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A B S T R A C T   

N-glycosylation can have a profound effect on the quality of mAb therapeutics. In biomanufacturing, one of the 
ways to influence N-glycosylation patterns is by altering the media used to grow mAb cell expression systems. 
Here, we explore the potential of machine learning (ML) to forecast the abundances of N-glycan types based on 
variables related to the growth media. The ML models exploit a dataset consisting of detailed glycomic char-
acterisation of Anti-HER fed-batch bioreactor cell cultures measured daily under 12 different culture conditions, 
such as changes in levels of dissolved oxygen, pH, temperature, and the use of two different commercially 
available media. By performing spent media quantitation and subsequent calculation of pseudo cell consumption 
rates (termed media markers) as inputs to the ML model, we were able to demonstrate a small subset of media 
markers (18 selected out of 167 mass spectrometry peaks) in a Chinese Hamster Ovary (CHO) cell cultures are 
important to model N-glycan relative abundances (Regression - correlations between 0.80–0.92; Classification - 
AUC between 75.0–97.2). The performances suggest the ML models can infer N-glycan critical quality attributes 
from extracellular media as a proxy. Given its accuracy, we envisage its potential applications in bio-
maufactucuring, especially in areas of process development, downstream and upstream bioprocessing.   

1. Introduction 

Glycosylation involves the attachment of N-glycans, a carbohydrate 
consisting of several monosaccharides, to the amide nitrogen of an 
asparagine amino acid within the protein. It is an enzymatic, site- 
specific process that occurs within a cells’ endoplasmic reticulum- 
Golgi complex and is heavily dependent upon the efficiencies of glyco-
transferases, availability of nucleotide sugar donors and metabolic 
precursors or cofactors of the glycosylation biosynthetic pathway. In 
monoclonal antibodies (mAbs), N-glycans attach to the CH2 domain and 
are a critical quality attribute (CQA) that has a pivotal influence on the 
drug’s efficacy [1,2]. Various cell culture parameters such as media/-
feed, pH and temperature can be varied to influence the type, 

complexity, branching, and topology of N-glycan structures, by altering 
the host cellular metabolism [3], feeding glycotransferase inhibitors [4] 
and changing physicochemical parameters of the process [5]. Conse-
quently, the complex glycosylation biosynthetic pathway is not a trivial 
process to control during the manufacturing of biologics and slight 
changes in process parameters can result in diverse changes in the 
N-glycan profiles. 

N-glycans associated with mAbs can be broadly categorized into 
fucosylation, galactosylation, mannosylation and sialylation (Supp  
Fig. 1). The four groupings are known to be important CQAs for antibody 
therapeutic efficacy as each have implications for the immunogenicity, 
half-life, and pharmacokinetics of the therapeutic candidate. For 
instance, galactosylation, fucosylation and mannosylation, affect the 

* Corresponding authors. 
E-mail addresses: ho_ying_swan@bti.a-star.edu.sg (Y.S. Ho), terrynguyen@gmail.com (T. Nguyen-Khuong), walshi@bti.a-star.edu.sg (I. Walsh).  

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2024.05.046 
Received 19 February 2024; Received in revised form 22 May 2024; Accepted 28 May 2024   

mailto:ho_ying_swan@bti.a-star.edu.sg
mailto:terrynguyen@gmail.com
mailto:walshi@bti.a-star.edu.sg
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2024.05.046
https://doi.org/10.1016/j.csbj.2024.05.046
https://doi.org/10.1016/j.csbj.2024.05.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2024.05.046&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 2497–2506

2498

complement activity [6], antibody-dependent cellular cytotoxicity 
(ADCC) [7] and clearance [8] of the antibody respectively. Similarly, 
sialyation has also been reported to affect the pharmacokinetic and 
pharmacodynamic properties of glycoprotein drugs [9]. 

Various studies have examined altering media to change N-glycan 
levels for improved therapeutic efficacy. For instance, it was demon-
strated that supplementing the feed media with differing levels of 
glucose and amino acids can significantly affect IgG glycan profiles [3]. 
Other studies have also demonstrated the effect of other supplements, 
such as uridine, galactose, 2-F-peracetyl fucose, and manganese chloride 
on cell metabolism and gene expression of key glycosylation-related 
proteins [10–12]. Changing levels of other media components such as 
trace metals, productivity enhancers like butyrate, hormones, nucleo-
tide sugars, nucleotide sugar transporters, or changing culture physi-
cochemical parameters were also reported to alter N-glycosylation 
patterns [5,6,13]. Thus, there is keen interest in developing different 
media formulations in an effort to deliver consistent or better product 
glycosylation. 

