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Budějovice, Czech Republic

3Université Paris-Saclay, INRAE,

AgroParisTech, Institut Jean-Pierre Bourgin

(IJPB), Versailles, France

4Interuniversity Institute of Bioinformatics in

Brussels, Université Libre de Bruxelles,

Brussels, Belgium

5Department of Plant Sciences, University of

Cambridge, Cambridge, UK

Correspondence

Armand D. Anoman and Nathalie Verbruggen,

Laboratory of Plant Physiology and Molecular

Genetics, Université Libre de Bruxelles, 1050

Brussels, Belgium.

Email: armandanom@gmail.com and nathalie.

verbruggen@ulb.be

Funding information

Fonds National de la Recherche Scientifique

FNRS-FRS, Grant/Award Number: PDR T

0085.16; Université Paris-Saclay (University of

Paris-Saclay), Grant/Award Number: ANR-

17-EUR-0007

Abstract

Light/dark (LD) cycles are responsible for oscillations in gene expression, which mod-

ulate several aspects of plant physiology. Those oscillations can persist under con-

stant conditions due to regulation by the circadian oscillator. The response of the

transcriptome to light regimes is dynamic and allows plants to adapt rapidly to chang-

ing environmental conditions. We compared the transcriptome of Arabidopsis under

LD and constant light (LL) for 3 days and identified different gene co-expression net-

works in the two light regimes. Our studies yielded unforeseen insights into circadian

regulation. Intuitively, we anticipated that gene clusters regulated by the circadian

oscillator would display oscillations under LD cycles. However, we found transcripts

encoding components of the flavonoid metabolism pathway that were rhythmic in LL

but not in LD. We also discovered that the expressions of many stress-related genes

were significantly increased during the dark period in LD relative to the subjective

night in LL, whereas the expression of these genes in the light period was similar.

The nocturnal pattern of these stress-related gene expressions suggested a form of

“skotoprotection.” The transcriptomics data were made available in a web application

named Cyclath, which we believe will be a useful tool to contribute to a better under-

standing of the impact of light regimes on plants.
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1 | INTRODUCTION

Light provided by the sun makes life possible on earth as it powers

the production of organic matter through photosynthesis, a process

that first evolved in bacteria and has been evolutionarily conserved in

plants (Hohmann-Marriott & Blankenship, 2011; Xiong &

Bauer, 2002). The mechanisms by which light energy is harvested and

how plants mitigate light harmful effects have been studied inten-

sively (Bassi & Dall’Osto, 2021; Rochaix, 2014; Shen, 2015). Reactive

oxygen species (ROS), which are produced upon normal plant metabo-

lism, can be generated in excess when too much light is absorbed, and

this can damage the photosynthetic apparatus (Long et al., 1994). To

prevent ROS accumulation and harmful effects, plants employ various

photoprotection mechanisms, including the movement of chloroplasts
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and leaves, dissipation of excess energy into heat, enzymatic defenses

such as superoxide dismutase and ascorbate peroxidases, and

non-enzymatic components such as carotenoids, ascorbate, and gluta-

thione, and nonphotochemical quenching reactions involving light har-

vesting complexes (LHCs) or xanthophylls (Bassi & Dall’Osto, 2021;

Demmig-Adams & Adams III, 1992).

Plants possess the capability to synthesize specialized metabolites

for scavenging ROS, such as flavonoids (Falcone Ferreyra et al., 2021).

These molecules play multifaceted roles, extending beyond merely

safeguarding against oxidative stress to encompass attracting

pollinators, facilitating hormone transport, aiding in seed dispersal,

and fortifying defenses against pathogens (Corso & de la Torre, 2020;

Pérez-García et al., 2015; Tanaka et al., 2008).

Light signals, which regulate photomorphogenesis, are decoded

by several photoreceptors, such as phytochromes, cryptochromes,

phototropins, and UVR8 receptors (Franklin & Quail, 2010; Roeber

et al., 2021). Light regulation results in transcriptional changes, which

can be easily observed by the diurnal pattern of expression of many

genes. In addition to direct light regulation across the diel cycle, there

is also circadian regulation of gene expression as an output of the cir-

cadian oscillator, which is most easily observed in constant light (LL).

