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Abstract
Oxyntomodulin (OXM) is a peptide secreted from the L cells

of the gut following nutrient ingestion. OXM is a dual agonist

of the glucagon-like peptide-1 receptor (GLP1R) and the

glucagon receptor (GCGR) combining the effects of GLP1

and glucagon to act as a potentially more effective treatment

for obesity than GLP1R agonists. Injections of OXM in

humans cause a significant reduction in weight and appetite,

as well as an increase in energy expenditure. Activation of

GCGR is classically associated with an elevation in glucose
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levels, which would be deleterious in patients with T2DM,

but the antidiabetic properties of GLP1R agonism would be

expected to counteract this effect. Indeed, OXM adminis-

tration improved glucose tolerance in diet-induced obese

mice. Thus, dual agonists of the GCGR and GLP1R

represent a new therapeutic approach for diabetes and obesity

with the potential for enhanced weight loss and improvement

in glycemic control beyond those of GLP1R agonists.

Journal of Endocrinology (2012) 215, 335–346
Introduction

As the prevalence of type 2 diabetes increases, there is a

medical need for additional antihyperglycemic agents that

offer improved efficacy in glycemic control and tolerability.

Obesity is an important risk factor for a number of debilitating

chronic conditions such as T2DM, dyslipidemia, and hyper-

tension (Bray 2004). However, several T2DM therapies have

been associated with weight gain, most profoundly for the

sulfonylureas, meglitinides, and thiazolidinediones (TZDs) as

well as for insulin. Recent work on understanding the

physiological function of proglucagon-derived peptides has

renewed interest in glucagon-based therapeutics. One of

these peptides is glucagon-like peptide-1 (GLP1), which is

secreted from the L cells of the gastrointestinal tract and

lowers blood glucose levels primarily by promoting insulin

secretion and by inhibiting glucagon secretion (Holst 2000).

GLP1 has been found to decrease food intake and inhibit

gastric emptying (Holst 2000, D’Alessio 2008). GLP1 is

rapidly inactivated by dipeptidyl peptidase-4 (DPP4) and its

renal clearance is relatively fast (Field et al. 2009). Accordingly,

new drugs based on GLP1 receptor (GLP1R) agonism and

DPP4 inhibition have been approved for the treatment

of type 2 diabetes, but the magnitude of weight loss at

tolerated doses is modest (Amori et al. 2007). Nevertheless,

protease-resistant GLP1R agonists (Drucker et al. 2010, Htike

et al. 2012, Nauck 2012) represent a new class of
antihyperglycemic agents that reduce body weight (D’Alessio

2008, Vilsboll et al. 2012) and are currently being tested for

the treatment of obesity (Astrup et al. 2012).
The preproglucagon family: historical overview and
tissue-specific posttranslational processing

Oxyntomodulin (OXM) is a 37-amino acid peptide secreted

in proportion to nutrient ingestion (Ghatei et al. 1983,

Le Quellec et al. 1992, Holst 1997, Drucker 2005) comprising

the entire 29-amino acid sequence of glucagon, with an

8-amino acid carboxy-terminal extension that results from

the processing of the preproglucagon precursor (Fig. 1;

Campos et al. 1994, Larsen et al. 1997). The processing of

proglucagon is tissue specific, producing from a single protein

different hormones depending on the tissue considered. In

pancreatic a cells, prohormone convertase 2 (PC2) generates

predominantly glucagon (Rouille et al. 1994, Kieffer &

Habener 1999, Furuta et al. 2001), whereas in intestinal L cells

present in the jejunum, ileum, and colon, PC 1/3

predominantly produces glicentin, OXM, GLP1, and GLP2

(Ghatei et al. 1983, Le Quellec et al. 1992, Holst 1997,

Drucker 2005, Brubaker 2012, Habib et al. 2012). Similar

processing is also thought to occur in the same neurons in the

nucleus of the solitary tract (NTS) in the hindbrain (Holst

2007; Fig. 1).
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Figure 1 Tissue-specific processing of proglucagon. Differential posttranslational
processing of proglucagon in the pancreas and in the gut and brain. Preproglucagon is
proteolytically cleaved in a tissue-specific manner by prohormone convertases 1 and 2.
The numbers in the figure indicate amino acid positions in the 160-amino acid
proglucagon sequence. In the pancreas, processing yields the glucagon sequence,
whereas the region containing the GLP1 and GLP2 peptides is secreted as a single inactive
fusion called major proglucagon fragment (MPGF) or GLP1 and GLP2. Posttranslational
processing in the gut and brain results in the secretion of GLP1 and GLP2, while the
glucagon sequence remains in a larger peptide, glicentin or glicentin-related pancreatic
peptide (GRPP), and oxyntomodulin.
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Sutherland & De Duve (1948) described for the first time