Multivariate data-driven approaches (MVDA) have now become an 
essential aspect in bioprocess design and development [14,15]. MVDA 
encapsulates a statistical and rational approach to support the detailed 
understanding of how bioprocessing parameters affect the quality and 
yield of the biotherapeutic product. Regulatory bodies such as the U.S. 
Food and Drug Administration (FDA) have encouraged the Quality by 
Design (QbD) paradigm in which statistical modeling approaches can be 
a tool [16]. Within MVDA, most of the research so far has used tech-
niques such as Partial Least Square regression analysis and Principal 
Component Analysis that implement predictive models for mAb glycan 
abundance [17]. One reason for the adoption of MVDA algorithms is 
their simplicity and ability to capture simple relationships in the data. 
However, moving beyond MVDA to data-driven approaches and har-
nessing machine learning (ML) requires high-throughput experiments 
enabling the generation of diverse and large quantities of collectible 
data. Consequently, while ML offers distinct advantages in specific do-
mains, the applicability of ML-based predictions for product attributes 
like titer, viable cell density, and glycosylation remains lacking [18]. 
Among the literature that are available, Artificial Neural Networks 

(ANNs) seem to be the most popular – ANN approaches have been used 
to predict cell growth from different media and seeding methods [19], as 
well as forecasting monoclonal antibody concentrations from fluores-
cence measurements [20]. In the latter case, ANN was shown to 
outperform Partial Least Squares likely due to its capacity for non-linear 
modelling. Other ML algorithms, such as random forest models, have 
also been proposed to enable real-time process control and product CQA 
prediction [21]. In particular, they appear to demonstrate superior 
performance for smaller datasets with a reduced risk of overfitting. 
Finally, hybrid approaches that combine stoichiometric modelling and 
ANNs have also been used to predict glycan abundance and provide 
metabolic insight, though the ANNs were relatively small due to data 
size constraints and the risk of overfitting [22]. 

In this study we develop ML models that exploit a high-throughput 
capillary electrophoresis N-glycan characterization and a correspond-
ing quantitative analysis of both spent media and physiochemical 
measurements for each sample over time. To the best of our knowledge 
the number of samples involved in the glycomic analysis and collection 
of corresponding process parameters represents one of the largest 
datasets for Chinese Hamster Ovary (CHO) from fed-batch cultures. 
These data include glycan identities and abundances determined at 12 
different operating conditions (OCs), including variations in dissolved 
oxygen and pH levels, the use of two different commercially available 
media and the introduction of temperature shifts during the culture, 
over 12 days of culture in 3 biological replicates, resulting in a large 
dataset of bioreactor data points. Using this dataset, ML algorithms 
using the mass spectrometry (MS)- derived spent media markers (MMs) 
as input could accurately predict N-glycan galactosylation, fucosylation, 
mannosylation and sialylation abundances. 

We show that eighteen selected MMs improve model performance 
significantly compared to commonly used media variables such as 
glucose, lactate, and amino acids. For galactosylation prediction, ML 
models showed a statistically significant improvement compared to 
MVDA approaches. We believe such prediction models could be used to 
detect N-glycan CQAs from the extracellular spent media as a proxy from 
selected MS peaks, which can be highly effective for N-glycan CQA 
analysis and monitoring, in the overall aim of developing mAb products 

Fig. 1. Qualitative and quantitative glycan analysis using CE. (A) Migration times, Glucose Units (GU) and GU occurrence plot for all glycan samples. (MT,GU) points 
are averaged from 3 technical replicates resulting in 432 sample points (i.e. 1296 divided by 3 technical replicates). The number of times a glycan is identified are 
plotted on the left and show the number of times their GU values were observed. Any peaks marked UNK_ could not be matched to the AFTPS GU database. Glycan in 
text here are represented as SNFG diagrams Supplementary Table 1. (B) The relative abundances of glycans and unidentified peaks – each datapoint corresponds to a 
(MT,GU) point in 1A. 
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of high quality. 

2. Materials and methods 

2.1. Experimental 

Detailed experimental protocols are described in the Supplementary 
material. In the following a brief description is provided. 

2.1.1. Bioreactor operation 
Our in-house CHO-K1 cell lines producing Anti-HER2 biosimilar 

(IgG1 subclass) were cultured in 14-day fed-batch cultures using 
Ambr250 bioreactors (Sartorius, Royston, UK). Operating conditions, 
pH, dissolved oxygen (dO2) percent air saturation, temperature shift, 
were varied each day to bring variability to the glycosylation, media 
components and culture. For temperature shift experiments, at the end 
of day 5, temperature was reduced to 33 ◦C (from the initial 37 ◦C from 
day 0–5) and maintained until time of culture harvest. Cell counting was 
performed on Vi-Cell XR viability analyzer (Beckman Coulter, CA, USA) 
and glucose, lactate, pH, ammonium ions, sodium ions, and potassium 
ions were profiled using a Nova bioprofile 100 plus analyzer (Nova 
Biomedical, Waltham, MA). 

