (or glycine-extended) GLP1 (7-37), which are cleaved to produce GLP1 (9-36)
and GLP1 (9-37), respectively, within a few minutes by the enzyme dipeptidyl peptidase 4
(DPP4) [16,30]. DPP4 is a pleiotropic enzyme that occurs in two forms—as a membrane-
bound protein and as a soluble circulating protein. It inactivates not only incretins, but
also a wide range of hormones, chemokines, peptides, substance P and much more [31]. It
has been suggested that DPP4 plays a role in the modulation of immune cell functioning,
including migration and proliferation [32]. The products of GLP1 degradation do not show
any regulatory properties in glucose homeostasis through the GLP1Rs as they are not
ligands for these receptors [33,34]. Another enzyme, neutral endopeptidase (or neprilysin,
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NEP), produces GLP1 (28-36) from GLP1 (7-36) or GLP1 (9-36), which has been shown to
increase glucose utilization by the liver and decrease glycaemia [35]. Only a small amount
of active GLP1 reaches targeted organs, exerts its actions there and then is cleaved with its
metabolites in the kidneys through glomerular filtration and renal extraction [11,36]. The
metabolism of GLP1 is presented in Figure 2.
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2.1. Glucagon-Like Peptide 1 Receptor Agonists—Drugs Showing the Beneficial Effects of
Native GLP1

Due to the rapid degradation of GLP1 by DPP4 and thus its short half-life, it was
necessary to develop different strategies which could enable the potency of incretins to
be used in the treatment of diabetes. One of them is based on exendin-4 which is a
naturally occurring substance in the saliva of the lizard Heloderma suspectum. Its structure
is homologous enough to native GLP1 to activate GLP1R, but simultaneously not so
similar as to become degraded by DPP4, so exendin-4 has become a prototype for the
structure of exenatide and lixisenatide [37]. However, antidiabetic agents based on exendin-
4 still show susceptibility to renal elimination which results in a relatively short half-life,
intermittent activation of GLP1Rs and the need for frequent injections. Therefore, it has
been proposed to modify human GLP1 in a way that protects it from DPP4 degradation
and minimizes renal clearance. Albiglutide and semaglutide are covalently bound and
liraglutide is noncovalently bound to albumin, whereas dulaglutide is bound to antibody
fragment crystallizable (Fc) domains of immunoglobulin G. Moreover, exenatide has been
incorporated in an injectable microsphere which allows it to be slowly released and is
known as exenatide extended-release (XR) [30]. These alterations mean that GLP1RAs need
to be injected only once a week (except liraglutide which is a once-daily agent). One of the
milestones in the development of GLP1RAs was the production of the active substance in an
oral form, as it has low bioavailability as a pill [38]. The solution used in oral semaglutide is
a fusion with a carrier—sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC). SNAC
increases localized pH levels and causes a pepsin-inhibiting effect in the stomach, which
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protects semaglutide from degradation and enhances its absorption [39]. Moreover, SNAC
also improves the durability of the active substance [38].
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GLP1RAs exert similar effects to those of endogenous GLP1. They promote insulin
secretion, decrease glucagon release and improve β-cell function, influencing insulin
resistance and increasing insulin sensitivity, as well delaying gastric emptying [40,41]. The
beneficial impact on glucose homeostasis is seen in the reduction of haemoglobin A1c
(HbA1c) and fasting glucose level [42,43]. Moreover, this class of drugs may contribute
to weight loss, not only through their ability to slow gastric emptying but also through
promoting satiety [44,45].

There are some differences between substances resulting from their half-lives. Short-
acting GLP1RAs, including exenatide and lixisenatide, activate GLP1Rs in an intermittent
way, imitating the action of native GLP1. This results in the preservation of the ability
to slow gastric emptying and influence the postprandial glucose rise which is higher
than that observed for long-acting GLP1RAs [46–49]. The long-acting GLP1RAs include
liraglutide, exenatide XR, albiglutide, dulaglutide and semaglutide which activate GLP1Rs
continuously. They have a superior impact on fasting glucose level and HbA1c than short-
acting agents but do not preserve the ability to delay gastric emptying, probably because of
tachyphylaxis resulting from consistent receptor activation [50,51]. No difference in body
weight reduction is seen between short- and long-acting agonists [16]. A comparison of
these two classes is presented in Table 1.
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Table 1. Comparison of short-acting and long-acting GLP1RAs.