glucagon-like substances in extracts of intestinal mucosa as

identified using a bioassay (Holst 1983). The description of a

glucagon RIA by Unger et al. (1959), (1961) and (1962) made

it possible to confirm that the intestinal extracts contained

peptides cross-reacting in the RIA (gut ‘glucagon-like

immunoreactivity’, GLI). The first evidence of the existence

of OXM was generated in 1968 when it was discovered that

the gut GLI consisted of at least two peptides. Two distinct

moieties with GLI were secreted in response to an oral

glucose load (Unger et al. 1968, Valverde et al. 1968). One

with a C-terminal octapeptide extension (SP-1, spacer

peptide-1, or KA-8 or IP-1, intervening peptide) was

named OXM (Bataille et al. 1981b, Dubrasquet et al. 1982)

for its ability to modulate gastric acid secretion in gastric

oxyntic glands (Bataille et al. 1981a,b,c, 1982), and the other

with the same C-terminal extension plus an N-terminal

extension of 30 amino acids, was named glicentin (Sundby

et al. 1976, Thim & Moody 1981, Holst 1982). Larsson et al.

(1975) using immunohistochemistry and radioimmuno-

analysis showed in 1975 that disseminated cells that

predominate in the ileum and colon intestinal mucosa store

gut-type glucagon, reporting for the first time the spatial

tissue distribution of OXM in the gut. The distribution of

glucagon-related peptides in the human gastrointestinal

mucosa was later described by Baldissera & Holst (1984).
Receptors and post-receptor pathways activated
by OXM

OXM binds to and is a full w equipotent agonist of the

human GLP1R and glucagon receptor (GCGR)-mediated

cAMP accumulation, although with reduced affinity

compared with the cognate agonists GLP1 and glucagon
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(Bataille et al. 1982, Baldissera et al. 1988, Gros et al. 1993,

Schepp et al. 1996, Baggio et al. 2004, Jorgensen et al. 2007,

Pocai et al. 2009, Kosinski et al. 2012). Despite being a full

agonist at the human GLP1R, OXM was found to be a

full agonist in recruiting b-arrestin 2 to the GCGR, but

partial agonists in recruiting b-arrestin (b-arrestin 1 and

b-arrestin 2) and G-protein-coupled receptor (GPCR) kinase

2 to the GLP1R. Consistent with the properties of a partial

agonist, OXM was a functional antagonist of GLP1-induced

agonist response in b-arrestin 2 recruitment. It has been

suggested that OXM is a GLP1R-biased agonist relative to

GLP1 having less preference toward cAMP signaling relative

to phosphorylation of ERK1/2, but similar preference for

cAMP relative to Ca2C (Jorgensen et al. 2007). These findings

imply that the GLP1R-mediated in vivo effects of OXM could

differ from that of GLP1 (Koole et al. 2010). Currently, no data

are available on whether OXM interact with other family B

GPCRs such as GLP2 and glucose-dependent insulinotropic

peptide (GIP) receptors. Peripheral administration of OXM

results in increased c-Fos in the arcuate nucleus (ARC), but

not in the brainstem region (Dakin et al. 2004), and using

manganese-enhanced magnetic resonance to follow the

pattern of neuronal activation, OXM and GLP1 result in

activation of different hypothalamic pathways (Chaudhri et al.

2006, Parkinson et al. 2009). While these differences may be

simply due to a different brain penetration, it is plausible that

the engagement of additional receptor(s) and/or the above

reported difference on GLP1R signaling pathways may

explain the differences.
OXM and body weight

OXM causes weight loss in obese patients (Wynne et al. 2005)

and rodents (Dakin et al. 2001, Baggio et al. 2004) via
www.endocrinology-journals.org
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suppression of food intake and increases in energy expenditure

(Baggio et al. 2004, Wynne et al. 2006). OXM is a dual agonist

at the GLP1R and GCGR in vitro (Baldissera et al. 1988, Gros

et al. 1993, Pocai et al. 2009). The anorectic effects of central

administrations of GLP1 and OXM are abolished by

co-administration of the GLP1R antagonist, exendin(9–39),

and are not observed in Glp1rK/K mice, suggesting that the

central effect of OXM is mediated by the GLP1R (Turton

et al. 1996, Dakin et al. 2001, Baggio et al. 2004, Sowden et al.

2007, Wynne et al. 2010). While data obtained with the

truncated lizard peptide exendin(9–39) needs to be carefully

evaluated as it was shown to function either as a GLP1 and

GLP2 receptor antagonist and to displace GIP binding in vitro

(Wheeler et al. 1995, Brubaker et al. 1997, Tang-Christensen

et al. 2000), the lack of OXM efficacy seen in Glp1rK/K mice

demonstrated that the initial anorectic effect of OXM is

mediated solely by activation of the GLP1R (Baggio et al.

2004, Sowden et al. 2007). However, other acute effects of

OXM, including stimulation of heart rate and energy

expenditure, appear to be independent of GLP1R, suggesting

that OXM has both GLP1R-dependent and independent

effects in vivo (Baggio et al. 2004, Sowden et al. 2007).