2.1.2. Glycan analysis 
Cell supernatant was filtered, and antibodies were then purified 

using protein A HP spin trap columns (CYTIVA, Marlborough, MA, USA). 
Samples were then desalted using 30 kDa Amicon Ultra Centrifugal 
Filters, (Merck Millipore, Tullagreen, Co. Cork, Ireland). N-glycans were 
released from purified antibodies by digesting with recombinant PNGase 
F (New England Biolabs, Ipswich, MA, USA) and labeling them with 8- 
Aminopyrene-1,3,6-Trisulfonic Acid (APTS) using the FAST Glycan Kit 
(SCIEX, Farmingham, MA, USA). Capillary electrophoresis of the 
released APTS-labeled N-glycans was performed on a CESI8000 CE in-
strument (SCIEX, Redwood City, CA, USA) equipped with a solid-state 
laser-induced fluorescent detector (excitation 488 nm, emission 
520 nm). Data analysis for N-glycan identification and quantitation was 
performed as previously described [23]. This resulted in each identified 
glycan having a relative abundance of all glycans detected measured as a 
percentage. 

2.1.3. Metabolite analysis 
Spent media were collected for each condition and filtered through 

10 kDa molecular weight cut-off (MWCO) membranes. Filtered spent 
media were analysed using an ACQUITY Ultra Performance Liquid 
Chromatography (UPLC) system (Waters Corporation, MA, USA) in 
tandem with a QExactive Orbitrap mass spectrometer (Thermo Fisher 
Scientific, CA, USA), and the data processed as previously described [24, 
25]. Briefly, chromatographic peaks were integrated using the xcms 
package [26] with preset criteria of a minimum signal-to-noise ratio of 
3. A pooled quality-control (QC) mix, which consisted of equal aliquots 
of all spent media samples, was used for signal correction within and 
between each batch analysis. Features were filtered based on integrated 
peak area cut-off of 1000 a.u., and integrated peak area (IPA) in QC mix 
with coefficient of variation below 30 %. Thus, the IPAs were consis-
tently reproduced and could be considered analytes or features of the 
media. Based on these peak-picking and peak integration criteria, 
glucose, lactate and 20 amino acids as well as a total of 145 peak features 
were quantitated using their IPAs. 

2.1.4. Calculation of metabolic consumption rates 
The specific metabolic rate was used to represent production or 

consumption of media markers, with a negative value representing 
consumption and a positive value for production. The production or 
consumption of media markers in the culture was calculated based on 
the difference in levels of each media marker (Eq. 1) and the viable cell 
density (Eq. 2), across two sampling points on a daily basis. The specific 

metabolic rate of each media marker was then derived by taking the 
ratio of normalized concentrations of media markers to the integrated 
viable cell density across the two time points (Eq. 3). 

Consumption or production of each media marker = It
x − It− 1

x (1)  

Integrated viable cell density, IVCDt (cell • day • ml− 1
)

=
VCDt + VCDt− 1

2
+ IVCDt− 1 (2)  

Specific metabolic rate : qt
x =

It
x − It− 1

x

IVCDt − IVCDt− 1 =
ΔIt

x

ΔIVCDt (3)  

Where x represents the respective media marker, I represents integrated 
peak area of the media marker (representative of its concentration in the 
media), and t represents the sampling time point. 

2.2. Description of the Fed-Batch Dataset 

The dataset used for our analysis consisted of 12 different cell culture 
conditions in fed-batch Ambr250 reactors, harvested over 3 biological 
replicates (BRs) across 12 days (days 3–14) – Table 1. For each culture 
condition the primary physicochemical parameters such as pH (6.9 - 
7.3), dO2 (30–50 % air saturation), two media platforms and tempera-
ture shift strategies were altered (Table 1). Additionally for each con-
dition, other process variables such as viable cell density, pH, 
temperature, dO2, potassium ions, sodium ions and ammonium ions 
were collected. 

2.3. Algorithm design 

Random Forests machine learning (RF) algorithms were chosen due 
to their efficient training time, ability to deal with relatively small 
sample size and their nonparametric nature [27]. Additionally, RFs were 
previously shown to be better at predicting mAb quality in continuous 
manufacturing compared to other ML techniques [21]. RF were trained 
using the Weka machine learning Java package using default parameters 
[28]. Features were selected using a simple correlation-based criteria. 
RFs were optimized to predict the abundance of mAb Fc fucosylation, 
galactosylation, mannosylation, and sialylation measured as a percent-
age (i.e. regression). Additionally, RF models were optimized in a clas-
sification problem to distinguish abundances in two classes. Table 2 
shows the list of variables available for model optimization. Each input 
and output variable were used in its raw form (e.g. MM rates and 
N-glycan % abundance). Selected media markers were defined as any 
consumption rate that correlated with fucosylation, galactosylation, 
mannosylation or sialylation and had an IPA CV < 30 %. 