Type of GLP1RA Short-Acting GLP1RAs Long-Acting GLP1RAs

Agents exenatide
lixisenatide

liraglutide
exenatide XR

albiglutide
dulaglutide
semaglutide

Activation of GLP1R intermittent continuous

Gastric emptying delaying no influence due to
tachyphylaxis

Postprandial glucose excursion superior impact inferior impact

Fasting glucose levels and HbA1c inferior influence superior influence

Bodyweight reduction comparable effect comparable effect

It is worth highlighting that incretin use may improve the response to therapeutic
inertia in patients with diabetes. Therapeutic or clinical inertia is defined as a delay in
treatment intensification despite suboptimal glycaemic control [52]. This phenomenon
causes patients that do not achieve goals of diabetes treatment, spend more time in hyper-
glycaemia and have a greater risk of diabetes complications. Incretins can help to reduce
inertia thanks to their pleiotropic mechanisms and ability to influence not only glucose
levels but also body weight or blood pressure, as well as their low risk of hypoglycaemia
and no dangerous adverse effects.

The most common side effects of GLP1RA-based treatment are gastrointestinal symp-
toms, such as nausea, vomiting and diarrhoea, and injection site reactions. The risk of
hypoglycaemia during GLP1RA therapy is very low, as the effects of the agents are glucose-
dependent [42]. GLP1RAs are thought to be safe and efficient anti-diabetic drugs, and they
draw scientists’ attention more and more because of their possible additional properties.

2.2. Dipeptidyl Peptidase 4 Inhibitors—Drugs Promoting the Action of Native GLP1

The next strategy to extract beneficial properties from native incretins is based on the
inhibition of DPP4, which reduces GIP and GLP1 degradation and increases the levels of
endogenous incretins, promoting their actions [53]. The exact role of DPP4 inhibition in
glucose homeostasis regulation is not yet fully understood; it cannot be explained only
by prolongation of native GLP1 half-life, probably involving prolongation of the half-life
of other incretin hormones and neuropeptides which are regulated by DPP4 as well [54].
The DPP4is include linagliptin, alogliptin, saxagliptin, sitagliptin and vildagliptin which
have comparable efficacy in reducing glucose levels [55]. They do not have as strong an
effect on gastric motility as GLP1RAs, and they are weight-neutral but have a low risk of
hypoglycaemia similar to GLP1RAs [56]. The most common side effects of GLP1RA-based
treatment are gastrointestinal symptoms, headache, nasopharyngitis and upper respiratory
tract infections [57].

2.3. Effects of GLP1RAs and DPP4is in Diabetic Kidney Disease

Besides primary cardiovascular disease outcomes, cardiovascular outcome trials
(CVOTs) for some GLP1RAs and DPP4is had secondary kidney disease outcomes. The
Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results
(LEADER) trial enrolled 9340 patients with T2D and high cardiovascular risk [58]; 23% of
them had moderate-to-severe chronic kidney disease. The secondary outcomes analysed
in this trial were the persistent doubling of the serum creatinine level, new-onset persis-
tent macroalbuminuria, kidney failure, or death due to kidney disease. In the liraglutide
treatment group, a reduction in the composite prespecified secondary kidney outcome
was observed. After 3.8 years, liraglutide therapy reduced the amount of new-onset
nephropathy or prevented worsening nephropathy by 22%. The renal benefit was predom-
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inantly driven by a 26% reduction in macroalbuminuria. Compared to placebo, liraglutide
slowed a decline in eGFR over time. Moreover, liraglutide treatment was associated with
a lower rate of renal outcome occurrence, driven primarily by a reduction of the new
onset or persistent macroalbuminuria [59]. The Trial to Evaluate Cardiovascular and Other
Long-Term Outcomes with Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN-6)
enrolled 3297 patients with T2D, of whom 2735 had established cardiovascular disease
and/or chronic kidney disease. A secondary outcome was a composite of new-onset
or worsening nephropathy defined as persistent doubling of the serum creatinine level,
persistent macroalbuminuria, an eGFR < 45 mL/min/1.73 m2, or the need for continuous
KRT, that is dialysis or kidney transplant [60]. In the injectable semaglutide treatment
group, rates of new-onset or worsening nephropathy were lower than in the placebo group.
A 46% reduction in new-onset macroalbuminuria was responsible for the favourable renal
outcome [60]. The Exenatide Study of Cardiovascular Event Lowering (EXSCEL) trial
assessed once-weekly formulations of exenatide in 14,752 participants with T2D and with
or without previous cardiovascular disease [61]. The analysis of prespecified secondary
kidney outcomes reported no differences between exenatide and placebo groups [62].

