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A B S T R A C T   

Cancer cell lines are essential in cancer research, yet accurate authentication of these cell lines can be chal-
lenging, particularly for consanguineous cell lines with close genetic similarities. We introduce a new Cancer Cell 
Line Hunter (CCLHunter) method to tackle this challenge. This approach utilizes the information of single 
nucleotide polymorphisms, expression profiles, and kindred topology to authenticate 1389 human cancer cell 
lines accurately. CCLHunter can precisely and efficiently authenticate cell lines from consanguineous lineages 
and those derived from other tissues of the same individual. Our evaluation results indicate that CCLHunter has a 
complete accuracy rate of 93.27%, with an accuracy of 89.28% even for consanguineous cell lines, out-
performing existing methods. Additionally, we provide convenient access to CCLHunter through standalone 
software and a web server at https://ngdc.cncb.ac.cn/cclhunter.   

1. Introduction 

As an in vitro model system, cancer cell lines are widely used in 
different fields of biological research, especially in cancer studies and 
drug discovery [1,2]. However, problematic issues arise when using cell 
lines during experiments, such as genomic variation and cell contami-
nation, which could cause cell heterogeneity as cell lines proliferate, 
issues that have been overlooked for a long time [3–5]. It was reported 
that as of August 2017, 32,755 research papers may have used the wrong 
cell line [6]. Such a high proportion of misidentified cell lines has 
collected increasing attention from researchers [7]. To date, at least 21 
journals, including Nature, have stipulated the requirements of cell line 
authentication in the submitted articles [8,9]. 

At present, the methods of cell line authentication are mainly divided 
into experiments-based and bioinformatics analysis-based approaches. 
Experiment-based cancer cell lines (CCLs) authentication methods 
generally include isoenzyme analysis [10], HLA type [11], and short 
tandem repeat (STR) detection [12]. Bioinformatics analysis-based CCL 
authentication methods primarily utilize information in next-generation 
sequencing (NGS) data, such as single nucleotide polymorphisms (SNP) 

and differential gene expression, which contains more genetic infor-
mation. The SNP-based methods, such as CEL-ID and Uniquorn calculate 
the similarity of cell line SNPs between reference and sample using 
Pearson correlation [13,14]. However, somatic mutations in cancer cell 
lines often exhibit high individual specificity, leading to excessive noise 
in cell line authentication [15,16]. Zhang et al. proposed an 
expression-based method called CCLA, which reduces noise by selecting 
specifically expressed genes and mapping their values to pathways. 
Then, it uses refined data to build predictive models with random forests 
[17]. 

However, all existing methods apply the same treatment standard to 
all cell lines, ignoring the genetic differences within each cell line. This 
could decrease the authentication accuracy for consanguineous cell 
lines. We define a cell line directly isolated from tissue as a primary- 
derived cell line (primCCL). In contrast, a cell line isolated from a 
consanguineous cell line is referred to as a post-derived cell line 
(postCCL), constituting approximately 19% (18,542/97,506, data from 
Cellosaurus) of all existing cell lines [18]. Due to the purposeful design 
of cell lines, the incorrect authentication of postCCLs can result in 
conflicting experimental outcomes. Currently, the authentication of 
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postCCLs remains a significant challenge. 
To authenticate cell lines, particularly post-derived ones, with 

sensitivity and robustness, we propose a new method called CCLHunter. 
This approach integrates variant, kindred topology, and expression 
profile schemes. We use cosine similarity to eliminate noise from hun-
dreds of thousands of SNPs. The resulting refined SNP barcode catego-
rizes the cell line into the lineal kindred group (LKG). We then 
authenticate CCLs within the LKG by constructing a stable fluctuation 
unit (SFU) based on the kindred topology and expression profile. Our 
evaluation shows that CCLHunter accurately and effectively authenti-
cates cell lines, including those closely genetically related. 