2.3.1. Model comparison 
To compare the ML models with a MVDA approach, the inputs in 

Table 1 were used in partial least square regression (PLRS) models. 
Different input combinations were tested in both ML and MVDA: Basic 
alone, Amino alone, Selected MMs alone, Basic + Amino, Basic 
+ Selected MMs, Amino + Selected MMs, Basic + Amino + Selected 
MMs, and finally all 167 features. 

2.3.2. Evaluation 
For regression, Pearson correlation coefficient (CC), mean absolute 

error (MAE), and root mean square error (RMSE) were used as perfor-
mance metrics. The CC, MAE, and RMSE metrics were extracted from the 
Weka ML library [28]. Statistical testing was performed using the t-test 
and p-values were corrected for multiple testing using 
Benjamini-Hochberg procedure [29] at 5 % false discovery rate. Clas-
sification performance was calculated using area under the receiver 
operating characteristic (ROC) curve [30]. The area under the ROC 
(AUC) metric was calculated using the pROC R package [31]. Models 
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were optimized, and prediction performance evaluated in a leave one 
out cross validation (LOOCV) using biological replicates (BRs). Specif-
ically, with three BRs available, the train/test splits were implemented 
as follows: training set BR 2&3/test set BR 1, training set BR 1&3/test set 
BR 2, and training set BR 1&2/test set BR 3. All performance metrics 
were averaged over the 3 test sets and standard error bars calculated. 

3. Results 

3.1. CHO-K1 culture data 

Firstly, to comprehensively characterize how various OCs and media 
affect the N-glycosylation of Anti-HER2 antibodies, a dataset was 
generated by analysing spent media, physicochemical parameters, and 
the glycosylation patterns of the antibodies, from days 3, 5, 7, 9, 11 and 
14 in 36 CHO cell culture runs (36 = 12 OCs x 3 BRs). This led to a total 
of 1296 samples measured, making the dataset one of the largest 
available (Summary in Supplementary Table 1). 

3.2. Defining targets: glycan identification and quantitation 

The N-glycans in the Anti-HER2 antibodies were analyzed using a 
high-throughput Capillary Electrophoresis (CE) and a data extraction 
approach as previously described [23]. In particular, such analysis 
allowed the high-throughput and accurate measurements of N-glycan 
abundances within antibodies, which were necessary as the output 
target variable. In all 1296 samples, N-glycans were identified based on 
CE triple standard glucose unit (GU) calculation [32]. Briefly, the 

calculation involved standardizing the migration time (MT) of the peaks 
by generating a ‘virtual’ GU ladder using the MTs of 3 oligosaccharide 
internal standards. Subsequently, glycans were identified using a CE-GU 
database. We observed that the glycan structures were identified with a 
difference between the observed values and the database of at most 
0.092 GU (Supplementary Figure 2), suggesting a high degree of accu-
racy. This allowed us to identify 16 of the most abundant glycans 
(Fig. 1). Five peaks could not be determined (UNK in Fig. 1); however, as 
their abundances are very low (Supplementary Table 2) they do not 
affect the overall fucosylation, galactosylation, mannosylation, and 
sialylation trends. In particular, this methodology enabled us to deter-
mine the number of occurrences of observed GU values, and hence 
identify and annotate glycans of close MTs that may have otherwise 
been difficult to annotate (Fig. 1A). For instance, identification and 
quantitation of A2/FA1 and M5 peaks could be decoupled despite close 
MTs (Fig. 1A). Some glycan species only occurred occasionally 
depending on the condition or day of culture while others were always 
present in all 1296 samples. For example, M5 was only identified in 
~7 % of the samples whereas the major FA2/M6 peak was always 
identified. We determined the relative abundance of the individual 
glycans (as a percentage of all measured glycans), and further combined 
their abundances to represent fucosylation, galactosylation, 
high-mannosylation, and sialylation quantities in a sample (Fig. 1B and 
Supplementary Figure 2). Totaling the glycan abundance in this way (e. 
g. fucosylation, galactosylation) allows us to captures the ADCC [33], 
complement-dependent cytotoxicity [34], clearance [8] and pharma-
cokinetic/pharmacodynamic properties [9] of mAbs that are related to 
these glycosylation attributes. While each cell culture underwent 
exposure to the same 12 OCs, there was notable variation in N-glycan 
abundance across different biological replicates (BRs) (Supplementary 
Figures 2, 3, 4, 5). This variability is important as it ensures there is 
non-redundancy between the train and test set and therefore the pre-
dictions on the test set are not easy. 