Compared with GLP1RAs, the effects of DPP4is bound to kidney protection are
modest and mainly result from reducing albuminuria. From the DPP4i group, only
treatment with linagliptin does not require a dose adjustment in the case of GFR low-
ering. The Cardiovascular and Renal Microvascular Outcome Study with Linagliptin
(CARMELINA) trial enrolled 6991 participants with T2D and high risk of cardiovascular
or chronic kidney disease [63]; 74% of patients had an eGFR < 60 mL/min/1.73 m2 and/or
urine albumin-to-creatinine ratio (UACR) > 300 mg/g and about 15% of them had an
eGFR < 30 mL/min/1.73 m2. The only secondary kidney outcome which was significantly
improved with linagliptin treatment was albuminuria progression. Other kidney outcomes,
such as a sustained decrease in eGFR of ≥40% from baseline, sustained kidney failure
and death due to kidney failure showed no difference between linagliptin and placebo
groups [63]. The Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with
Diabetes Mellitus-Thrombosis in Myocardial Infraction (SAVOR-TIMI 53) trial involved
16,492 patients with T2D and atherosclerotic cardiovascular disease risk factors [64]. The
prespecified kidney composite outcomes defined as a change from baseline in UACR, a
new-onset or progressed chronic kidney disease, doubling of serum creatinine level, serum
creatinine level > 6.0 mg/dL, initiation of dialysis or kidney transplantation did not differ
between saxagliptin and placebo groups besides an improvement in albuminuria outcomes.
An overall mean reduction in UACR of 34 mg/g was observed, mainly due to the fact
that there was an improvement in UACR in participants with macroalbuminuria [64]. For
an eGFR < 30 mL/min/1.73 m2, the difference in mean UACR change between the two
groups was 245 mg/g [65]. A short summary of trials on incretin-based treatments and
their influence on renal outcomes is presented in Table 2.



Int. J. Mol. Sci. 2021, 22, 12312 7 of 16

Table 2. A short summary of trials on incretin-based treatments and their influence on renal outcomes.

Trial Agent Enrolled Patients Renal Outcomes Results References

LEADER liraglutide
9340 patients with

T2D and high
cardiovascular risk

- persistent doubling of
the serum creatinine
level

- new-onset persistent
macroalbuminuria

- ESRD
- death due to renal

disease

- a 22% reduction in
new-onset or worsening
nephropathy

- a 26% reduction in
macroalbuminuria

- slowing eGFR decline
over time

- lower rate of DKD
events

[58,59]

SUSTAIN-6 semaglutide

3297 patients with
T2D, of whom 2735

had established
cardiovascular

disease, chronic
kidney disease or

both

new-onset or worsening
nephropathy is defined as:

- persistent doubling of
the serum creatinine
level

- persistent
macroalbuminuria

- an eGFR < 45
mL/min/1.73 m2

- the need for continuous
KRT (dialysis or kidney
transplant)

- a reduction in rates of
new-onset or worsening
nephropathy

- a 46% reduction in
new-onset
macroalbuminuria

[60]

EXSCEL exenatide
XR

14,752 patients with
T2D, of whom 10,782

had previous
cardiovascular

disease

- change in eGFR
- new macroalbuminuria

occurrence
- effects on renal

composite 1 (40% eGFR
decline, renal
replacement or renal
death)

- effects on renal
composite 2 (renal
composite 1 variables
plus macroalbuminuria)

- no significant influence
on any kidney outcome [61,62]

CARMELINA linagliptin

6991 patients with
T2D and high

cardiovascular or
chronic kidney

disease risk

- time to first occurrence
of adjudicated death
due to renal failure,
ESRD or sustained 40%
or higher decrease in
eGFR from baseline

- a significant
improvement of
albuminuria progression

- no significant
differences in other
kidney outcomes

[63]