In Arabidopsis, up to 37% of the transcriptome is thought to be circa-

dian regulated (Covington et al., 2008; Hsu & Harmer, 2012;

Romanowski et al., 2020). The coordinated diel and circadian regula-

tion of gene transcript abundance results in rhythmic biological pro-

cesses including photosynthesis, hypocotyl growth, mineral nutrition,

immune responses, and light signaling (Haydon et al., 2015;

Millar, 2016; Romanowski et al., 2020).

The circadian oscillator orchestrates transcriptional changes by

integrating various transcriptional regulators, each exhibiting a 24-h

expression cycle owing to their involvement in interconnected tran-

scriptional/translational feedback loops. CIRCADIAN CLOCK ASSOCI-

ATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) peak near

dawn; PSEUDORESPONSE REGULATOR (PRR) 5, 7, and 9 are expressed

throughout the day; TIMING OF CAB EXPRESSION 1 (TOC1) is

expressed at dusk; GIGANTEA (GI), EARLY FLOWERING 3 (ELF3), ELF4,

and LUX ARRHYTHMO (LUX) peak at night (Hsu & Harmer, 2014b;

Webb et al., 2019). Other genes like ZEITLUPE (ZTL), LIGHT-

REGULATED WD1 (LWD1), TEOSINTE BRANCHED 1 (TCP20), and

CCA1 HIKING EXPEDITION 1 (CHE) are also associated with circadian

regulation (Hsu & Harmer, 2014b; Nohales & Kay, 2020).

The study of the interactions between the core circadian clock

components and light input pathways was facilitated by large-scale

transcriptomics, mathematical modeling, and gene co-expression net-

works (Dalchau et al., 2010; De Caluwé et al., 2017; Hsu et al., 2013;

Hsu & Harmer, 2014a, 2014b; W. Huang et al., 2012). Gene co-

expression networks are especially powerful to identify genes with

similar biological functions (Contreras-López et al., 2018; Cortijo

et al., 2020). However, their effectiveness relies on the accurate com-

putation of correlations between transcript abundance, which requires

large datasets. For the analysis of diel and/or circadian rhythms, the

quality of gene co-expression networks mainly depends on the tech-

nology for gene expression profiling as well as on the duration of the

experiment and the sampling frequency. The recent works of Roma-

nowski et al. (2020) and Bonnot and Nagel (2021) provided new

insights into the circadian rhythmicity of genes and proteins. How-

ever, their studies did not include diel transcriptomes.

In this work, we performed RNA-sequencing (RNA-seq) to pro-

duce time-series data in Arabidopsis seedlings under diel and LL

regimes. We analyzed transcript rhythms, differential expression, and

co-expression networks, and we were able to identify rhythmic net-

works rather than solely rhythmic transcripts. The striking expression

pattern of some stress-related genes led us to introduce the term

“skotoprotection” to refer to those genes that could help plants face

the adverse consequences of nighttime. We have made the transcrip-

tomics data available in a web application we developed called

Cyclath, dedicated to the study of diel and circadian rhythms.

2 | RESULTS

2.1 | Rhythmic changes in transcript abundance in
light/dark (LD) cycles and LL

The study was designed to identify rhythmic Arabidopsis transcripts

in 12/12-h LD cycles and under LL, as well as differentially expressed

genes (DEGs) between these two conditions (Figure 1). In both condi-

tions, 8-day plantlets were harvested after 30 min, 1 h, 2 h, 4 h, and

then every 4 h until 72 h.

From a total of 21,487 expressed genes, 9053 (42.1%) and 2402

(11.2%) were oscillating in LD and LL, respectively, as determined by

JTK_cycle in R (Hughes et al., 2010; Wu et al., 2016) (Bonferroni-

corrected p-value < .01) (Figure 2, Table 1, and Dataset S1). A total of

7569 transcripts oscillated in LD but not in LL, while 918 transcripts

oscillated in LL but not in LD (Figure 2). Being rhythmic in LD is not a

direct indicator of circadian control because only around 16% of the

rhythmic genes in LD were also rhythmic in LL (1484 out of 9053).

