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Purpose of review

Immunological studies of spontaneous HIV and simian virus (SIV) controllers have identified virus-specific
CD8þ T cells as a key immune mechanism of viral control. The purpose of this review is to consider how
knowledge about the mechanisms that are associated with CD8þ T cell control of HIV/SIV in natural
infection can be harnessed in HIV remission strategies.

Recent findings

We discuss characteristics of CD8þ T-cell responses that may be critical for suppressing HIV replication in
spontaneous controllers comprising HIV antigen recognition including specific human leukocyte antigen
types, broadly cross-reactive T cell receptors and epitope targeting, enhanced expansion and antiviral
functions, and localization of virus-specific T cells near sites of reservoir persistence. We also discuss the
need to better understand the timing of CD8þ T-cell responses associated with viral control of HIV/SIV
during acute infection and after treatment interruption as well as the mechanisms by which HIV/SIV-specific
CD8þ T cells coordinate with other immune responses to achieve control.

Summary

We propose implications as to how this knowledge from natural infection can be applied in the design and
evaluation of CD8þ T-cell-based remission strategies and offer questions to consider as these strategies
target distinct CD8þ T-cell-dependent mechanisms of viral control.
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INTRODUCTION: THE ROLE OF CD8R

T-CELL RESPONSES IN HIV CONTROLLERS

In HIV infection as in any other viral infection,
disease progression and outcome are highly variable
between individuals and a wide spectrum of viral
control exists that is dependent on virologic fea-
tures, route of transmission, host genetics, immune
responses and environment.While the vastmajority
of people livingwithHIV are unable to suppress viral
replication without antiretroviral therapy (ART), a
small group of people – less than 1% of people living
with HIV-1 and �15% of people living with HIV-2,
with an increased proportion of women – can nat-
urally keep the virus under control [1,2]. Over the
years, these individuals exhibiting spontaneous
control of HIV replication have been termed long-
term nonprogressors, viremic controllers, or elite
controllers based on different virologic and clinical
criteria [3]. Elite controllers, whose viral loads in the
plasma can remain undetectable for decades in the
absence of ART, have a wide range of HIV reservoir
uthor(s). Published by Wolters Kluwe
sizes [4,5]. Recently, a rare sub-group of elite con-
trollers termed ‘exceptional’ elite controllers have
been found to harbor an extremely small HIV res-
ervoir, thus achieving a state very close to a natural
HIV remission [5,6

&

]. In addition to the individuals
who control HIV in the absence of ART, two small
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KEY POINTS

� HIV antigen recognition is central to effective CD8þ

T-cell responses found in spontaneous controllers.

� HIV controllers have CD8þ T-cell responses of enhanced
quality and localized in places where the HIV
reservoir persists.

� Timing of responses and coordination with other
immune cell types need to be considered for successful
strategies targeting CD8þ T cells for HIV remission.

Controllers and natural cures
cohorts of people who initially required ART to
control viremia and were later found to suppress
HIV replication after stopping ART have been
identified and called posttreatment controllers
(PTCs; [7–9]), a phenotype that may be more
frequent if ART is initiated early in the course
of infection.

Evidence is strong that CD8þT cells can play a
critical role in mediating control of HIV in some
controllers. From studies in humans with HIV and
nonhuman primates (NHPs) with simian viruses
(SIV, SHIV), potent CD8þT-cell responses have been
shown to associate with a lower viral load setpoint in
both acute infection and after treatment interrup-
tion [10–14]. In elite controllers, as we will discuss,
the role of HIV-specific CD8þT-cell responses has
been suggested by the association between viral
control and specific enrichment of class I human
or primate leukocyte antigen (HLA or Mamu) alleles
and the development of potent HIV/SIV-specific
CD8þT-cell responses that are independent of the
HLA/Mamu type [15–29]. More directly, depletion
of CD8þT cells has been shown to lead to viral
rebound in NHPs that have either spontaneous elite
control or viral suppression induced after treatment
in early infection with broadly neutralizing anti-
bodies [30