These data led several investigators to hypothesize that

the differential effect of OXM vs GLP1 could be mediated by

activation of the GCGR or an as of yet unidentified OXM-

specific receptor. Recently, several publications (Du et al.

2012, Kosinski et al. 2012) expanded the initial findings on the

mechanism of action of OXM and demonstrated that OXM

has glycogenolytic properties in perfused mice liver showing

that OXM can functionally activate the GCGR (Kosinski

et al. 2012). Du et al. (2012) using a GLP1R agonist peptide

with a mutation of Gln (Q) / Glu (E) (OXMQ3E) in

position 3 that dials out activity on GCGR (Santoprete et al.

2011; Fig. 2), demonstrated that OXM, but not OXMQ3E,

stimulated liver ketogenesis in wild-type mice. A similar

effect was observed in Glp1rK/K but not in GcgrK/K mice

demonstrating that this effect of OXM is mediated by GCGR

activation (Du et al. 2012). When equimolar doses of OXM

(GLP1R/GCGR dual agonist) and OXMQ3E (selective

GLP1 agonist) were infused in obese mice, OXM exerted

superior weight loss and lipid lowering with comparable

glucose lowering to OXMQ3E (Kosinski et al. 2012).

Moreover, chronic infusion of OXM in Glp1rK/K mice

retained some of the body weight effect observed in lean
GLP1 HAEGTFTSDVS SYLEGQAAK E F IAWLVKGR

Glucagon HSQGTFYSDYS KYLDSRRAQ DFVQWLMNT

Glicentin RSLQDTEEKSRSFSASAADPLSDPDQMNEDKR
HSQGTFTSDYS KYLDSRRAQ DFVQWLMNTKRNRNNIA

OXM HSQGTFTSDYS KYLDSRRAQ DFVQWLMNT KRNRNNIA

OXMQ3E HSEGTFTSDYS KYLDSRRAQ DFVQWLMNT KRNRNNIA

1....................11 .....................  21.....................31

Figure 2 Sequence comparisons of GLP1(7–36) amide,
glucagon(1–29), glicentin, OXM, and OXMQ3E.
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wild-type mice, and pharmacological blockade of the GCGR

during OXM infusion demonstrated that the additional body

weight lowering observed with OXM vs OXMQ3E is

mediated by activation of the GCGR. This study showed

the involvement of the GCGR together with GLP1R

activation to the body weight lowering effect of OXM, but

it did not completely dismiss the potential contribution of an

OXM-specific receptor as minor weight loss was observed in

the group treated with a small molecule GCGR antagonist

alone (Kosinski et al. 2012). The superior weight loss efficacyof

OXM vs GLP1R agonism is consistent with previous research

on glucagon and energy homeostasis in humans and rodents.

Repeated administration of glucagon was first shown to inhibit

food intake in man over 50 years ago (Schulman et al. 1957),

and aside from its well-known hyperglycemic action, glucagon

increases thermogenesis, satiety, lipolysis, fatty acid oxidation,

and ketogenesis (Salter 1960, Salter et al. 1960, Penick &

Hinkle 1961, Langhans et al. 1982, Habegger et al. 2010, Jones

et al. 2012). A critical physiological role of glucagon in the

maintenance of whole-body energy homeostasis was sup-

ported by a recent study in T2D patients where a dose-

dependent increase in body weight was observed following

pharmacological blockade of the GCGR (Engel et al. 2011).
OXM and glucose metabolism

Studies have suggested that OXM may play a role in glucose

homeostasis. Chronic treatment with OXM results in

superior weight-lowering and comparable antihyperglycemic

effect to a GLP1R-selective agonist (Kosinski et al. 2012).

This is likely achieved through body weight reduction due to

the causal link between obesity and type 2 diabetes (Karra &

Batteram 2010) as well as direct enhancement of glucose-

dependent insulin secretion (Maida et al. 2008, Parlevliet et al.

2008, Du et al. 2012). Activation of GCGR is associated with

an elevation in glucose levels but the simultaneous agonism

at the GLP1R would be expected to counteract this effect.

Acute treatment with OXM improves glucose tolerance

during a glucose challenge in mice (Maida et al. 2008,

Parlevliet et al. 2008). Moreover, OXM administration

improved glucose intolerance by enhancing glucose disposal

during a hyperinsulinemic clamp study performed in diet-

induced insulin-resistant mice (Parlevliet et al. 2008). It has

been proposed that following a single injection, OXM acts

solely via GLP1R to modulate glucose homeostasis (Maida

et al. 2008). However, OXM was reported to increase hepatic

glucose production during a euglycemic–hyperinsulinemic

clamp performed in diet-induced obese mice, suggesting

activation of the hepatic GCGR in vivo (Parlevliet et al. 2008).