Conversely, around 62% of rhythmic genes in LL were also rhythmic

in LD (1484 out of 2402). Comparison with previously published cir-

cadian experiments (Bonnot & Nagel, 2021; Covington et al., 2008;

Hsu & Harmer, 2014a; Romanowski et al., 2020) revealed that our

study yielded a generally lower number of rhythmic transcripts under

LL conditions compared to those reported in the referenced studies

(Figure S1 and Table S1).

Of the oscillating transcripts in LD, 3893 were most

abundant during the day (day-phased, LD-DP), while 5160 were most

abundant at night (night-phased, LD-NP) (Figure 2 and Dataset S2).

Day-phased transcripts in LD were enriched in chlorophyll metabolic

processes, photosynthesis, translation, and RNA metabolic processes,

whereas night-phased transcripts were enriched in response to stress

and protein ubiquitination (Dataset S2).

Of the oscillating transcripts in LL, 1075 were more abundant

during the subjective day (day-phased, LL-DP) and 1327 were more

abundant during the subjective night (night-phased, LL-NP) (Figure 2

and Dataset S2). The biological processes of photosynthesis and circa-

dian rhythm were overrepresented in both subjective day- and
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subjective night-phased genes in LL. Additionally, flavonoid metabolic

processes and terpenoid metabolic processes were also overrepre-

sented in subjective night-phased transcripts (Dataset S2).

The time of the peak phase sometimes differed between LL and

LD. No overrepresented biological process was observed in rhythmic

genes shifting from LD-NP to LL-DP. However, the response to light

stimulus, especially the response to blue light, was significantly over-

represented in genes shifting from LD-DP to LL-NP (Dataset S2).

2.2 | Alterations in transcript abundance in LL
relative to LD cycles

Beyond variations in the temporal patterns of transcript abundance

between LD and LL conditions, our findings align with previous

research indicating that both conditions impact the absolute abun-

dance of transcripts.

At each time point, we identified the DEGs in LL relative to LD

using DESeq2. In total, 5921 DEGs were detected (Dataset S1).

The number of DEGs was consistently higher during the first sub-

jective night compared to the next subjective day, leading to an oscil-

latory pattern in DEG numbers over time (Figure 3a).

Clustering the DEGs allowed us to categorize them into two dis-

tinct clusters based on their abundance patterns during the subjective

night in LL compared to the night in LD (Figure 3b). Cluster 1 com-

prised transcripts with higher abundance during the subjective night

in LL, while Cluster 2 contained transcripts with lower abundance dur-

ing the same period. Visualization of the relative expression of

F I GU R E 1 Experimental design. After 8 days of entrainment, Arabidopsis plants were either kept under 12/12-h light/dark (LD) cycles or
transferred to constant light (LL). Samples were harvested every 4 h until 72 h. Two biological replicates were performed at each time point. Blue
arrow, zeitgeber time 0 (ZT0); black arrows, sampling time point.

F I GU R E 2 Upset plot of rhythmic genes in light/dark
(LD) cycles and in constant light (LL). The number of genes
in each intersection is indicated above the columns.
Orange and black dots represent day-phased and night-
phased genes, respectively. Rhythmicity (Bonferroni-
corrected p-value < .01) was assessed from 24 to 68 h,
both in LD and in LL. LD-DP and LD-NP, day-phased and
night-phased genes in LD, respectively; LL-DP and LL-NP,
subjective day- and subjective night-phased genes in LL,
respectively.

T AB L E 1 Number of rhythmic transcripts under light/dark (LD)
cycles and constant light (LL) and distribution according to their
phase. Transcripts were considered rhythmic if the adjusted p-value
was below .01 with JTK_cycle. Two replicates were performed per
time point and per condition.

LD LL

Phase during the day or subjective day 3893 1075

Phase at night or subjective night 5160 1327

Total 9053 2402
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transcripts in both clusters using their medoids (Figure 3c,d) revealed

that transcript expression during the light period in LD mirrored that

of LL. This observation was further supported by a principal compo-

nent analysis (PCA), grouping samples harvested during the light

period in LD with those in LL (Figure 4a).