&

,31–33]. In contrast, waning antibody
titers and sero-reversion suggest a fading humoral
response in the rare exceptional elite controllers but,
to date, no data have been reported on the CD8þT-
cell responses in these people. PTCs have so far not
demonstrated the HLA genetic characteristics seen
in elite controllers and early data suggest that they
may have a lowmagnitude HIV-specific CD8þT-cell
response, at least as measured by interferon gamma
production after HIV peptide stimulation [8]. PTCs
may have diverse mechanisms of control: somemay
have mechanisms attributed to natural killer (NK)
cells for viral control but it is possible that, at least in
some PTCs, CD8þT cells play a role in viral suppres-
sion and that early treatment could also help to
preserve CD8þT-cell function [34,35].
316 www.co-hivandaids.com
In this review, we first discuss features of CD8þT
cells that are associated with and may contribute to
spontaneous control of infection in elite controllers
(Fig. 1) and consider how each of these features
might be leveraged to inform novel CD8þT-cell-
based HIV remission strategies. Next, we discuss
the importance of studying how the timing of
CD8þT-cell responses and the coordination
between CD8þT cells and other immune responses
relates to HIV/SIV control both in acute infection
and after treatment interruption. Finally, we discuss
how this information might be used to successfully
apply knowledge from HIV controllers to the design
of novel therapies and clinical trials to induce
HIV remission.
I. HIV antigen recognition by CD8R T cells in
elite controllers

Given the evidence that CD8þT cells play an impor-
tant role in viral control in HIV infection, there has
been intense investigation over the years into the
question of whether specific epitope targeting and/
or features of T-cell receptor (TCR) recognition of
viral peptides in natural infection favors viral con-
trol. This concept has been supported by threemajor
lines of evidence: first, there is well documented
association of elite controller status with protective
class I HLA alleles; second, viral control has been
associated with more cross-reactive ‘public’ TCRs
(i.e., TCRs with CRD3 regions shared across different
people); third, there is evidence that CD8þT cells
from spontaneous controllers are more likely to
target highly mutationally constrained – or ‘net-
worked’ – epitopes.
Human leukocyte antigen restriction

Across the human population, polymorphisms
within the HLA locus provide one mechanism for
genetically encoded inter-individual variation in
epitope targeting. As reviewed elsewhere [15,25],
independent studies have identified strong associa-
tions between specific class I HLA alleles and
increased likelihood of elite control (e.g., HLA-
B�57,HLA-B�27,HLA-B�52 andHLA-B�14), although
the presence of these alleles is neither necessary nor
sufficient to predict controller status [17,19]. Spon-
taneous control of HIV has been associated with
specific polymorphisms in the amino acids lining
the HLA class I peptide-binding groove [19], which
likely influences the specific viral peptides that are
presented to CD8þT cells in individuals with those
polymorphisms. While the population diversity of
classical class I HLA alleles is vast, CD8þT cells can
also be restricted by HLA-E, a nonclassical major
Volume 17 � Number 5 � September 2022



FIGURE 1. Key CD8þ T-cell features to target for HIV remission. HIV-specific CD8þ T cells from elite controllers are more likely
to be restricted by specific HLA types, target epitopes derived from the relatively evolutionarily conserved/constrained regions
of the HIV genome, and to have broadly-reactive T cell receptors (TCRs) capable of recognizing variant epitopes. Evaluated
directly ex vivo, they occupy a T cell memory-like differentiation state with high TCF-1 expression and low levels of expression
of coinhibitory receptors such as PD-1 and they are more likely to accumulate in B cell follicles in lymphoid tissue (due to
expression of CXCR5). After stimulation with HIV antigens in vitro, they demonstrate enhanced expansion capacity and an
ability to generate secondary effector cells that have enhanced antiviral function.
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histocompatibility complex (MHC) protein with
only two alleles found in worldwide populations
[36]. Strikingly, cytomegalovirus (CMV)-vectored
SIV vaccines can elicit broad HLA-E-restricted SIV-
specific CD8þT cell responses that are associated
with the prevention of an established chronic infec-
tion in �50% of animals upon viral challenge
[37,38]. HLA-E-restricted responses have been
detected in people with HIV but have not yet been
associated with viral control [39