Recently, it was demonstrated that while acute treatment

with OXM improves glucose metabolism during a glucose

tolerance test and during a hyperglycemic clamp in mice, a

matched pair peptide without GCGR activity (OXMQ3E)

(Fig. 2) exerted better glucose-lowering properties compared

with OXM administration (Du et al. 2012). The same authors
Journal of Endocrinology (2012) 215, 335–346
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showed decreased glucose tolerance in OXM-infused

compared with vehicle-infused Glp1rK/K mice. The lack of

effect observed following a single i.p. injection of OXM

during a glucose tolerance test in Glp1rK/K mice (Maida et al.

2008) may be explained by the fact that Glp1rK/K mice are

glucose intolerant and resistant to diet-induced obesity;

hence, the acute glucoregulatory effect of a single injection

of OXM could be confounded by compensatory mechanisms

associated with chronic deletion of the GLP1R (Flamez et al.

1999). To further strengthen these data, hyperglycemic

clamps performed in GcgrK/K mice showed a similar effect

of OXM and OXMQ3E infusion on glucose metabolism in

the absence of a functional GCGR. This study demonstrated

that simultaneous activation of the GLP1R counteracts the

hyperglycemic effect of glucagon in vivo. The glucose-

lowering effect of OXM is mostly mediated by GLP1R

activation and activation of the GCGR appears to limit the

acute antihyperglycemic efficacy of OXM while contributing

to the insulinotropic properties of OXM (Du et al. 2012).

Glucagon has been reported to increase glucose levels

following i.c.v. administration in rats (Marubashi et al. 1985,

Amir 1986). However, Mighiu et al. (2012) recently

demonstrated that intrahypothalamic glucagon suppresses

hepatic glucose production and counteracts the direct hepatic

stimulatory effect of circulating glucagon on liver glucose

production in rodents during a pancreatic clamp. Therefore,

activation of the GCGR in discrete CNS areas may

contribute to the improvement of whole-body glucose

metabolism in animals treated with OXM.
Figure 3 Reported effects of oxyntomodulin.
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Other actions of OXM

Gastrointestinal effects

OXM decreases gastric acid and pancreatic exocrine secretion

(Bataille et al. 1981a, Dubrasquet et al. 1982, Ghatei et al.

1983, Biedzinski et al. 1987, Schjoldager et al. 1989,

Le Quellec et al. 1992, Anini et al. 2000) and increases

intestinal glucose uptake in preclinical species (Collie et al.

1997). Acute administration of OXM does not decrease

gastric emptying in mice (Maida et al. 2008) while i.v.

infusion of OXM inhibits gastric emptying in humans

(Schjoldager et al. 1989). GLP1 is thought to reduce

postprandial glucose excursion primarily via deceleration of

gastric emptying in rodents and humans (Wettergren et al.

1993, Willms et al. 1996), although this effect seems to

desensitize after multiple administrations (Meier et al. 2005,

Nauck et al. 2011) and glucagon has also been reported to

decrease gastric emptying (Habegger et al. 2010). Further

studies are required to confirm or reconcile these divergent

findings on gastric emptying in mice and humans potentially

involved in the effect of OXM on the regulation of glucose

and energy metabolism (Fig. 3).
Pancreatic effects

OXM has been reported to decrease pancreatic secretion

through the nervous system in rats (Anini et al. 2000) and

stimulate the endocrinepancreas to secrete insulin, somatostatin,

and glucagon (Baldissera et al. 1988, Schjoldager et al. 1988,
www.endocrinology-journals.org
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Maida et al. 2008, Parlevliet et al. 2008, Du et al. 2012).

OXM is capable of stimulating insulin secretion in a

glucose-dependent manner. This effect is likely mediated

through sensory nerves expressing the GLP1R and direct

activation of the b-cells GLP1R and GCGR (Drucker et al.

1987, Ahren 2004, Vahl et al. 2007, Maida et al. 2008,

Du et al. 2012). It is not known whether the GCGR is

involved in OXM-mediated insulin secretion via sensory

pathways. Furthermore, OXM reduces b-cell apoptosis and

increases pancreatic insulin content in diabetic mice treated

with streptozotocin, an effect mediated at least in part via a

direct GLP1R-dependent mechanism (Maida et al. 2008).

Recently, the GLP1R-mediated proliferative effect on the

b-cell has been demonstrated to require a signaling complex

GLP1R/b-arrestin 1/c-Src in INS832/13 cells (Talbot et al.