SAVOR-
TIMI

53
saxagliptin

16,492 patients with
T2D who had a

history of, or were at
risk for,

cardiovascular
events

- a change from baseline
in UACR

- a new-onset or
progressed chronic
kidney disease

- doubling of serum
creatinine level

- serum creatinine level >
6.0 mg/dL

- initiation of dialysis
- kidney transplantation

- an improvement in
albuminuria outcome

- no significant
differences in other
kidney outcomes

[64,65]
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2.4. Effects of Incretin-Based Therapy on the Kidneys

The metabolic changes typical for diabetes cause activation of a pro-inflammatory
state. Enhancement of oxidative stress and increased production of advanced glycation end-
products (AGEs) are crucial mechanisms associated with hyperglycaemia. Inflammation
plays a key role in DKD pathogenesis [9]. Moreover, systemic hypertension and glomerular
hyperfiltration lead to haemodynamic abnormalities and damage the vasculature of the
glomerulus [9].

Patients with diabetes have increased serum levels of advanced oxidation protein
products (AOPPs), which are new markers of protein damage induced by oxidative stress.
These compounds may have a pro-inflammatory role and induce apoptosis of podocytes
in the kidney. Chronic plasma accumulation of AOPPs has been related to proteinuria,
glomerulosclerosis and loss of podocytes. Moreover, AOPPs promote the production of
reactive oxygen species, induce NADPH oxidase and activate NF-κB. AOPPs are probably
associated with the development of DKD as well [66].

DKD results in increased matrix expansion, the morphological manifestation of dif-
fuse or nodular proliferation of the mesangium and diffuse thickening of the glomerular
and tubular basement membranes [67]. Other features of DKD are interstitial fibrosis,
tubulointerstitial inflammation with immune cell infiltration, endothelial swelling with
loss of fenestrations, podocyte detachment and foot process effacement, subendothelial
protein deposits and arteriolar hyalinosis [68]. The pathophysiology of DKD is presented
in Figure 3.
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Another important problem is aggressive nephropathy in youth-onset T2D that occurs
earlier in life in comparison to nephropathy present in T2D-affected adults or patients
suffering from T1D. The young population with T2D presents many additional risk factors
of kidney failure, such as obesity, dyslipidaemia, hypertension and inflammation. The main
mechanisms involved in the pathogenesis and progression of the DKD in young people
are insulin resistance and impaired insulin secretion [69]. Moreover, puberty has a possible
influence on the progression of DKD lesions, increasing the production and activity of
transforming growth factor-β (TGF-β), a key factor in the development of diabetic renal
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hypertrophy and nephropathy [70]. Normal changes occurring during puberty, such as an
increase in blood pressure, appear in hyperglycaemia due to a physiological decrease of
insulin sensitivity, activation of the growth hormone-insulin-like growth factor I axis, or
sex steroids production, may intensify diabetic hypertrophy alterations [70]. Furthermore,
oestrogen receptors (ERα and ERβ) are involved in insulin secretion and glucose uptake,
which may be responsible for gender differences in insulin resistance [71]. Women with
metabolic syndrome present reduced muscle ERα expression level, which supports the
theory about the protective role of these receptors in the regulation of metabolic home-
ostasis [72]. Glucose uptake is regulated greatly by insulin-regulated glucose transporter
GLUT4 in skeletal muscle. Its expression is diminished by ERβ agonists [73]. ERβ sup-
presses GLUT4 expression, whereas ERα is a positive regulator of GLUT4 expression [74].

There exists a possibility to detect markers of inflammation and fibrosis in the blood
and urine of patients with early diabetes. They may be predictors of DKD and can precede
kidney damage by years [68,75–78]. The occurrence of the inflammatory state promotes
an increase in interstitial macrophages and dendritic cells in the kidney. This results
in the recruitment of additional monocytes and mast cells from the bone marrow [68,78].
Inflammatory cells release a wide range of pro-inflammatory cytokines and chemoattractant
molecules. Moreover, many different signalling pathways are activated, and the expression
of adhesion molecules is upregulated [68,75–78]. The level of uromodulin decreases; on
the other hand, the level of fibrinogen α-chain, prothrombin fragments and collagen
increases [9].