The heatmap of the DEGs at each time point (Figure 3b) helped

us identify genes with the highest and lowest differential expression

in LL relative to LD. In the upper part of the heatmap (Cluster 1 in

Figure 3b), FLOWERING LOCUS T (FT; AT1G65480) and its homolog

TWIN SISTER OF FT (TSF; AT4G20370) or EARLY LIGHT-INDUCIBLE

PROTEIN (ELIP1; AT3G22840) were among the genes showing the

highest differential expression over time (Figure 4b and Dataset S1).

Additionally, several genes related to terpenes or flavonoids special-

ized metabolites, such as TERPENE SYNTHASE 04 (TPS04;

AT1G61120) and PRODUCTION OF ANTHOCYANIN PIGMENT 2

(PAP2/MYB90; AT1G66390), were identified among the top more

expressed DEGs. These genes were differentially expressed as early

as 16 h after the start of the experiment (Figures 4b and 5a). Finally,

F I GUR E 3 Differential expression
analysis. (a) Number of differentially
expressed genes (DEGs) in constant light
(LL) relative to light/dark (LD) cycles at
each time point from 12 to 72 h. The
yellow line indicates the trend of the total
number of DEGs. (b) Differential
expression over time (log2 fold change,
log2 FC) of DEGs (jlog2 FC > 1j, p < .01).
DEGs were separated into two clusters,
and medoids for Clusters 1 and 2 are
represented in (c) and (d), respectively.
Shaded areas in (a), (c), and (d) and shaded
time points in (b) correspond to night or

subjective night. ZT, zeitgeber time.

F I G U R E 4 Principal component analysis
(PCA) and heatmap of some differentially
expressed genes (DEGs). (a) PCA of samples in
light/dark (LD) and constant light
(LL) according to PC1 and PC2, which
contributed the most to separation between

samples. (b) DEGs in LL relative to LD, among
the more expressed or the less expressed
according to the heatmap in Figure 3b.
Asterisks indicate a significant difference in LL
relative to LD (p-value < .01 and absolute log2
FC > 1). n = 2 per time point and per
condition. Full data are available in Dataset S1.
Gray time points and white time points
indicate subjective day and subjective night,
respectively.
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genes involved in starch metabolism, such as those encoding the iso-

forms of ADP-GLUCOSE PYROPHOSPHORYLASE (APL2, APL3, and

APL4), were globally more abundant in LL relative to LD (Dataset S1).

In the bottom part of Cluster 2 (Figure 3b), the least expressed

genes in LL relative to LD were mainly related to stress, such as

ASCORBATE PEROXIDASE 2 (APX2; AT3G09640), ALCOHOL DEHY-

DROGENASE 1 (ADH1; AT1G77120), and several HEAT SHOCK PRO-

TEINS (HSPs) (Figure 4b and Dataset S1). Their expression was low

and relatively constant under LL, while peaking at night, showing diel

oscillations in LD (Figure 5b).

F I GU R E 5 Relative expression in
transcripts per million (TPM) of some of
the more expressed (a) or less expressed
(b) genes in constant light (LL) relative to
light/dark (LD) cycles. White area, day
(in LD) or subjective day (in LL); gray area,
night (in LD) or subjective night (in LL).
The full dataset is available in Dataset S1.
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To gain deeper insights into the differential expression between

LL and LD, we conducted a comprehensive analysis to identify the

overrepresented biological processes among DEGs at each time point

(Fisher test, Bonferroni-corrected p-value < .05) (Figure S2A,B).

DEGs exhibiting higher abundance in LL relative to LD were asso-

ciated with overrepresented categories linked to plant response to

stress, particularly during the subjective day, and flavonoid biosyn-

thetic processes during the subjective night.

Conversely, DEGs displaying lower abundance in LL relative

to LD were predominantly observed during the subjective night

and were mostly linked to plant responses to stress, similarly to

the more abundant genes. These stress-related DEGs were plotted

on a heatmap, and they could be separated into five clusters

(Figure 6).