2012; Fig. 3).
Cardiovascular effects

Glucagon and GLP1 have positive inotropic and chronotropic

actions on the heart (Farah & Tuttle 1960, Buse et al. 1973,

Gonzalez-Munoz et al. 2008, Grieve et al. 2009). OXM

administration increased heart rate in wild-type mice

(Sowden et al. 2007). Involvement of the GCGR in the

effects of OXM on mouse heart is consistent with the

increased heart rate observed in Glp1rK/K mice (Sowden

et al. 2007). Further studies are required to investigate the

effect of OXM on the heart, as no increase in heart rate was

detected following administration of OXM in rat and humans

(Wynne et al. 2005, 2006, Sowden et al. 2007). The GLP1R/

GCGR dual agonist ZP2495 has been shown to increase

glucose oxidation and glycolytic rates in insulin-resistant

hearts of obese insulin-resistant rats but, unlike glucagon, it

did not compromise the energetic state of the hearts and

GLP1 agonism had no effect on cardiac metabolism (Axelsen

et al. 2012). The authors suggested that GLP1R/GCGR dual

agonists may have inotropic and energy-preserving effects in

insulin-resistant hearts and that these effects could be

beneficial for the treatment of heart failure or cardiogenic

shock in subjects with insulin resistance (Axelsen et al. 2012).
Renal effects

GLP1 agonists and DPP4 inhibitors cause moderate blood

pressure lowering and lipid lowering in humans that may

contribute to the reported cardiovascular benefits of this class

of antidiabetic drugs (Mega et al. 2011, Liu et al. 2012,

Panchapakesan et al. 2013). Glucagon causes natriuresis with

changes in kidney sodium handling. Enhanced proximal

tubular sodium reabsorption and a higher prevalence of

hypertension have been associated with the Gly40Ser

polymorphism of the GCGR gene resulting in a mutated

receptor less responsive to glucagon (Strazzullo et al. 2001,

Barbato et al. 2003). Consistently, a trend toward blood

pressure increase was observed during pharmacological

GCGR antagonism in T2D patients in a 4-week Phase IIa
www.endocrinology-journals.org
proof-of-concept study (Ruddy et al. 2011). No data so far

have been published on the renal effects of OXM.
Neuroprotective effects

In preclinical studies, GLP1 agonists and DPP4 inhibitors

(in association with GLP1 elevation) have been shown to

counteract memory impairment, protect neurons from

oxidative stress, and reduce plaque formation and the chronic

inflammation response in the brains of mouse models of

Alzheimer’s disease, Parkinson’s disease, and other degen-

erative diseases (Wu et al. 2003, D’Amico et al. 2010, Holscher

2012). GLP1R agonists are currently explored for the

treatment of neurodegeneration (Mega et al. 2011, Liu et al.

2012, Panchapakesan et al. 2013), and glucagon has been

recently reported to preserve neurological function following

brain trauma in diabetic rats (Abu Fanne et al. 2011). No

published reports so far have explored the effect of OXM

or GLP1R/GCGR dual agonists on neuroprotection. The

above studies suggest that simultaneous activation of the

GLP1R and GCGR could result in potential beneficial effects

in neurodegenerative disorders.
OXM, physiological or pharmacological role?

Because of the structural similarities of the proglucagon

products, investigating the endogenous levels of OXM is

difficult as ‘OXM-like immunoreactivity’ (OLI) has been

estimated mostly using a two-step subtraction RIA or a RIA

using an OXM C-terminal specific antibody (Blache et al.

1988). In the subtraction RIA, one assay is used to measure

the concentration of total glucagon, using antibodies to the

nonterminal epitopes of glucagon, which cross-react with

glucagon, glicentin, and OXM (Fig. 2). A second assay is used

to measure glucagon using antibodies to the exposed

C-terminal of glucagon. To estimate OLI, the level of

pancreatic glucagon is subtracted from the level of total

glucagon (Kervran et al. 1987).

Using the OXM C-terminal octapeptide-specific

antibody (Blache et al. 1988, Le Quellec et al. 1992), it

was shown that, following i.d. administration of a meal,

OLI raised in anesthetized rat plasma from 20.1G2.7 to

176.1G12.2 pmol/l at 30 min (Anini et al. 1999). Using the

same RIA, Le Quellec et al. (1998) determined that fasting and

meal-stimulated levels in healthy children were 71G10 and

130G26 pmol/l respectively and that the physiological 24-h

OLI profile in human plasma shows a diurnal variation

independent of food intake; the lowest levels were found in the

early morning (w13.5 pmol/l) and the highest levels were

found in the evening (w30.8 pmol/l) (Le Quellec et al. 1992).

More recently, the subtraction RIA (Ghatei et al. 1983) has

been used to estimate the OLI concentration in humans treated

with OXM (Wynne et al. 2005). S.c. OXM (400 nmol

preprandially) administered three times daily in overweight

and obese subjects over a 4-week period resulted in
Journal of Endocrinology (2012) 215, 335–346



A POCAI . Mechanism of action of oxyntomodulin340
a significant weight loss of 2.3 kg (Wynne et al. 2005).

The endogenous fasting level of OLI was found to be

97.4G5.5 pmol/l, increasing to 116.5G10.4 pmol/l after a

meal. OLI increased tenfold (972G165 pmol/l) 30 min after

self-administration of OXM. These levels are similar to those

found in gastrointestinal disease such as the levels reported in

patients with tropical malabsorption (tropical sprue, approxi-

mately tenfold elevation vs normal patients) (Besterman et al.