2. Methods 

2.1. Data collection 

Genotype data for cell lines were collected from the CCLE [19] and 
COSMIC [20] projects. For cell lines in the CCLE, we downloaded the 
‘Birdseed Call’ files from the DepMap Portal (https://depmap.org/por-
tal/). Each cell line’s genotype calls were downloaded in CSV format for 
COSMIC. The genotypes of both datasets were generated from the 
Affymetrix SNP6.0 array [21]. For each probe, the related rsID, location 
in the genome, strand, allele A, and allele B were annotated using the 
GPL6801–4019.txt file, which was downloaded from the GEO website. If 
more than one probe were annotated into one SNP, the one with the 
highest confidence would be selected in the CCLE dataset. For the 
COSMIC dataset, as COSMIC lacks a confidence score similar to CCLE, to 
eliminate duplicate probes, we retain only the results from the initial 
probe at that locus. Finally, 860,975 SNP sites were filtered for down-
stream analysis. The cell line name was standardized using the Cello-
saurus and manually mapped cell line names from the CCLE and the 
COSMIC dataset to Cellosaurus [18]. The CCLs’ kindred information was 
also extracted from Cellosaurus. 

2.2. Stable SNP vector set filtration 

The screening criteria revolve around the ability to be inherited as 
stably as possible, and the accuracy problems caused by sequence 
complexity are minimized. 436 SNP sites and corresponding genes were 
filtered for building the SNP barcode.  

1) Each allele should be located within the CDS regions of recognized 
coding genes.  

2) Each allele should be recognized as a biallelic variant, meaning that 
only two variants (including its reference) could appear in this 
location, as determined by the dbSNP ALFA project’s statistics (build 
id 20201027095038) [22], and its variation type should be a 
transversion.  

3) The allele frequency of each locus in dbSNP [23] should fall within 
the range of 0.4–0.6.  

4) The allele frequency of each locus in our curated CCLs should also 
fall within the range of 0.4–0.6.  

5) Each locus should not be within the tandem repeat regions identified 
by the tandem repeat finder with default parameters [24]  

6) Each SNP should not be located within the linkage disequilibrium 
regions [25,26]  

7) Only the one farthest from the CDS boundary will be retained if two 
or more alleles are located on the same coding gene. 

All of the refined SNPs were listed in the Supplementary Table 2. 

2.3. Candidate primCCLs selection 

The genotype and the depth of query CCL in SNP barcode were 
extracted using samtools [27]. In detail, all reads aligned to this location 
were extracted, and only quality scores with both read and alignments 

higher than Q30 were retained. For genotype determination, we require 
that each haplotype has a minimum depth of 3 reads and accounts for at 
least 15% of all reads; otherwise, we consider this location as a missing 
location labeled as ’NN.’ After one-hot coding, the cosine similarity was 
calculated between each CCL in the library. The most similar one with 
query was recorded as the primCCLs candidate. 

2.4. Lineal kindred group building 

If this CCL recursively had any direct or collateral relatives 
(including its different tissues), the topology was extracted as the lineal 
kindred group of this cell line. Each cell line shares this and only this 
same LKG in the kindred topology. CCLHunter will re-identify which cell 
line is the most likely in this LKG based on the stable fluctuation unit. 

2.5. Stable fluctuation unit selection 

We used a stable fluctuation unit (SFU) to select the gene set between 
two cell lines with the greatest difference among the expressed genes as 
stable as possible. First, using the depth values obtained from the pre-
vious step, we calculated the mean value for all gene pairs and selected 
the gene set falling within the 25th to 75th percentiles. Next, we 
calculated the fold change for all gene pairs and selected genes with fold 
changes greater than the 75th percentile or less than the 25th percentile. 
The objective of this step is to mitigate the impact of expression outlier 
genes on authentication while preserving as many differentially 
expressed genes as possible. Finally, the shared part of the two gene sets 
was considered as stable fluctuation units of the two cell lines. 