2.3 | Gene co-expression networks as tools to
investigate diel and circadian control of biological
processes

To identify co-expressed genes, we built two distinct networks, one

for LD (11,079 co-expressed transcripts) and another for LL (8962 co-

F I G U R E 6 Subset of differentially
expressed genes (DEGs) in constant light
(LL) relative to light/dark (LD) and involved
in response to stress. (a) Heatmap

representing the log2 fold change (log2 FC)
of stress-related DEGs. The letter “C”
refers to “cluster.” Shaded time points
correspond to the subjective night.
(b) Medoids of the clusters in (a). Their
relative expression is indicated in
transcripts per million. Clusters 1 and
2 corresponded to more expressed genes,
and Clusters 3–5 corresponded to less
expressed genes in LL relative to LD.
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expressed transcripts) (correlation > .9, adjusted p-value < .01;

Figures S3 and S4).

Statistics associated with each gene, including degree (number of

connections of a node) and betweenness (number of times that a path

passes through the node), were calculated, and genes were ranked

based on these parameters. Highly ranked genes (nodes in the net-

work) had a high degree, a high betweenness, or both (Dataset S1).

Then, genes were clustered according to their expression patterns,

with the largest clusters named after the biological processes that

were most overrepresented. We could distinguish between LD and LL

clusters such as “photosynthesis and circadian rhythm,” “response to

stress,” and “RNA metabolic processes, transcription and translation”
(Datasets S3 and S4 and Figures S3 and S4).

In the LD network, genes of the core oscillator were present in

the “photosynthesis and circadian rhythm” cluster, except PRR7 and

GI, which were present in the “response to stress” cluster (Figure 7).

Additionally, the first neighbors of CCA1 and LHY were involved in the

response to blue light; the first neighbors of PRR9 were mostly

involved in photosynthesis and response to light stimulus; and the

first neighbors of ELF4 were involved in the starch metabolic process

and response to temperature stress (Dataset S3). GI emerged as a hub

as it was co-expressed with nearly 400 genes. The subcluster formed

by GI and its first neighbors was associated with biological processes

such as response to stimulus, response to stress, and response to oxy-

gen levels (Dataset S3).

The LL condition provoked several changes in the gene co-

expression networks. In the LL network, all core genes of the oscillator

belonged to the cluster “photosynthesis, circadian rhythm, response

to stress” (Figure 8 and Dataset S1). Additionally, the first neighbors

of LHY were involved in photomorphogenesis, and the first neighbors

of LUX were involved in the regulation of photomorphogenesis

(Dataset S4). However, by far the most striking change was that GI no

longer served as a central hub (connected to only 24 genes), and

no functional category was significantly overrepresented among its

F I GU R E 7 Co-expression network of
the core oscillator genes in the light/dark
(LD) network. The genes of the core
oscillator that are represented have a
bigger size and a red border. Blue edges
and red edges represent negative and
positive correlations, respectively. The
threshold for significant correlation was
set to .9, p-value < .01.
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first neighbors. LL also promoted new interactions between genes in

the core oscillator. For instance, TOC1 and LUX were now in direct or

indirect connections with CCA1 and LHY (Figures 7 and 8).

LL also revealed a strong connection between PRR7 and MYB

DOMAIN PROTEIN 111 (MYB111; AT5G49330), a gene involved in

the regulation of flavonol biosynthesis. While MYB111 was not oscil-

lating in LD, it showed rhythmicity in LL (Dataset S1). Additionally,

24 genes involved in the flavonoid metabolic process behaved simi-

larly to MYB111, belonging to the cluster of rhythmic genes in

LL. Indeed, the number of DEGs in the flavonoid metabolic process

within the “photosynthesis/circadian rhythm” cluster increased from

12 in the LD to 27 in the LL network (Figure S5). The JTK_cycle analy-

sis confirmed this observation, as rhythmic DEGs related to flavonoid

metabolism increased from 13 in LD to 30 in LL (Dataset S1).

Finally, AT2G25530, AT4G30470, or AT5G62210, which are not

yet annotated, displayed strong connections to flavonoid-related

genes, suggesting a potential role in the flavonoid metabolic process.