1979), patients who have had small intestinal resection

(Besterman et al. 1982), and following jejuneal ileal bypass

surgery (Holst et al. 1979, Sarson et al. 1981). The same authors

using a similar experimental design and OXM administration

demonstrated that 4-day s.c. self-administration of preprandial

OXM (400 nmol) three times daily increased energy

expenditure and decreased energy intake in overweight and

obese volunteers (Wynne et al. 2006). The baseline plasma

OXM levels were 41G7 pmol/l increasing to 63G16 pmol/l

postprandially. When participants self-administered OXM,

levels increased to 658G85 pmol/l immediately before the

study meal (Wynne et al. 2006). Holst’s group using a different

subtraction RIA to obtain OLI concentrations (Holst et al.

1976) reported fasting and postprandial plasma levels of

20–30 pmol/l (Falken et al. 2011).

The issues with the accurate quantification of OXM

remain a confounder as a proportion of the OLI is represented

by glicentin and different assays result in different readouts.

Recently, Halquist et al. (2012) reported a two-dimensional

reversed phase ion pair chromatography–tandem mass

spectrometry approach for the analysis of OXM in rat plasma.

This LC–MS method may provide new avenues of data that

may not have been seen with other method platforms.

Based on the data available, it is unclear what the absolute

values of OXM/OLI are in plasma during fasting and

following a meal. It is, therefore, difficult to make conclusions

about a potential physiological role of OXM. OXM shows

similar functional potencies (EC50, cAMP production) at the

GLP1R and GCGR (Baldissera et al. 1988, Gros et al. 1993,

Holst 2000, Pocai et al. 2009, Kosinski et al. 2012) at

w1–2 orders of magnitude higher than the plasma levels of

OXM/OLI reported in postprandial state and then only

approach EC50 plasma levels when OXM is exogenously

administered (Wynne et al. 2005, 2006). Based only on

peripheral plasma OXM levels, it is unlikely that the

endogenous levels of OXM result in physiological effects.

More sophisticated technologies measuring the levels of

OXM in critical sites such as the vagus or discrete brain-

specific areas involved in the regulation of energy homeostasis

are not readily available and are required to make any further

conclusion. In these sites, the levels of OXM are anticipated

to be higher in the postprandial state. Similarly, animal (Vahl

et al. 2007) and human (Plamboeck et al. 2012) studies have

demonstrated that an intact vagal innervation is important for

the effect of GLP1 in the maintenance of glucose homeostasis.

GLP1 is a substrate of DPP4 and is rapidly metabolized to

GLP1 (9–37) or GLP1(9–36)NH2. DPP4, among other

tissues and cell types, is found on the surface of endothelial
Journal of Endocrinology (2012) 215, 335–346
cells of capillaries in the intestinal mucosa adjacent to the sites

of GLP1 secretion (Hansen et al. 1999, Baggio & Drucker

2007). Consequently, !25% of newly secreted GLP1 enters

the portal vein in intact form and only w10–15% reaches the

systemic circulation in the intact insulinotropic form where

DPP4 also exists as a soluble form (Pridal et al. 1996, Mentlein

1999). OXM has a short half-life in circulation of w12 min in

humans (Schjoldager et al. 1988) and w6 min in the rat

(Kervran et al. 1990). It is removed by renal clearance and is a

substrate of DPP4 (Zhu et al. 2003). Evidence of the

involvement of DPP4 in the breakdown of OXM in vivo

came from a study in which co-administration of OXM and a

DPP4 inhibitor resulted in a greater reduction of food intake

(Druce & Bloom 2006). The midsection of OXM may also be

a target for degradative enzymes such as the ectopeptidases

(Hupe-Sodmann et al. 1997) and neutral endopeptidase 24.11

(NEP-24.11, neprilysin) (Hupe-Sodmann et al. 1995, Deacon

2005, Plamboeck et al. 2005). This observation raised concerns

regarding the relevance of portal GLP1 or other peptide

concentrations in regulating glucose homeostasis and other

pharmacodynamic effects and represents a potential limitation in

the majority of studies that rely only on measurement of

systemic levels of native peptides (Vahl et al. 2007).

Therefore, it is possible that the circulating active levels of

OXM reflect, as in the case of GLP1, just a small portion of

the secreted product and that the concentration at the site

of secretion in the gut or brain is sufficient to elicit

physiological responses (Kervran et al. 1990). It is also possible

that additional receptors are involved in the action of OXM or

that OXM acts synergistically when secreted together with

other peptides (Field et al. 2010) recapitulating the post-

Roux-en-Y gastric bypass situation (Ashrafian et al. 2011,

Jorgensen et al. 2012). The understanding of the role of OXM

as a potential physiological regulator of appetite and energy

expenditure would be strengthened by the identification of a

specific OXM receptor, by studies employing specific OXM

antagonists or immuno-neutralizing antibodies that block the

effects of OXM, but not glucagon or GLP1, or with genetic

mouse models.
Therapeutic potential

The only treatments to date that produce lasting weight

reduction are gastric banding and gastric bypass surgery,

although the associated risk and costs limit their use. Patients

that undergo gastric bypass have alterations of several signals

that may contribute to their reduced appetite and enhanced

glucose homeostasis. Among the changes consistently

observed following RYGB are an exaggerated postprandial

increase in OXM, glucagon, PYY, and GLP1 (Chandarana &

Batterham 2012). Administration of endogenous gut

peptides or more metabolically stable analog represents a

potential long-term therapeutic approach to obesity and

diabetes. OXM administered three times a day preprandially

was demonstrated to reduce body weight in humans
www.endocrinology-journals.org



Mechanism of action of oxyntomodulin . A POCAI 341
(Wynne et al. 2005) and preclinical data suggest that OXM