2.6. Test data set preparation 

Three data sets were used to test CCLHunter and other software. We 
collected RNA-seq data from 17 cell lines in SRA (Supplementary 
Table 3). These cell lines are all post-derived cell lines, which makes 
them difficult to be authenticated by the previous methods. The infor-
mation on these 17 cell lines is listed in Supplementary Table 3. The 
second and third data sets are CHCC (E-MTAB-2706 dataset in EBI) [28] 
and CellMiner [29], released by other projects, respectively. CellMiner 
provided expression and genotype data for 60 cell lines, and CHCC 
provided expression data for 622 cell lines. Because the CHCC project 
has no available genotype data, when testing CCLHunter, we assume 
that CCLHunter can correctly locate the LKG of the postCCL, which 
should be the first step for CCLHunter using SNPs, so the actual accuracy 
will be influenced by the accuracy of the first-step SNP-based method. 

2.7. RNA-seq data processing 

All cell line RNA-seq data were downloaded from the NCBI SRA 
database. We used the fastq-dump module of sratoolkit version 2.8.2–1 
[30] to convert sra data to fastq format with the parameter of –split 3 
–gzip. STAR [31] was used for read alignment with parameters of 
–twopassMode Basic –outSAMtype BAM SortedByCoordinate. The data 
size and alignment ratio are shown in Supplementary Table 3. All sorted 
BAM were quantified at the gene level by FeatureCounts with default 
parameters [32]. 

2.8. Performance comparison with other tools 

Three well-known authentication tools, CCLA[17], CEL-ID[13] and 
Uniquorn[14], were used to compare with CCLHunter. All software used 
default parameters to get the result and then mapped to Cellosaurus to 
uniform the cell line name. For CEL-ID and Uniquorn, the input BAM file 
was obtained from STAR version 2.7.6a[31] in the previous RNA-seq 
processing step. The gene expression matrix for testing CCLA was 
generated using FeatureCount [32] with default parameters. Due to the 
variant caller dependence, two different variant callers, Varscan2[33] 
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and Freebayes[34] were used to build the input of the CEL-ID and 
Uniquorn. According to the guidance of GATK [35] best practices, 
GATK’s MarkDuplicates, SplitNCigarReads, and BaseRecalibrator were 
used to filter and correct the data. Subsequently, the filtered BAM was 
processed in the subsequent variant calling steps. The input for CEL-ID 
was created using mpileup2snp of varscan2 with the parameters of 
–output-vcf 1 –p-value 0.01, while the input for Uniquorn was generated 
using freebayes with its default settings. Given that the CHCC and 
CellMiner projects only provide expression data and limited variant 
locus information, we could not assess the accuracy of SNP-based 
methods using these test sets. For the CHCC data sets that only furnish 
the expression profile, we hypothesize that CCLHunter can accurately 
identify the correct LKG through SNP analysis during testing. 

3. Results 

3.1. The schema of CCLHunter 

The workflow of CCLHunter is shown in Fig. 1. We provided a novel 
CCL authentication method to promote the resolution of CCL identifi-
cation. First, we collected the hierarchical relationship links of CCLs 

from Cellosaurus [18]. Through the kindred topology, we could 
authenticate the relatives of any cell line record, such as their parents, 
children, or siblings. All immediate relatives of a cell line and themselves 
are called lineal kindred groups (LKGs). The topology of the LKG serves 
as a guide to inform CCLHunter whether it should utilize expression data 
to refine the CCLs further. 

Secondly, we collected SNP array instead of preparing variation data 
from CCLE[19] and COSMIC[20]. Furthermore, somatic SNVs provided 
in the CCLE or COSMIC projects have strong specificity related to indi-
viduals/organisms, thus decreasing the specificity as CCL ‘population’. 
1389 cell lines were collected, including 1042 cell lines in CCLE and 
1006 cell lines in COSMIC (Supplementary Table 1). Among them, 168 
postCCLs had LKGs containing more than one CCL. Through SNP 
filtering (see method), we could greatly reduce the scale of data to be 
scanned (from 860,975 to 436). Simultaneously, individual-specific 
noise was minimized as much as possible because the retained SNP 
could be considered as a candidate germline mutation (Fig. 2 D and E). 
The genotypes of these 436 SNPs were extracted from the reference 
array as the vector set of each CCL. 