3.3. Media marker selection 

A media marker is selected if MS peaks have a CV less than 30 % and 
its rate has a correlation coefficient (CC) greater than or equal to 0.6 to 
fucosylation, mannosylation, sialylation, or galactosylation abundances 
(Fig. 2A). The criteria of CC≥ 0.6 as a feature selector is derived from 
cut-off thresholds on the training sets where Pearson correlation (R), 
mean absolute error and root mean squared error start to decline 
(Supplementary Figure 6). Thus, the criteria for CV ensured consistent 
reproducibility of the peaks/MMs while the criteria for CC allowed the 
reduction of selected features while still attaining high training perfor-
mance (Supplementary Figure 6). From this feature selection criteria, 18 
MM variables were selected for fucosylation and mannosylation from 
145 possibilities (Fig. 2B; selected MMs). In the case of galactosylation 
and sialylation, a smaller number of 9 and 10 MMs respectively were 
selected (Fig. 2B). (Supplementary Figure 6). Although, each of the 18 
selected MMs were not characterized in detail, we could conclude that 3 

Table 1 
Description of operating conditions for the 12 fed-batches. Each were run for 12 days and 3 BRs resulting in 432 data points (12 days x 12 conditions x 3 BRs). Each 
condition was run in three technical replicates and all variables were averaged.  

Media platform 1 
GE ActiPro Basal (Cat# SH31037.01) 
GE Cell Boost 7a Feed (Cat# SH31026.01) 
GE Cell Boost 7b Feed (Cat# SH31027.07) 

Media platform 2 
SAFC EX-CELL Advanced CHO Fed-batch System Basal (Cat# G 3126) 
EX-CELL Advanced CHO Fed-batch Feed 1 with glucose (Cat# 24367 C-1 L) 

Condition No. pH dO2 (% Air saturation) Temp. Shift Condition No. pH dO2 (% Air saturation) Temp. Shift  

1  6.9  50 NO  2  6.9  50 NO  
3  7.1  50 NO  4  7.1  50 NO  
5  7.1  50 YES  6  7.1  50 YES  
7  7.1  30 NO  8  7.1  30 NO  
9  7.3  50 NO  10  7.3  50 NO  
11  7.3  30 NO  12  7.3  30 NO  

Table 2 
The 167 spent media and 6 physicochemical features available in this study. 
MMs - media markers. The labels in the input name column are used throughout 
this work. The number and type of variable for each group is indicated.  

Input name Physicochemical 
parameters 

Definition of media component 

Basic Temperature, pH, 
Dissolved oxygen, 

Potassium ion, Sodium ion, Ammonium 
ion, Glucose, Lactic acid 

Amino - Alanine, Cysteine, DL-tyrosine, DL- 
tryptophan, Glycine, Isoleucine, L- 
arginine, L-asparagine, L-aspartic acid, 
Leucine, L-glutamic acid, L-glutamine, L- 
histidine, Iserine, Lysine, Methionine, 
Phenylalanine, Proline, Threonine, 
Valine 

Selected 
MMs 

- 18 MS derived rates with IPA CV < 30 % 
and correlated with at least one of 
fucosylation, galactosylation, 
mannosylation, sialylation 

Remaining 
MMs 

- 127 MS derived rates with IPA CV 
< 30 % and not correlated with either 
fucosylation, galactosylation, 
mannosylation or sialylation  
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were nucleotide derivatives, 3 were nucleotides and 4 were nucleotide 
sugars (Fig. 2C). Furthermore, the selected MMs did not contain an 
amino acid, glucose, lactate, sodium ion, ammonium ion, or potassium 
ion. Additionally, a total of 127–137 MM variables did not fulfil the 
selection criteria (i.e. CC<0.6) (Fig. 2B; remaining MMs). 

Glucose, lactate and physicochemical parameters like pH, tempera-
ture, dissolved oxygen are known to be important for bioreactor opti-
mization [35]. However, we observed that such factors, including pH, 
temperature, dissolved oxygen, glucose, lactate, sodium ion, ammonium 
ion, and potassium ion (termed basic), all had poor correlation to the 
glycosylation patterns of the antibodies, with none having CC≥ 0.6 
(Fig. 2B). Recently, CHO-based mechanistic models have capitalized on 
amino acid metabolism for various bioprocessing applications [36–38], 
in our dataset we found that only L-glutamic acid had a CC≥ 0.6 to each 
fucosylation, galactosylation, mannosylation and sialylation output 
variables (Fig. 2B). 