&

,40]. Implications:
�

17
HLA type should be characterized and accounted
for in the immunogenicity and efficacy analysis of
all HIV remission studies.
�
 T-cell-based remission strategies should aim to
elicit responses across diverse HLA types.
�
 Could targeting of HLA-E-restricted HIV-specific
CD8þT cells offer a more universal approach to
therapeutic vaccination for HIV?
46-630X Copyright © 2022 The Author(s). Published by Wolters Kluwer H
‘Broadly reactive’ T-cell receptors

In addition to favorable HLA alleles, people who
spontaneously control HIV are more likely to
have HIV-specific CD8þT-cell responses consist-
ing of TCRs with higher avidity and more cross-
reactive public clonotypes [41–43]. HLA alleles
associated with HIV control promote thymic
selection of more TCR repertoires that have
cross-reactivity for viral variants [44]. Addition-
ally, within the same HLA-B�27-restricted epitope
response, controllers compared to progressors
have distinct TCR clonotypes that are more
‘broadly reactive,’ similar to the concept of
broadly neutralizing antibodies in that they dem-
onstrate cross-reactivity to epitope variants
[42,45]. Cross-reactive TCRs have been shown
to limit the ability of the virus to escape recog-
nition [46–48], but there is not a strict correlation
between T cell clonotypic features and HIV
ealth, Inc. www.co-hivandaids.com 317
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control [49,50]. From a therapeutic standpoint,
cross-reactive public TCRs identified from con-
trollers could potentially be adapted for use in
adoptive T cell therapies (e.g., TCR-T cells; [51]).
While HIV-specific CD8þT-cell responses with
cross-reactive TCRs can be elicited after vaccina-
tion in HIV-uninfected people [52], it is unclear
whether therapeutic vaccines given to people
with HIV with preexisting HIV-specific T cell
responses can overcome immunodominance pat-
terns to elicit de novo responses or even to elicit
new clonotypes and alter clonotype hierarchy
within preexisting responses [53]. Implications:

� How can broadly-reactive HIV-specific CD8þT-
cell responses be induced therapeutically, and
can they contribute to posttreatment control
of HIV?

� How can immune therapies induce novel
CD8þT-cell responses during ART and over-
come immunodominance of the existing T
8

cell responses?

Epitope targeting

Irrespective of the unmodifiable variable of HLA
type, CD8þT cells from spontaneous HIV/SIV
controllers may preferentially target epitopes that
are evolutionarily conserved and that have lower
mutational tolerance (reviewed in [25]). Evidence
for this phenomenonwas first established when it
was noted that the magnitude and breadth of
HIV-specific CD8þT-cell responses specifically
targeting the relatively conserved Gag structural
protein but not the highly variable Env surface
protein epitopes (or the total HIV proteome) was
associated with a lower viral load [13,14,54–56].
At a finer epitope level, specific regions targeted
by elite controllers across HLA types infected with
clade B virus tend to be more conserved and have
lower mutational tolerance (i.e., they are more
evolutionarily constrained, or structurally ‘net-
worked’) than those in progressors [57]. Con-
served/constrained sequences (mostly derived
from the Gag and Pol protein) have been used
as therapeutic vaccine immunogens in several
approaches, although none has demonstrated
clinical efficacy yet [57–62]. It not clear whether
T cell-based therapeutic strategies for HIV are
more likely to be successful if they target broad
versus narrow epitope responses. As noted above,
spontaneous controllers appear to target broader
responses within conserved regions compared to
noncontrollers. Furthermore, epitope breadth eli-
cited by a therapeutic vaccine has been shown to
associate with delay to viral rebound inNHPs [63].
www.co-hivandaids.com
On the other end, narrowly targeting CD8þT-cell
responses may be favorable to avoid epitope ‘dis-
traction’ from themost conserved regions [64