Lastly, CCLHunter determined whether it was necessary to continue 
to refine the cell line through the expression matrix according to the 

Fig. 1. Schema of CCLHunter. A) The reference data used in CCLHunter to build internal references. Among them, CCLE and COSMIC were used to extract the 
genotype and expression data, and Cellosaurus was used to extract lineage topology information. B) Internal reference built-in CCLHunter. Firstly, high-variable SNP 
sites and their related genes refined by rules were selected as a benchmark to build both the SNP barcode and expression matrix for each cell line. Secondly, the 
lineage reference with kindred topology and the standard name was extracted from Cellosaurus. C) Authentication of the user-provided cancer cell line. CCLHunter 
will extract the SNP barcode from BAM and calculate the similarity between the user-provided and reference cancer cell lines to identify the primary-derived cancer 
cell line as the candidate. Then, if the candidate cell line is contained in any LKG, SFU will be constructed dynamically and compared against each reference cell line 
in LKG. The final results will be treated as the most significant reference cell line. CCLHunter can be run in both command line and Web server mode. 
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topology of the best hit of the CCL candidate. If a candidate has any 
immediate relatives in LKG, it was considered untrustworthy regardless 
of the results from the SNP-based method. In such cases, it was necessary 
to determine which candidate was most likely the best match through 
the gene expression in LKG (Fig. 1B). The expression profile of all 168 
postCCLs was mapped to a common name curated from Cellosaurus for 
expression-based CCL authentication. We then selected genes’ expres-
sion value as stable fluctuation unit (SFU) (see detail in method) by 
comparing the input CCL and each CCL contained in LKG to obtain the 
authenticated report through the rank sum test. 

3.2. Authentication of prim-derived cell lines using refined SNP barcode 

After the screening, we obtained 436 SNP alleles for the rough pri-
mary authentication to the LKG (Fig. 2 and Supplementary Table 2). 
Fig. 2 A-C displays the attributes of the refined SNP barcode. According 
to the population frequency information of the Allele Frequency 
Aggregator (ALFA) [22], the allele frequency of refined SNP is approx-
imately 0.5 in the total population. It was more divergent in Asian and 
African populations, which might be due to insufficient data in these 
regions. All refined SNPs tend to maintain stable genotype frequencies in 
the cell lines we collected and those contained in ALFA. This stability 
contributes to a reduction in false positive SNP identification. Further-
more, we found that all refined SNPs are located in the non-variable 
region [36] and are evenly distributed across all chromosomes 
without prior knowledge (Supplementary Figure 1), illustrating the 
robustness of SNP extraction and the unbiased nature of our screening 
conditions. 

To access whether the refined SNPs contain sufficient information 
entropy, we used a dataset from CellMiner [37] containing genotype and 
expression profile data for 60 cell lines to authenticate CCL into LKG 
levels using our refined SNPs and randomly selected SNPs, respectively 
(Fig. 2D). The results showed that all cell lines could be exactly distin-
guished when using the refined SNPs or the number of random-selected 

SNPs in the coding region was greater than 300. We also compared the 
similarity distribution between the 436 SNP barcode and the randomly 
selected SNPs for CCLs authenticating (Fig. 2E). The results demon-
strated that the similarity of the refined SNP was significantly more 
stable than that of the randomly selected ones (KS test, P-val-
ue=2.50e-13), indicating the SNP refinement enhances the method’s 
robustness when applied to different real datasets. 

After conducting our analysis, we discovered that both the SNP- 
based methods (whether refined or not) and expression-based methods 
could not accurately distinguish between cell lines with postCCLs, as 
shown in Table 1 and Supplementary Table 4. When comparing various 
cell lines with multiple LKGs in CCLE and COSMIC, we found that the 
similarity between cell lines within LKGs was significantly higher than 
that among general cell lines (as illustrated in Fig. 2F). This finding 
highlights the limitations of relying solely on a single information-based 
approach to differentiate postCCLs. To address this limitation, 
CCLHunter has been developed to enhance authentication resolution by 
extracting stable fluctuation units for cell lines derived from postCCLs. 