may have glucose-lowering properties (Maida et al. 2008,

Parlevliet et al. 2008). However, the clinical utility of OXM is

limited, mainly because of its short circulating half-life

(Schjoldager et al. 1988). Repeated daily doses of large

amounts of peptide would be required to elicit its effect,

entailing a treatment regimen inconvenient for patients and

not economically viable. Because glucagon and GLP1 share

w50% amino acid sequence identity (Fig. 2), several groups

have recently developed protease-resistant GLP1R/GCGR

dual agonist peptides that are resistant to peptidase

degradation (Day et al. 2009, Kerr et al. 2010, Liu et al.

2010, Santoprete et al. 2011). Two independent papers

reported the use of GLP1R/GCGR co-agonists as being of

enhanced efficacy relative to pure GLP1R agonists in the

treatment of rodent obesity, with simultaneous improvement

in glycemic control (Day et al. 2009, Pocai et al. 2009). Two

DPP4-resistant OXM analogs have been tested in obese mice

to compare the effects of dual agonism relative to activation of

the GLP1R (Pocai et al. 2009). One analog, being a dual

agonist at the GLP1R and GCGR (DualAG), is the OXM

peptide with a cholesterol group attached to the C-terminal

end. The alternative analog is a GLP1R-selective analog

(GLPAG) with an equal affinity for the GLP1R but no

significant activity at the GCGR due to a mutation from

glutamine to glutamate that abolished the interaction with the

GCGR (Santoprete et al. 2011). Obese mice administered

with DualAG had superior weight loss and lipid lowering

compared with the GLP1R-selective agonist (Pocai et al.

2009). Another dual GLP1R and GCGR agonist strategy

involved screening a series of chimeric DPP4-resistant

PEGylated peptides. The chimeric peptide was optimized

to decrease food intake, reduce body weight, and increase

GLP1 activity to neutralize the hyperglycemic effects of

glucagon with weekly s.c. injections to diet-induced obese

mice (Day et al. 2009). The enhanced weight loss observed

with GLP1R/GCGR dual agonists (Day et al. 2009, Pocai

et al. 2009, Kosinski et al. 2012) has triggered important

questions about the ideal ratio of receptor activation.

Specifically, what is the appropriate amount of GLP1R

activation that buffer the hyperglycemic risk posed by GCGR

activation. When a long-acting dual agonist was given to

Glp1rK/K mice, the decrease in body weight was no longer

associated with improvement in glucose metabolism (Day

et al. 2009), highlighting the importance of an appropriate

GLP1R engagement in preventing GCGR-mediated

increase in glucose production. A recent report using a

spectrum of receptor selectivity demonstrated that a dual

agonist peptide with comparable functional potencies at the

GLP1R and GCGR maximizes the weight loss and

minimizes the hyperglycemic risk associated with GCGR

activation in mice (Day et al. 2012). Another OXM analog,

OXM6421, when injected in lean mice was observed to have

a longer half-life than endogenous OXM and resulted in

reduced intake of food as well as enhanced expenditure of

energy (Liu et al. 2010). ZP2929, a chimeric peptide capable
www.endocrinology-journals.org
of fully activating both GLP1R and GCGR, improved

glycemic control without body weight gain in db/db mice

when combined with long-acting insulin (Fosgerau et al.

2011). Recently, Zealand Pharma announced the starting of a

Phase I development of ZP2929 for the treatment of T2DM

and/or obesity (Diabetes.co.uk, Sep 14, 2012) and Transition

Therapeutics confirmed in a press release the completion

of a Phase 1 study with TT-401, a weekly GLP1R/GCGR

dual agonist developed for the treatment of diabetes (www.

transitiontherapeutics.com/media/news.php, June 6, 2012).
Conclusion

Several trials have clearly demonstrated that lifestyle inter-

ventions (UKPDS 1995) and T2DM therapies such as

sulfonylureas, metformin, and TZD result in progressive

deterioration of glycemic control in T2DM patients associated

with b-cell decline (Kahn et al. 2006). Therefore, restoration

of insulin secretion and b-cell mass and function is a critical

goal of future diabetes treatments. Thus far, incretin-based

therapies (GLP1R agonists and DPP4 inhibitors) are providing

durable glycemic control with improved insulin resistance and

b-cell function (Klonoff et al. 2008, Derosa & Maffioli 2012,

Derosa et al. 2012a,b, van Genugten et al. 2012).