&

]. A
prophylactic vaccine strategy in NHPs targeting
only three CD8þT-cell epitopes was sufficient to
maintain viral control after SIV challenge and
viral escape from these three epitopes occurred
concomitantly with loss of control of viral repli-
cation [65]. Similarly, viral escape of a single
epitope has also been associated with loss of
long-term control in a person with HIV [66].
These data suggest that a few well targeted epit-
opes might be sufficient to induce viral control.
Implications:

� Can therapeutic vaccines elicit CD8þT-cell
responses that reliably recognize conserved/
constrained regions across individuals with
diverse HLA types who are infected with diverse
HIV viral strains, and can these T cell responses
mediate durable control of HIV in vivo?

� Should therapeutic vaccines aim to elicit broad
or narrow responses to key epitopes?

� Are the considerations about breadth of epitope

targeting different for TCR-based adoptive T-
cell therapies?
II. Quality and localization of HIV-specific
CD8RT-cell responses in elite controllers

Independent of T cell specificity and HLA type,
HIV-specific CD8þT cells in elite controllers have
also been shown to be highly functional, to
exhibit a more memory-like and less exhausted
differentiation state, and to localize better to sites
of reservoir persistence within lymph nodes com-
pared to responses detected in people who do not
control HIV. In order to comprehensively evalu-
ate different T cell-based HIV remission strategies,
it will be critical to evaluate to what extent they
can promote each of these qualities.

Enhanced expansion and antiviral
functions

Compared to HIV-specific CD8þT cells from non-
controllers (on or off ART), HIV-specific CD8þT
cells from elite controllers have increased capacity
to produce multiple antiviral cytokines after pep-
tide stimulation in vitro (polyfunctionality) and
demonstrate increased expansion capacity,
increased expression of the effector protein Per-
forin, and sustained killing of infected target cells
over the course of several days of peptide stim-
ulation in vitro [67–77]. It is unclear whether this
enhanced functional capacity compared to the
functionally exhausted cells in noncontrollers is
Volume 17 � Number 5 � September 2022
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acquired as a consequence of elite controllers
likely having a shorter duration and lower cumu-
lative exposure to high viral load prior to viral
suppression compared to noncontrollers, or
whether this capacity is directly responsible for
mediating andmaintaining durable viral suppres-
sion. Indeed, people or NHPs who experience
curtailed viremia due to initiation of ART early
in the course of infection also have more highly
functional HIV-specific CD8þT cells ([78], and
unpublished data, L.T.). Regardless, the func-
tional properties of HIV-specific CD8þT cells in
elite controllers serve as a model for the type of
CD8þT-cell response that should ideally be eli-
cited in remission strategies. Indeed, recent stud-
ies have shown that T cell function and expansion
can be enhanced by promoting cellular pathways
that are active in HIV-specific CD8þT cells from
elite controllers or inhibiting those found in non-
controllers (e.g., via inhibition of co-inhibitory
receptor signaling, apoptosis pathways, the mam-
malian target of rapamycin (mTOR) pathway,
and/or overexpression of TCF-1, a Wnt signaling
transcription factor that promotes memory T cell-
like expansion capacity; [79

&&

,80–82,83
&

,84
&

]).
Implications:

� How can therapeutic strategies for HIV remis-
sion promote the generation of nonexhausted
HIV-specific CD8þT cells with functional prop-
erties similar to elite controllers (i.e., enhanced

expansion capacity and antiviral function)?