2.4 | Predictions from a third network

We built a third network, the LD–LL network, by combining gene

expression data from LD and LL conditions (Figures 9 and S6). In this

network, 8362 genes were co-expressed (correlation > .9, adjusted p-

value < .01). Genes that had the three highest degrees and that

belonged to the most highly ranked were MA3 DOMAIN-CONTAINING

TRANSLATION REGULATORY FACTOR (MRF1; AT5G63190), LIGHT-

RESPONSE BTB 1 (LRB1; AT2G46260), and OBERON1 (OBE1;

AT3G07780) (Dataset S1). The MRF1 transcript was shown to be

induced by light and starvation (Lee et al., 2017). LRB1 is involved in

the regulation of cryptochrome-dependent and phyB-dependent

photoresponses (Chen et al., 2021). OBE1 participates in the mainte-

nance of the root and shoot apical meristem (Saiga et al., 2008) and

may contribute to the early flowering phenotype of Arabidopsis plants

grown under LL (Eddy & Hahn, 2008). Among genes that had a posi-

tive correlation with OBE1, we observed an overrepresentation of

F I G U R E 8 Co-expression network of
the core oscillator genes in the constant
light (LL) network. The genes of the core
oscillator that are represented have a
bigger size with a red border. Blue edges
and red edges represent negative and
positive correlations, respectively. The
threshold for significant correlation was
set to .9, p-value < .01.
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genes involved in the vegetative-to-reproductive phase transition

of the meristem (adjusted p-value = .041). Moreover, OBE1 was

co-expressed with REBELOTE (RBL; AT3G55510), a gene encoding a

protein known to physically interact with OBE1, which is involved in

floral development (Prunet et al., 2008).

2.5 | Relationship between transcript oscillations
and specialized metabolite content

Noting the augmented number of rhythmic genes associated with fla-

vonoid metabolism under LL compared to LD cycles, along with their

high connectivity within the rhythmic cluster, we investigated

whether the content of flavonoids might be induced upon transfer to

LL. Our findings revealed a significant increase in the relative content

of several flavonoids just 24 h after plants were transferred from LD

to LL (Table 2 and Figure S7). However, despite the observed increase

in flavonoid content, we did not observe oscillations corresponding to

the fluctuating transcript abundance under LL. Furthermore, we

observed a significant upregulation of transcripts associated with

flavonoid metabolism, such as PAP2 and FLAVONOL SYNTHASE 2

(FLS2; AT5G63580) (Dataset S1). Similarly, flavonoid abundance did

not exhibit oscillations in LD, where fewer fluctuations in flavonoid-

related transcripts were observed.

2.6 | The Cyclath web application

We have developed the “Cyclath” web application, accessible at

https://cyclath.shinyapps.io/cyclath/, providing easy access to the

rhythmicity analyses, differential expressions, and gene co-expression

networks presented in this study. Figure 10 showcases a glimpse of

the application homepage. Cyclath offers users the ability to input the

AGI number of a gene of interest, select the desired light regime, and,

upon submission, explore analyses for LD, LL, and LD–LL conditions.

Users also have the option to download the results upon completion.

Key features in Cyclath include (i) the construction of networks

from data obtained in a single experimental design; (ii) the utilization

of RNA-seq data; (iii) the visualization of the dynamic nature of

co-expression networks under varying light regimes; (iv) the

F I GU R E 9 Co-expression network of the core oscillator genes in the light/dark and constant light (LD–LL) networks. The genes of the core
oscillator that are represented have a bigger size with a red border. Blue edges and red edges represent negative and positive correlations,
respectively. The threshold for significant correlation was set to .9, p-value < .01.
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implementation of a stringent threshold for significant interactions;

(v) the centralization of rhythmic analyses, differential expression, and

co-expression networks within a unified platform; and (vi) the inde-

pendent construction of LD and LL networks from separate datasets.

Several other databases exist for Arabidopsis co-expression

networks, such as Genemania, Genevestigator, and Arabidopsis Co-

expression Tool (ACT). The ACT database and Genevestigator inte-

grated multiple public transcriptomic data to build the co-expression

networks. Genemania networks were built from transcriptomics and

proteomics data from multiple publicly available datasets.