Incretin drugs influence the main mechanisms involved in DKD development. Pre-
dominantly, they lead to the maintenance of normal glucose levels and by reducing hyper-
glycaemia, decrease the formation of pro-inflammatory AGEs [10]. Intensive glycaemic
control also results in a reduction in the hyperglycaemia-induced activity of NADPH
oxidase, which affects oxidative stress [79]. Furthermore, better glycaemic control helps
to diminish glomerular hyperfiltration and high glomerular pressure [10]. Activation of
cAMP by GLP1RAs may lead to a reduction in the expression of the receptor for AGEs,
causing antioxidative effects [80].

Treatment with GLP1RAs leads to enhancement of natriuresis and diuresis, associated
with increased blood flow and reduced vascular resistance in the kidney as a result of an
increase in local nitric oxide production [81,82]. Under physiological conditions, GLP1RAs
may induce glomerular hyperfiltration by reducing afferent arteriolar resistance, but in
patients with T2D, they can improve renal haemodynamic function [24]. Natriuresis is
probably induced by inhibition of sodium–hydrogen exchanger 3 (NHE3). Pharmacological
doses of GLP1 or GLP1RAs increase intrarenal cAMP generation and activate protein kinase
A by binding to its receptor. This causes subsequent phosphorylation of NHE3 and leads
to the inhibition of sodium reabsorption in the proximal tube [83]. Low NHE3 activity
increases distal delivery of sodium chloride and affects tubuloglomerular feedback, which
can decrease glomerular hyperfiltration and pressure [84]. DPP4is might also inhibit NHE3
activity through a tyrosine kinase signalling pathway or redistribute NHE3 and stimulate
NHE3-independent sodium excretion [85–87]. This natriuretic response may be mediated
by elevated levels of intact stromal cell-derived factor 1α (SDF1α) via the sodium-chloride
cotransporter or the epithelial sodium channel in the distal convoluted tubule [88].

Incretin drugs block inflammation and fibrosis—mechanisms that cause structural
damage in kidneys. In studies, exendin-4 and liraglutide reduced the production of pro-
inflammatory cytokines and decreased the expression of TGFβ1, NF-κB and ICAM1, and
reduced oxidative stress and kidney infiltration by macrophages [89,90]. Incretin treatment
attenuates the pro-inflammatory response by reducing inflammatory cell invasion, block-
ing the activation of the mononuclear phagocyte system and decreasing the production
of chemokines, cytokines, adhesion molecules and pro-fibrotic signalling [91–93]. In an-
other study, the use of sitagliptin reduced C-reactive protein (CRP) levels in patients with
T2D [94]. After 12 weeks of treatment with exenatide, mononuclear cells collected from
patients with diabetes presented such anti-inflammatory effects as reduced NF-κB activa-
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tion, reactive oxygen species generation and mRNA expression of TLR2, TLR4, TNF, IL-1B,
MAPK8 and SOCS3 [95]. The treatment also suppressed levels of IL-6, serum amyloid
A, matrix metalloproteinase 9 and CCl2 [95]. Treatment with liraglutide led to decreased
albuminuria and urine levels of neutrophil gelatinase-associated lipocalin (NGAL) [96].
Induced by exendin-4, the stimulation of cAMP and protein kinase A in human mesangial
cells causes proliferation and fibrosis reduction [97]. Some DPP4is also have the potential
to upregulate CD4+ regulatory T cells and diminish levels of IL-6, TNF and CRP [94,98,99].
In patients with T2D, treatment with sitagliptin significantly reduces levels of secreted
phospholipase-A2, soluble ICAM1, E-selectin, CRP, IL-6 and IL-18 [94]. Expression of
SDF1α in glomerular podocytes and distal nephrons induced by linagliptin results in
reduced progression of glomerulosclerosis, albuminuria, periglomerular fibrosis, podocyte
loss and renal oxidative stress [88].

Incretin therapy may also affect the main renal risk factors. Treatment with GLP1RAs
results in a reduction in waist circumference and body weight, especially in total body fat,
particularly trunk or visceral fat rather than in lean tissue mass [100,101]. The beneficial
effect of GLP1RAs is also bound with a modest decrease in systolic blood pressure [82,83].
In a meta-analysis of 60 randomized controlled trials, the reduction in systolic blood pres-
sure was significant with liraglutide and albiglutide and non-significant with exenatide
and dulaglutide compared with placebo [102]. Moreover, in patients with T2D, the use of
incretins improves fasting and particularly postprandial lipid profiles. A meta-analysis in-
dicated that therapy with GLP1RAs causes mild reductions in the levels of total cholesterol,
LDL cholesterol and triglycerides, without improvement in HDL cholesterol levels [103],
whereas another meta-analysis of randomized controlled trials for DPP4is showed a mild
reduction in total cholesterol level [104].