3.3. Authentication of post-derived cell lines in LKG using stable 
fluctuation unit 

The postCCLs in LKG were distinguished using dynamically extracted 

Fig. 2. The distribution and characteristics of refined 436 SNP alleles. A) The population genotype frequency of 436 refined SNPs recorded in ALFA. B) Distance 
between the refined SNP and its overlapping exon boundary. C) Genotype frequency of refined SNP in the collected cell lines. D) Use gradient randomly selected SNP 
and our refined SNP to test the SNP-based authentication accuracy. E) Compared with randomly selected, refined SNPs show more robust similarity scores. F) Cosine 
similarity heatmap with postCCLs. The results show that the SNP-based method cannot distinguish the postCCLs in the LKG. 

Table 1 
Evaluation of CCLHunter’s accuracy in 3 separate datasets.   

SNP-based SFU-based Combined 

RNA-seq collected from 
SRA 

76.47% (13/ 
17) 

76.47% (13/17) 100% (17/17) 

CHCC / 73.12% (291/ 
398) 

96.48% (384/ 
398)* 

CellMiner 78.33% (47/ 
60) 

23.33% (14/60) 83.33% (50/60)  

* : We default that the combined method uses the correct LKG of this CCL. 
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hot genes as stable fluctuation units (SFUs). For example, IGR-37 and 
IGR-39 are two cancer cell lines derived from the melanoma tissue of a 
European man, where IGR-39 is derived from the primary site and IGR- 
37 is derived from the site of metastasis to inguinal lymph nodes. When 
comparing the genotypes collected with RNA-seq data in SRA (Supple-
mentary Table 3), we found that they had nearly identical genotypes 
(Fig. 3A), which may lead to unreliable authentication results (Fig. 3B). 

SFU composed of hot genes was used for the rank sum test (Fig. 3C-F 
and Supplementary Figure 2). We only focused on the internal expres-
sion of hot genes in SFU to obtain a qualitative result, rather than any 
specific value. This approach was chosen because RNA-seq or 
sequencing data from other methods from different samples can intro-
duce non-negligible technical and biological errors into sampling [38, 
39]. Consequently, we observed that the expression-based SFU could 
significantly distinguish IGR-37 and IGR-39 reciprocally (Fig. 3C, E). 

3.4. Performance of CCLHunter in real datasets 

We selected three representative datasets from different sources to 
assess the accuracy of CCLHunter, particularly for postCCLs. The first 
dataset comprises RNA sequences from 17 cell lines, including 10 LKGs 
downloaded from SRA (Supplementary Table 3). These CCLs each have 
at least two postCCLs (e.g., IGR-37 and IGR-39) in the same LKG. The 
other two datasets are derived from CHCC[28] and CellMiner [29], with 
genotype and expression profile data provided on their respective 
project websites. 

Our results demonstrate the superior performance of the combined 
method compared to the single evidence-based approach. As shown in 
Table 1, We found that the misidentified cell lines were also mostly 
grouped in the same LKG, suggesting that the SNP-based approach’s 
resolution can reach the LKG level. The accuracy of CCLHunter using 
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Fig. 3. Authentication of homologous CCLs IGR-37 and IGR-39 from the same individual using SFU sampling. A) shows the high similarity between related cell lines, 
such as IGR-37 and IGR-39, which proves the limitation of using an SNP-based method to authenticate cell lines with close relationships. B) The cosine similarity 
between these CCLs. The best match of the four CCLs is marked with orange. The similarity between almost each cell line pair is around 0.9 and disordered, indicating 
SNV information’s need to provide more details to locate homologous cell lines accurately. C) to F) shows that SFU sampling in LKG enables CCLHunter to accurately 
locate consanguineous cell lines from the same individual. 
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refined 436 SNPs does not differ significantly from the method using all 
SNPs, suggesting that using refined SNPs is sufficient to achieve LKG- 
level authentication. At the same time, the expression-based method 
tended to misclassify cell lines outside the LKG. All software incorrectly 
identified cell lines as primCCL within the same LKG when they should 
have been postCCL. The above analysis highlights the necessity of 
combining SNP and expression-based methods. 