We compared our networks with the ones from these databases,

taking as examples the networks of CCA1 and LHY (Dataset S5). LHY

and LNK2 were the only genes consistently co-expressed with CCA1

in all six network databases. Among genes co-expressed with LHY, B-

BOX DOMAIN PROTEIN 19 (BBX19), CONSTANS-LIKE (COL) 1 (COL1),

COL2, and REVEILLE 8 (RVE8) were present in five out of six networks.

3 | DISCUSSION

3.1 | The light regime affects transcriptome
rhythmicity

In this study, we investigated the effect of light regimes on changes in

transcript rhythmicity, differential transcript expression, and co-

expression of transcripts with the view of identifying new players for

light-related biological processes and providing a database. For this

purpose, Arabidopsis plants exposed to LL were compared to plants in

LD both transcriptionally and metabolically.

In LL, we found a lower number of rhythmic transcripts in com-

parison to other studies in Arabidopsis based on Illumina sequencing

(Bonnot & Nagel, 2021; Romanowski et al., 2020). Variation between

the amount and specific circadian-regulated transcripts is common

between laboratories and may result from different experimental con-

ditions, including light intensity, quality, and media composition, all

known to affect circadian dynamics and gene expression (Webb

et al., 2019). Another possible explanation for the lower number of

rhythmic transcripts in our study compared to others might be the

lower magnesium (Mg) concentration in our media (200 μM) com-

pared to most other studies (1500 μM), as a reduction in Mg content

was associated with a reduced circadian rhythmicity (de Melo

et al., 2021; Feeney et al., 2016). However, 200 μM of Mg is sufficient

for normal Arabidopsis growth and sustains the normal circadian

period for at least 8 days (de Melo et al., 2021).

As expected and in line with previous research (e.g., Müller

et al., 2020), a decrease in the abundance of rhythmic transcripts was

observed under LL compared to LD. This disparity may be attributed

to the fact that rhythmicity in LL primarily mirrors the outputs of the

circadian oscillator, whereas in LD, it is influenced by both circadian

rhythms and direct light regulation. While 1484 rhythmic genes in LD

remained rhythmic in LL, unexpectedly, 918 genes that were not

rhythmic in LD became rhythmic in LL. These genes were associated

with responses to light stimuli and flavonoid metabolism. In strong

support of this finding, genes that were rhythmic only in LL (Mockler

F I GU R E 1 0 Homepage of the Cyclath web application. Upon entering an Arabidopsis AGI number, the user can choose to display the data
for “light/dark cycles,” “constant light,” or “light/dark and constant light.” In this last option, the app will display whether the gene is differentially
expressed in constant light relative to light/dark. The outputs are rhythmicity, differential expression, and co-expression networks.
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et al., 2007) in the DIURNAL database showed an overrepresentation

in the same biological processes (Dataset S2). However, DIURNAL,

which studies gene expression under various light regimes, does not

analyze gene differential expression between these regimes.

We found that in LL, there was a significant induction of genes

related to starch content and flavonoid metabolism. The induction

of starch metabolism-related genes in LL relative to LD is consistent

with the increased starch content in LL relative to conditions of

fluctuating light observed by Gollan et al. (2023). The induction of

flavonoid gene expression is likely associated with light stress

caused by LL exposure (J. Huang et al., 2019; Kleine et al., 2007),

and once this expression has been activated, the connection to cir-

cadian regulation becomes evident (Hildreth et al., 2022; Pérez-

García et al., 2015).

3.2 | Flavonoid-related transcripts that are
differentially expressed are more closely connected to
the circadian clock under LL conditions

Major classes of flavonoids include, but are not limited to, chalcones,

flavonols, and anthocyanins (Corso et al., 2020; Falcone Ferreyra

et al., 2021). The first genes involved in the anthocyanin biosynthesis

pathway include TRANSPARENT TESTA (TT) 4 (TT4/CHS), TT5 (CHI),

and FLAVANONE 3-HYDROXYLASE (F3H), which are later followed by

TT3 (DFR), TT18 (LDOX), and UDP-GLUCOSYL TRANSFERASE 79B1

(UF3GT/UFGT79B1) (Tanaka et al., 2008). Several transcription factors

(TFs) are responsible for the spatiotemporal regulation of flavonoid

production (Morita et al., 2006), with some like REVEILLE8 (RVE8)

belonging to the core oscillator of the circadian clock (Pérez-García

et al., 2015).