3.4. Grouping variables 

While a high correlation coefficient (CC) does not imply causation, 
optimizing models would be challenging when input variables exhibit 
only low CCs with the N-glycan output target. Nevertheless, incorpo-
rating a mixture of low CC and high CC variables in a model can also be 

advantageous. Thus, we sought to use different input combinations to 
understand their corresponding predictive performance of N-glycan 
abundances using RFs ML. 

From the list of all 173 variables available (Table 2), eight different 
input combinations were used to optimize the models: basic (8 variables; 
Table 2), amino (20 variables; Table 2), selected MMs (18 variables; 
Fig. 2B), basic+amino (28 variables), ‘basic+selected MMs’ (26 vari-
ables), ‘amino+selected MMs’ (38 variables), ‘basic+amino+selected 
MMs’ (46 variables), and ‘all features’ (173 variables). 

3.5. Predicting glycan CQA using selected MMs 

Predicting individual N-glycan abundances for all 16 N-glycans 
(Supplementary Figure 1) would require the training of 16 models and 
the reporting of all 16 output variables. Given that it is the total fuco-
sylation, mannosylation, sialyation and galactosylation levels that are 
associated with the efficacy of mAbs [39], we summed the individual 
N-glycan abundances to their overall glycosylation attributes as shown 
in Supplementary Figure 1. In particular, models were trained to predict 
four percentage values: total fucosylation, galactosylation, 
high-mannosylation, and sialylation abundances, which are the main 
characteristics of N-glycosylation (Supplementary Figure 2). Addition-
ally, classification models were optimized to predict extreme N-glycan 

Fig. 2. Feature importance of variables. (A) The workflow for feature selection. MS peaks with coefficient of variation CV < 30 % are converted to rates, known as 
media markers. Media markers and physicochemical variables are checked for correlation to fucosylation, galactosylation, mannosylation and sialylation N-glycan 
abundance. Media markers are selected if the correlation coefficient is ≥ 0.6. (B) In the boxplots, each variable’s correlation coefficient is plotted, the dashed line 
represents a correlation coefficient ≥ 0.6. (C) The 18 selected MMs grouped into four categories. 
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outliers. 

3.5.1. Regression – predicting N-glycan abundance 
We explored the potential for accurate N-glycan abundance predic-

tion using the selected MMs as input variables to multivariate models 
such as PLSR (MVDA) and RF (ML) (Fig. 3). We observed significant 
differences in the performance of the prediction models using different 
input combinations in both MVDA and ML. The RF algorithm, in 
particular, generally had a higher correlation coefficient compared to 
MVDA approaches (Fig. 3). For instance, the correlation coefficient of 
the ML model using selected MMs alone was greater by 5 %, 32 %, 8 % 
and 9 % for fucosylation, galactosylation, mannosylation and sialyla-
tion, respectively compared to MVDA approaches. Similar differences 
were observed in the mean absolute error and root mean squared error 
metrics between both models (Supplementary Figure 7 and 8). For 
galactosylation, the RF regression model demonstrated significantly 
greater correlation coefficients (p < 0.001; t-test) compared to MVDA 
across all input variable combinations (values of 0.84 RF vs. 0.52 MVDA, 
0.85 RF vs. 0.46 MVDA, 0.86 RF vs. 0.53 MVDA, and 0.85 RF vs. 0.54 
MVDA for selected MMs, basic + selected MMs, amino + selected MMs, 
and basic + amino + selected MMs, respectively). This suggests that ML 
may be a superior approach compared to the commonly used MVDA in 

this type of prediction task – particularly when using the 18 selected 
MMs. 

Moreover, the performance of both RF and MVDA models signifi-
cantly improved when selected MMs were incorporated (Fig. 3 - 
enriched vs. baseline input). The RF model using selected MMs solely as 
input demonstrated high correlation coefficients of 0.94, 0.84, 0.94 and 
0.80 for fucosylation, galactosylation, mannosylation and sialylation 
respectively. In contrast, the best baseline input containing 
‘Basic+Amino’ had only correlation coefficients ranging from 0.71 to 
0.76. In the case of RF models, correlation coefficients with enriched 
input combinations were significantly higher compared to those with 
baseline input combinations (p < 0.05 for all glycosylation attributes 
except sialylation; t-test with Benjamini-Hochberg correction). On the 
other hand, in MVDA models, we observed that the correlation co-
efficients were significantly improved only in the cases of fucosylation 
and mannosylation (p < 0.05 for all comparisons; t-test with Benjamini- 
Hochberg correction). 