With these initial promising results from incretin mimetics

and incretin enhancers, the next generation of diabetes drugs

will likely focus on the alternate delivery for injectables

(Owens 2002, Lee et al. 2009, Sloop et al. 2010) and the

combined activation of more than one receptor. Simultaneous

activation of GLP1R and GCGR with chimeric peptides and

in the future nonpeptide orally available GLP1R/GCGR dual

agonists is a conceivable option to achieve improved

therapeutic goals. It will be critical to deepen our under-

standing of the mechanism of action and how structurally

related peptides like GLP1 and glucagon interact with their

respective receptors. Understanding of receptor oligomeriza-

tion, heteromerization, and binding cooperativity will allow

an improved understanding of how ligands should be designed

to maximize the simultaneous activation of these complexes

(Roed et al. 2012, Schelshorn et al. 2012, Whitaker et al.

2012). Finally, characterization of the post-receptor signaling

of these closely related GPCR in the glucagon family will

allow a better understanding of the pathways that need to be

selectively modulated to achieve the desired effect while

avoiding others responsible for undesirable adverse effects.
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derived peptides in the rat. Pflügers Archiv 438 299–306. (doi:10.1007/

s004240050913)

Anini Y, Jarrousse C, Chariot J, Nagain C, Yanaihara N, Sasaki K, Bernad N,

Le Nguyen D, Bataille D & Roze C 2000 Oxyntomodulin inhibits

pancreatic secretion through the nervous system in rats. Pancreas 20

348–360. (doi:10.1097/00006676-200005000-00003)

Ashrafian H, Athanasiou T, Li JV, Bueter M, Ahmed K, Nagpal K, Holmes E,

Darzi A & Bloom SR 2011 Diabetes resolution and hyperinsulinaemia after

metabolic Roux-en-Y gastric bypass. Obesity Reviews 12 e257–e272.

(doi:10.1111/j.1467-789X.2010.00802.x)

Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean ME, Niskanen L,

Rasmussen MF, Rissanen A, Rossner S et al. 2012 Safety, tolerability and

sustained weight loss over 2 years with the once-daily human GLP-1 analog,

liraglutide. International Journal of Obesity 36 843–854. (doi:10.1038/

ijo.2011.158)

Axelsen LN, Keung W, PedersenHD, MeierE, Riber D, Kjolbye AL,Petersen JS,

Proctor SD, Holstein-Rathlou NH & Lopaschuk GD 2012 Glucagon and

a glucagon-GLP-1 dual-agonist increases cardiac performance with different

metabolic effects in insulin-resistant hearts. British Journal of Pharmacology

165 2736–2748. (doi:10.1111/j.1476-5381.2011.01714.x)

Baggio LL & Drucker DJ 2007 Biology of incretins: GLP-1 and GIP.

Gastroenterology 132 2131–2157. (doi:10.1053/j.gastro.2007.03.054)

Baggio LL, Huang Q, Brown TJ & Drucker DJ 2004 Oxyntomodulin and

glucagon-like peptide-1 differentially regulate murine food intake and

energy expenditure. Gastroenterology 127 546–558. (doi:10.1053/j.gastro.

2004.04.063)

Baldissera FG & Holst JJ 1984 Glucagon-related peptides in the human

gastrointestinal mucosa. Diabetologia 26 223–228. (doi:10.1007/

BF00252412)

Baldissera FG, Holst JJ, Knuhtsen S, Hilsted L & Nielsen OV 1988

Oxyntomodulin (glicentin-(33–69)): pharmacokinetics, binding to liver

cell membranes, effects on isolated perfused pig pancreas, and secretion

from isolated perfused lower small intestine of pigs. Regulatory Peptides 21

151–166. (doi:10.1016/0167-0115(88)90099-7)

Barbato A, Russo P, Venezia A, Strazzullo V, Siani A & Cappuccio FP 2003

Analysis of Gly40Ser polymorphism of the glucagon receptor (GCGR)

gene in different ethnic groups. Journal of Human Hypertension 17 577–579.

(doi:10.1038/sj.jhh.1001591)

Bataille D, Gespach C, Coudray AM & Rosselin G 1981a ‘Enteroglucagon’:

a specific effect on gastric glands isolated from the rat fundus. Evidence for

an ‘oxyntomodulin’ action. Bioscience Reports 1 151–155. (doi:10.1007/

BF01117012)

Bataille D, Gespach C, Tatemoto K, Marie JC, Coudray AM, Rosselin G &

Mutt V 1981b Bioactive enteroglucagon (oxyntomodulin): present

knowledge on its chemical structure and its biological activities. Peptides 2

(Suppl 2) 41–44. (doi:10.1016/0196-9781(81)90008-5)

Bataille D, Tatemoto K, Coudray AM, Rosselin G & Mutt V 1981c Bioactive

‘enteroglucagon’ (oxyntomodulin): evidence for a C-terminal extension of

the glucagon molecule. Comptes Rendus des Séances de l’Académie des Sciences.
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