Tissue localization

To control viral replication, HIV-specific CD8þT
cells need to be localized in close proximity to
sites of viral reservoir persistence in tissues. HIV
persists in lymphoid tissues throughout the body
with a high burden of infected CD4þT cells found
in the gastrointestinal tract [85,86]. Increased
frequencies of functional HIV-specific CD8þT
cells have been observed in the rectal mucosa of
HIV controllers [87]. Within lymphoid tissue,
several studies in humans and NHPs have shown
that HIV/SIV preferentially persists in both con-
trollers and noncontrollers in follicular helper
CD4þT cells localized within B cell follicles, from
which HIV-specific CD8þT cells are mostly
excluded [33,88–97]. While it has been suggested
that the HIV-specific CD8þT cells located in lym-
phoid tissue may have impaired cytolytic func-
tion [98], these cells (or at least a subset of them)
may be poised to respond rapidly to antigen
stimulation [99–101]. Moreover, highly func-
tional CXCR5-expressing SIV-specific CD8þT
46-630X Copyright © 2022 The Author(s). Published by Wolters Kluwer H
cells are associated with viral control in SIV-
infected NHPs [102]. Taken together, these data
suggest that while HIV-specific CD8þT cells in the
lymph nodes from controllers may have a less
effector differentiated phenotype compared to
cells found in the blood, they nonetheless possess
the capacity to expand and differentiate into
potent antiviral effector cells and traffic to B cell
follicles where the HIV reservoir persists. Several
immune-based remission strategies are being
developed to re-direct CD8þT cells to the B cell
follicles, including pharmacologic treatment with
IL-15 agonists, genetically engineering CXCR5-
expressing CD8þT cells for adoptive transfer,
and the development of bi-specific antibodies
to redirect follicular CD8þT cells to kill infected
cells [103,104,105

&

,106,107]. Implications:

� How can remission strategies be tailored to
optimize the generation of HIV-specific CD8þT
cells that migrate to lymphoid tissues/B cell
follicles and have the potential to generate a
potent effector response ‘at the right place at

the right time’?
III. Timing of CD8RT-cell responses and
coordination with other immune responses

While HIV-specific CD8þT cells have been exten-
sively studied in spontaneous controllers during
the phase of long-term control, there are very
limited data on CD8þT-cell dynamics during
acute infection in people destined to become
controllers. Specifically, it is unclear whether or
how the features of HIV antigen recognition and
HIV-specific CD8þT-cell quality and localization
discussed in the two previous sections directly
contribute to control early in primary infection
or whether they arise as a consequence of these
individuals achieving greater viral control.
Understanding the timing and nature of the
CD8þT-cell response in early HIV/SIV infection
in spontaneous controllers, how CD8T cells
engage rebounding virus in posttreatment con-
trollers, and how CD8þT-cell responses coordi-
nate with other immune responses to
productively engage with and suppress the virus
at the time of viral intercept in both settings is
therefore crucial to directly inform the develop-
ment of improved remission strategies.

Timing of CD8þ T-cell responses

While current data are limited, studying immune
responses that occur in acute infection or imme-
diately post-ART in HIV controllers may identify
ealth, Inc. www.co-hivandaids.com 319



FIGURE 2. CD8þ T-cell characteristics of viral control: Potential implications for HIV remission strategies. (a) List of implication
for novel HIV remission strategies and remaining questions to be answered. (b) HIV controllers grouped and analyzed for the
different CD8þ T-cell characteristics associated with viral control will inform HIV remission strategies and need to be targeted in
combination with other factors contributing to viral control.
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targets for therapeutic intervention to promote
HIV remission. In the SIV model, while CD8þ T
cells generally exhibit a suboptimal ability to
suppress SIV in acute infection, in controller mac-
aques, suppressive capacity increases progres-
sively before the establishment of sustained
low-level viremia [108]. In humans, a study
reported higher frequencies of proliferating
CD8þT cells in acute infection in two individuals
who maintained low viremia without ART, sug-
gesting that CD8þT cells might play an early role
in viral control [109]. Recently, three cases of
women identified in early infection who subse-
quently developed spontaneous control in the
absence of ART were described, with two showing
robust and one very limited HIV-specific CD8þT-
cell responses during acute infection [110,111].
0 www.co-hivandaids.com
These data suggest that CD8þT-cell responses
may have a role early in infection in some sponta-
neous controllers, but the exact timing of these
responses and their impact on control is not yet
fully clear. In noncontrollers in the absence of any
immunologic intervention, two studies have sug-
gested that HIV/SIV-specific CD8þT cells do not
respond early enough after ART discontinuation
to prevent viral rebound and only exert an effect
on viral load set-point after viral rebound
[112,113]. However, the HIV-specific CD8þT-cell
response right after ART is stopped has not yet
been described in controllers. Implications:

� Studies describing the earliest interactions between
theemergingvirus and theCD8þT-cell response in
both spontaneous and posttreatment controllers
Volume 17 � Number 5 � September 2022
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willbekeytoinformingthesuccessfuldevelopment
of interventions aimed at priming an immune

response to target the early viral intercept.