3.5. Comparison with other approaches 

To comprehensively evaluate the performance of CCLHunter, we 
compared it with three mainstream software, CEL-ID, Uniquorn and 
CCLA, for CCLs authentication using RNA-seq data. CCLHunter only 
requires alignment information, whereas the other methods have 
various prerequisites, such as variant calling or specific data filtering. 
CCLA and CCLHunter offer web servers for quick authentication and 
exploration of cell lineage relationships. In addition to those cell lines 
with obvious recognition, we also tested the ability of this software to 
authenticate easily confused CCLs from postCCLs (Supplementary 
Table 4). The evaluation results indicate that all approaches could 
effectively authenticate cell lines with distinct genetics (primCCLs). 
However, their performance in postCCL authentication could have been 
more consistent (Table 2). CCLHunter emerged as the featured software, 
achieving the highest accuracy of 89.28% (50/56) in complete test sets 
and 100% (17/17) in RNA-seq test sets, outperforming the other soft-
ware. The SNP-based approaches, Uniquorn and CEL-ID, tend to have 
difficulties correctly identifying postCCLs within the same lineage, 
ranging from 64.71% (11/17) to 76.47% (12/17) accuracy at the exact 
post-derived level. Although the expression-based approach of CCLA 
does not have this same error tendency, its accuracy in postCCL 
authentication was still the same as the other two SNP-based approaches 
(76.47%, 12/17). The failed authenticated cell lines were nearly iden-
tical (PLB-985, U-138MG, IGR-39, and OPM-1), consistent with previous 
tests (Supplementary Table 4). 

3.6. CCL authentication and visualization via webserver 

We provide two versions of CCLHunter to adapt to different sce-
narios: web server and standalone program. The standalone program 
can simultaneously authenticate large cell line data in batch mode. In 
addition to providing authentication results, the web server can display 
various cell line information and authentication details by offering 
sorted BAM or JSON files outputted by the standalone version. 

Our web server offers four functional modules: Browse, Task sub-
mission, Download, and Documentation (Fig. 4). The browse page 

provides a detailed description of each CCL recorded in CCLHunter, 
including the accession name, the original individual information, the 
reference refined SNP barcodes, and the publications. Task submission is 
designed to help users annotate and visualize the output of the 
CCLHunter standalone program. If users are unfamiliar with bioinfor-
matics applications, they can run CCLHunter online by following the 
guidance provided in the task submission module. The detailed autho-
rization results, including the similarity of the refined SNP barcode and 
the SFU rank plots, are displayed on the candidate report page. Subse-
quently, users can download the standalone program and related data on 
the download module. Finally, CCLHunter provides a user-friendly 
document containing detailed manuals for standalone programs and 
web servers. 

4. Discussion 

Cancer cell lines offer an almost unlimited source of material for 
experimental subjects and retain most of the genetic information from 
the original tissue, making them invaluable tools for cancer research. 
However, due to issues related to culture, misidentification, and classi-
fication, researchers are increasingly aware of the need to ensure the 
accuracy of cell lines in their experiments [6,8,9,40,41]. We proposed a 
new method called CCLHunter that can accurately authenticate CCLs 
from close relatives or even the same individual named postCCLs. The 
STR-based method serves as the gold standard for CCL authentication. 
With the maturation of high-throughput sequencing technology, 
RNA-seq has become an indispensable method for cancer cell line 
research. However, it can be challenging to authenticate CCLs using 
RNA-seq data, mainly because not all STRs are involved in transcription. 
Our method provides another option for cancer cell line authentication, 
enabling users to assess public data at scale without additional effort on 
cell line identification. Nonetheless, well-established STR-based 
authentication methods remain indispensable for large cell line re-
positories like ATCC and DSMZ [42,43], despite some research pointing 
out certain limitations in STR-based authentication methods [44–47]. 