3. Conclusions

Incretin drugs, another class of antidiabetic drugs, which includes GLP1RAs and
DPP4is, have a wide range of pleiotropic modes of action. Besides the ability to maintain
normoglycaemia, they have the potential to reduce appetite, body weight and hypertension.
Moreover, they show cardio- and nephroprotective effects in a different way, not completely
associated with reducing hyperglycaemia. Their multidirectional properties and ability to
alter the development of diabetic complications, such as diabetic kidney disease, highlight
their strong position among other antidiabetic drugs.

DKD is one of the main causes of ESRD, which makes it a serious problem. Among
the mechanisms that take part in DKD development are inflammation, fibrosis, oxidative
stress, as well as AGEs and AOPPs generation. Incretin drugs used in diabetes treatment
influence these mechanisms by reducing pro-inflammatory and pro-fibrotic states. Their
action also results in enhanced natriuresis and diuresis, and the depletion of renal risk
factors. Further investigation and trials are needed to know the exact mechanism of the
nephroprotective potential of incretins. However, it is already clear that incretin-based
therapy is beneficial not only in diabetes treatment but also in therapy of its complications,
especially DKD.
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Abbreviations
GIP glucose-dependent insulinotropic polypeptide (previously known as

gastric inhibitory peptide)
GLP1 glucagon-like peptide 1
T2D type 2 diabetes
GLP1R glucagon-like peptide 1 receptor
GLP1RA glucagon-like peptide 1 receptor agonist
DPP4 dipeptidyl peptidase 4
DPP4i dipeptidyl peptidase 4 inhibitor
DKD diabetic kidney disease
T1D type 1 diabetes
ESRD end stage renal disease
GRF glomerular filtration rate
KRT kidney replacement therapy
PCSK1 proprotein convertase subtilisin-kexin type 1
PCSK3 proprotein convertase subtilisin-kexin type 3
cAMP cyclic adenosine monophosphate
NEP neutral endopeptidase (neprilysin)
Fc fragment crystallizable
XR extended release
SNAC sodium N-(8-[2-hydroxybenzoyl]amino) caprylate
HbA1c haemoglobin A1c
CVOT cardiovascular outcome trial
LEADER trial the Liraglutide Effect and Action in Diabetes: Evaluation of

Cardiovascular Outcome Results trial
eGFR estimated glomerular filtration rate
SUSTAIN-6 trial the Trial to Evaluate Cardiovascular and Other Long-Term Outcomes

with Semaglutide in Subjects with Type 2 Diabetes trial
EXSCEL trial the Exenatide Study of Cardiovascular Event Lowering trial
CARMELINA trial the Cardiovascular and Renal Microvascular Outcome Study with

Linagliptin trial
UACR urine albumin-to-creatinine ratio
SAVOR-TIMI 53 trial the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients

with Diabetes Mellitus—Thrombosis in Myocardial Infraction trial
AGE advanced glycation end-product
AOPP advanced oxidation protein product
NADPH reduced form of nicotinamide adenine dinucleotide phosphate
NF-kB nuclear factor kB
TGF-β transformin growth factor-β
ERα oestrogen receptor α
ERβ oestrogen receptor β
GLUT4 glucose transporter type 4
NHE3 sodium-hydrogen exchanger 3
SDF1α stromal cell-derived factor 1α
ICAM1 intercellular adhesion molecule 1
TLR2 toll-like receptor 2
TLR4 toll-like receptor 4
TNF tumour necrosis factor
IL-1B interleukin 1B
MAPK8 mitogen-activated protein kinase 8
SOCS3 suppressor of cytokine signalling 3
CCl2 C-C motif chemokine ligand 2
NGAL neutrophil gelatinase-associated lipocalin
CRP C reactive protein
IL-6 interleukin 6
IL-18 interleukin 18
LDL low density lipoprotein
HDL high density lipoprotein
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