Coordination of immune responses post-
antiretroviral therapy

The studies described in the section above suggest
that, in the majority of people with HIV who fail to
control the virus in the absence of ART, CD8þT cells
may respond too slowly to stopviral spreadafterART
is discontinued. Effective immunity during the early
stages of viral spread likely requires other interven-
tions to reduce the sizeof theHIVreservoir, and/or to
augment other immune responses to either directly
promote functional CD8þT-cell responses or to con-
tain early viral replication and thus allow CD8þT
cells time to expand andmature (reviewed in [114]).
For example, type I interferon-producing plasmacy-
toid dendritic cells (pDCs) provide help to CD8þT
cells andhave recentlybeen shown to sense thevirus
intissuesandbecomeactivatedpriortoviral rebound
detectable in theblood [115].Classicaldendritic cells
that are capable of priming CD8þT cells have addi-
tionally been shown tobehighly functional in spon-
taneous controllers [116]. Antibodies have also been
suggested as enabling immune complexes promot-
ing stronger CD8þT-cell responses [117]. Under-
standing the interaction between CD8þT cells and
other cell types and immune responses – such as
pDCs, other innate immune cells, CD4þT cells, or B
cells/antibodies – will likely be required to fully
understand this early response during viral rebound
post-ART. Implications:

� Combined interventions targeting multiple
virologic and immunologic mechanisms will
likely be required to achieve HIV remission.

� Interventions that allow for a transient reduction
of viral replication post-ART could allow for a
better maturation of the CD8þT-cell response
46
in response to rebounding virus and give it
enough time to start controlling viral replication.
CONCLUSION

The past three decades of studies on CD8þT-cell
responses in spontaneous HIV/SIV controllers
have provided important information on their
key role and potential mechanisms contributing
to viral suppression. In order to successfully apply
this knowledge to T cell-based remission strat-
egies, we suggest the following (Fig. 2a):

(1) CD8þT-cell-based remission strategies should
seek to elicit T cell responses with ‘broadly
-63
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reactive’ TCRs that target highly conserved/
evolutionarilyconstrained regionsof thevirus,
are localizedtositesof reservoirpersistence,are
durable andhighly functional, and are capable
of responding rapidly (eitherontheirownor in
conjunctionwith other immune responses) to
emerging virus after ART is discontinued.

(2) Studies that include HIV remission interven-
tions that target CD8þT cells should ideally
report HLA typing of study participants, clin-
ical information about pre-ART viral loads and
duration of infection prior to ART initiation,
epitope mapping and evaluation for broadly
reactive TCRs, analysis of the long-term dura-
bility and functional capacity (including
expansion capacity and, ideally, viral inhibi-
tion), and lymphoid tissue localization or at
least homing potential (e.g., CXCR5 expres-
sion) of the CD8þT-cell response.

(3) As a field, we need to better understand how
the timing of the CD8þT-cell response and its
coordination with other immune responses
in blood and tissues at the time of viral inter-
cept relates to viral control in natural infec-
tion and after therapeutic intervention.

(4) As different CD8þT-cell characteristics asso-
ciated with viral control are likely shared by
the different groups of controllers in natural
infection, but may differ by individual, it is
also important to recognize that HIV remis-
sion strategies might need to be tailored to
different groups of individuals depending on
themechanism targeted (Fig. 2b). In addition,
combination therapies might be necessary as
interventions focusing only on CD8þT cells
might not be sufficient to induce viral control
ealth
[114].
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