A final observation was that the performance of both RF and MVDA 
appeared to decline when using all features (All features; Fig. 3, sup-
plementary Figure 7 and 8), this was especially the case in MVDA. In RF, 
the decrease with more features could be attributed to overfitting, a 
situation in which feature selection approaches are known to alleviate 

Fig. 3. Comparing regression correlations between RF and MVDA algorithms with different input combinations. Moving left to right along the x-axis the number of 
input variables increases – in bold are models that use the 18 selected MMs. RF models (orange) were compared to MVDA models (blue) between different input 
combinations of baseline input (green) and enriched input using selected MMs (yellow). Correlation coefficient is averaged over the three independent test sets and 
error bars are shown as standard errors. 
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[40]. In MVDA, the large performance decrease (Fig. 3, Supplementary 
Figures 7 and 8) when using all features may be due to its inability to 
find non-linear relationships in large input dimensions. Similar perfor-
mances were also observed during boot strapped validation perfor-
mance assessment (Supplementary Table 3 and Supplementary Table 4). 

3.5.2. Classification – predicting outliers 
Besides the prediction of continuous glycosylation abundance, we 

also sought to develop models that classify N-glycan abundance into 
outliers or non-outliers (Supplementary Figure 9 A). The usefulness of 
these models is to analyze whether glycan levels have hit critical con-
figurations through a cut-off threshold (Supplementary Figure 9B). For 
example, models can be defined to monitor < 90 % fucosylation, 
< 25 % galactosylation as a critical condition in the media. Moreover, 
the modelling of classification decision boundaries is easier to achieve 
than modeling the relationship between input variables and a contin-
uous output variable (e.g. 5.6 % of regression predictions had >5 % 
MAE; Supplementary Figure 10). 

In this case, the RF model using selected MMs as input (i.e. either 
Selected MMs, Basic+Selected MMs, Amino+Selected MMs, 
Basic+Amino+Selected MMs) showed better AUC performance 
compared to MVDA when varying the cut-off thresholds by 1 % in-
crements (Fig. 4). The increase in AUC between RF and MVDA was 
particularly noticeable for galactosylation predictions, where cut-off 
thresholds at 17 %, 18 %, 45 %, and 23 − 40 % produced statistically 
significant RF classifiers (p < 0.05; t-test with Benjamini-Hochberg 
correction). Choosing just one example, the RF/ML model was able to 
predict galactosylation outliers that fell below 30 % abundance signifi-
cantly better than the MVDA model (85.82 vs. 93.79 AUC). Further, the 
use of the 18 selected MMs (enriched input) significantly improved AUC 
compared to using basic, amino acid or basic and amino acid combi-
nations (baseline input) (Fig. 5). Thus, the addition of the 18 selected 
MMs as input is crucial for the accuracy of RF/ML models. In fact, the 
use of selected MMs was found to also increase the AUC substantially in 

the case of MVDA also increases AUC substantially models (Fig. 4). 
Similar performances were also observed during boot strapped valida-
tion performance assessment (Supplementary Table 3 and Supplemen-
tary Table 4). 

4. Discussion 

Creating N-glycan prediction models crucially relies on a high 
throughput and accurate characterization method to generate large 
training and benchmarking datasets. The work presented here shows 
that capillary electrophoresis, a labeling approach using APTS, a triple 
internal standardization of retention times [32] and a computational 
analysis with database matching [23] enabled the N-glycan character-
ization of 1296 samples (432 in triplicate). In contrast, such throughput 
may be challenging for other experimental approaches, such as liquid 
chromatography mass spectrometry methods. The dataset enabled the 
optimization of a supervised machine learning approach where experi-
mentally derived fucosylation, galactosylation, mannosylation, and 
sialyation abundances were the labels used in training. Additionally, to 
train the supervised RF models each output label must have a corre-
sponding input feature set. To this end, we identify and quantitate the 
levels of glucose, lactate, sodium ion, potassium ion, ammonium ion and 
the 20 amino acids as such input features, with an additional 145 MMs 
that were quantitated. To our knowledge, this dataset is one of the 
largest available for training models to predict N-glycan abundance. 

We demonstrate that regardless of whether ML or MVDA algorithms 
was employed, the best performing models were those that used 18 
selected MMs as input features (Fig. 3 and Fig. 5). In typical media 
formulations, components can include glucose (the carbon source), 
amino acids, vitamins, lipids, nucleotides, and nucleotide sugars. While 
we did not identify the selected MMs in depth for this study, we observed 
that nucleotide derivatives, nucleotides, and nucleotide sugars were 
overly represented in these selected MMs (Fig. 2C). Nucleotide de-
rivatives and nucleotides are involved in nucleotide sugar biosynthesis 

Fig. 4. Leave-one-out cross-validation for RF and MVDA AUC comparison. The AUC is the average of all models that use selected MMs as input (i.e. Selected MMs, 
Basic+Selected MMs, Amino+Selected MMs, and Basic+Amino+Selected MMs). Statistically significant differences are highlighted by the shaded region (p < 0.05; t- 
test with Benjamini-Hochberg correction; MVDA statistically significant in red shading, RF statistically significant in green shading). The error bars show the standard 
error between all models in the three test sets. 
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pathways and nucleotide sugars themselves are well known to be the 
building blocks for glycan synthesis in the Golgi and to a lesser extent 
the endoplasmic reticulum [41]. Studies have described possible asso-
ciations between nucleotide sugar metabolism and CHO N-glycosyla-
tion, and how supplementing growth medium with nucleotide-sugar 
precursors can influence N-glycan abundance Supporting their impor-
tance [42,43] Our study has also observed possible associations, though 
further studies are warranted to unravel such molecular associations. 