We refined the number of SNPs used from nearly one million to 436. 
Since the refined SNPs are remarkably stable, we can confirm the ge-
notypes by the nucleotide distribution of the site rather than relying on a 
statistical model generated by the variant caller. However, whether 
using refined SNP or other existing methods, it shows a high error rate 
for post-derived cell lines. It is potentially because the postCCLs in the 
same LKG often have direct lineage relationships (e.g., U-138MG and U- 
118MG), or are derived from the same individual (e.g., IGR-37 and IGR- 
39), or even the same cell line (e.g., HL-60 and PLB-985), which makes 
them have similar nucleotide polymorphisms and gene expression 

Table 2 
The comparison of CCLHunter with other approaches.   

Uniquorn CEL-ID CCLA CCLHunter 

Implementation R package R package webserver Python & webserver 
Sequencing type DNA or RNA-seq RNA-seq RNA-seq or microarray RNA-seq 
Input data format vcf vcf expression matrix bam 
Evidence SNP SNP expression specificity SNP & expression specificity & kindred 

topology 
Precondition variant calling+ alignment alignment + variant calling alignment 

/quantification 
alignment 

Dependency GATK/freebayes varscan2 - - 
Preprocessing need to download additional train 

sets 
need specific format to filter from 
vcf 

- - 

# reference CCLs 1516 934 1219 1389 
Declared accuracy 96%, 95% - 96.58%, 92.15% 93.27% 
Accuracy in 

primCCLs 
100% 100% 100% 100% 

Accuracy in postCCLs 64.71% (11/17) 76.47% (12/17) 76.47% (12/17) 100% (17/17) and 89.27% (50/56) in total 
sets 

* : Due to the data format constraint, Uniquorn, CEL-ID, and CCLA only use the RNA-seq test sets for testing, while CCLHunter uses the CHCC, Cellminer, and RNA-seq 
test sets at the same time 
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patterns. As a result, using single evidence previously can only 
authenticate cell lines that may contain the same LKG but cannot be 
accurate to specific CCL. Through mutual testing of datasets in the 
reference, we consider 0.65 to be a reasonable value for distinguishing 
the credibility of authenticated cell lines. For cell lines with a SNP 
similarity score of less than 0.65, you should verify whether your ex-
pected cell line exists in our database. To overcome the resolution 
problem of the postCCL, we only used the SNP-based method to reduce 
the candidate set to an LKG and then finally authenticate the cell line 
through the expression profile. In LKG, hot genes are dynamically 
selected to form SFU, finally used for cell line authentication. Then, the 
candidate is considered the gene set with the most stable expression and 
the largest difference as far as possible in the paired sample set of 
comparison [48]. 

However, there should be certain limitations to our approach. 
Firstly, we must extract nucleotide and depth information of 436 posi-
tions simultaneously in bam, so CCLHunter currently only supports 
RNA-seq data. Additionally, expression changes under very different 
conditions can lead to different results, which is a limitation of all 
expression-based approaches. Secondly, although about 19% of CCLs 
are postCCL, only some cell lines are documented by CCLE and COSMIC, 
and CCLHunter needs access to them. Therefore, CCLHunter will only 
conduct cell line authentication based on SNP evidence. In future up-
dates, we plan to collect more cell line data from different datasets to 
make our reference set more representative. Simultaneously, we will 
also enrich various meta-information about cell lines through data 
retrieval to help reproducibility and standardization of research. 

5. Conclusion 

To address the urgent need for accurate authentication of cancer cell 
lines, we have developed a new method called CCLHunter. It greatly 
utilizes and effectively leverages multidimensional data encompassing 

single nucleotide polymorphisms, expression profiles, and kindred to-
pology to enhance the accuracy of cell line authentication, thereby cir-
cumventing the limitations of being based on a single piece of 
information. The evaluation results unequivocally demonstrate that our 
method is considerably superior to existing and widely used methods for 
identifying cancer cell lines, particularly consanguineous ones. This 
approach can potentially standardize biomedical research and enhance 
the reproducibility of results in cancer research. 
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