There is a clear performance boost when predicting galactosylation 
in ML compared to MVDA using the selected MMs as input. This is 
observed in both regression (Fig. 3; p < 0.001) and classification (Fig. 4; 
all p < 0.05). The enhanced prediction performance in galactosylation 
may be attributed to the ML’s capacity to capture non-linear relation-
ships among input variables and N-glycan abundance. For instance, the 
levels of the four nucleotide sugars (Fig. 2C) involved in N-glycosylation 
may be combined to predict galactosylation in a non-linear manner 
rather than the linear relationships that MVDA can capture. For fuco-
sylation, sialylation and mannosylation, we also observed the superior 
performance of ML approaches, though to a lesser extent (Fig. 3 and 
Fig. 4). In summary, RF/ML is the preferred choice over MVDA and the 
use of the 18 selected MMs is crucial for best prediction performance – 
particularly for galactosylation. 

Model applications. One potential application involves the monitoring 
of N-glycan CQAs during bioprocessing operations through a proxy 
analysis that specifically targets 18 mass spectrometry features of the 
media. Another application of the model could be to prioritize batches 
before passing them to downstream processing for purification. For 
example, the classification model could discern cell cultures of highly 
abundant galactosylation, saving cost by prioritizing the time- 
consuming N-glycan analytics thus improving complement activation 
of the mAb [44]. 

In silico changes to the MMs can used as input to the models to 
simulate the effects on the glycosylation. This would enable 

development of optimized feeding algorithms (OFAs) for better N- 
glycosylation, similar to a previous work [45]. In the context of control, 
the classification model could oversee a process and identify suboptimal 
glycosylation quality. Subsequently OFAs can be employed to simulate 
what to feed and the quantity to feed to rectify the batches quality. 
Nevertheless, the intricate glycosylation biosynthetic pathway and the 
influences of cell metabolism pose challenges in controlling glycosyla-
tion and further research is imperative. Real-time monitoring applica-
tions would be contingent on the development of real-time assays for the 
18 peaks associated with the selected MMs. This could involve a real 
time MS system, microfluidic sample preparation device and automated 
peak picking combination. That capability would offer an alternative to 
Raman and Near-infrared spectroscopy real-time monitoring ap-
proaches. For instance, offering an orthogonal approach to Raman 
chemometric models that have shown promise to monitor glycosylation 
profiles in real-time albeit with scale up issues [46]. 

Further studies are also warranted to apply such methods beyond 
CHO cell lines that express Anti-Her2 type mAb products as a general 
approach to predicting glycosylation patterns. Finally, it was not our aim 
to create a sophisticated ML algorithm, instead we wanted to show that 
an “off-the-shelf” RF method can effectively use the 18 selected MMs for 
glycan profile prediction. This may possibly be further strengthened 
with the testing of more sophisticated machine learning and feature 
selection approaches using our dataset. 

5. Conclusion 

We showed that 18 media markers could be used to accurately pre-
dict N-glycan abundance in CHO cell expression of antibodies. The 18 
media markers significantly improved both regression and classification 
performance and were superior to models that used traditional process 
variables such as pH, temperature and media components like glucose, 
lactate and amino acids. Notably, ML techniques outperformed MVDA in 

Fig. 5. Leave-one-out cross-validation for RF input type comparison. The AUC is the average of all RF models that use enriched input (either Selected MMs, 
Basic+Selected MMs, Amino+Selected MMs, and Basic+Amino+Selected MMs) or baseline input (either ‘Basic’, ‘Amino’, ‘Basic+Amino’). Statistically significant 
differences are highlighted by the shaded region (p < 0.05; t-test with Benjamini-Hochberg correction). The error bars show the standard error between all models in 
the three test sets. 
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improving predictions especially for galactosylation. The models could 
potentially be used in a bioprocess to determine glycosylation quality 
offline using spent media as a proxy and to prioritize batches to pass to 
downstream processing. We believe such approaches would be highly 
effective for N-glycan CQA analysis and monitoring and can contribute 
significantly to the overall digitalization efforts in bioprocessing to 
develop novel therapeutic products for human health. 
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