Pérez-García et al. (2015) notably showed the interaction

between REVEILLE 8 (RVE8; AT3G09600) and several NIGHT

LIGHT-INDUCIBLE AND CLOCK-REGULATED GENES (LNKs) to regulate

anthocyanin content. The presence of oscillations in the expression of

flavonoid genes in LL but not in LD might rely on SnRK1

(AT3G01090). Broucke et al. (2023) demonstrated the role of SnRK1

in tightly regulating anthocyanin content to avoid wasting energy dur-

ing the daytime. However, this tight regulation is expected to loosen

when light is on during the subjective night, provoking an increased

expression of anthocyanin-related genes during this period (Pérez-

García et al., 2015). Under LL, circadian regulation became prominent,

with up to 22 flavonoid-related genes that were not rhythmic in LD

becoming rhythmic in LL (Dataset S1). In strong support, in the LL net-

work, genes involved in anthocyanin biosynthesis were observed to

subcluster together in the circadian rhythm cluster (Figure S5). Along

with these transcriptomic changes, we observed a significant increase

in flavonoid content under LL relative to LD (Table 2 and Figure S7).

Consistent with these results, Maier et al. (2013) found a stabilizing

effect of light on PRODUCTION OF ANTHOCYANIN PIGMENT (PAP)

1 (PAP1 or MYB75; AT1G56650) and PAP2 (MYB90; AT1G66390).

PAP1 was additionally present in the subcluster of anthocyanin-

related genes in the LL network.

3.3 | Stress-related genes are induced under
darkness to confer “skotoprotection”

Excessive light stress has been associated with an induction of genes

involved in hormone biosynthesis, terpenoids, and flavonoid metabo-

lism (J. Huang et al., 2019). We made a similar observation for genes

exhibiting higher abundance in LL relative to LD (Cluster 1 of

Figure 3b and Dataset S1). However, among genes showing less abun-

dance in LL relative to LD (Cluster 2 of Figure 3b and Dataset S1), we

observed an overrepresentation of genes involved in response to

stress and related categories, such as response to oxidative stress and

response to external stimulus. These overrepresented categories were

mainly observed for DEGs during the subjective night, suggesting that

it is the unexpected light during the subjective night that results in the

stress.

In addition to our observation of more DEGs during the subjec-

tive night as compared to the subjective day (Figure 3a,b), we found

that around 600 stress-related genes were repressed in LL relative to

LD (Figures 5b and 6a). For most of these genes, the peak of relative

expression occurred during the night in LD (medoids of Clusters 3–5

of Figure 6b). These genes peaking in the dark in LD might be associ-

ated with the stress caused by darkness, which does not occur in

LL. Our analysis pipeline has allowed the reporting of this observation

for the first time, to our knowledge. We propose the term “skotopro-
tection” to refer to those stress-related genes that are specifically

induced under darkness. These genes were characterized by three cri-

teria: (i) They were rhythmic in LD and non-rhythmic in LL; (ii) they

were not differentially repressed during the subjective day (in LL) rela-

tive to the day (in LD); and (iii) they were upregulated during the night

(in LD) relative to the subjective night (in LL). Examples of such genes

include APX2, ADH1, HSP17.8, and HSP23.5 (Figure 5b).

3.4 | Gene regulation dynamics change under
different light regimes

We explored the dynamic response of the transcriptome in response

to different light regimes by building co-expression networks

(Contreras-López et al., 2018). Our analysis revealed shifts in the con-

nections between nodes (genes) in the LD and LL networks, as dem-

onstrated in Figures S3 and S4. Notably, core circadian oscillator

components exhibited altered connections across LD and LL networks

(see Figures 7–9). Co-expression networks of CCA1 and LHY circadian

oscillators highlighted an overrepresentation of rhythmic processes in

all three networks (LD, LL, and LD–LL) (Dataset S5), aligning with their

known role in regulating rhythmic processes. The shared first neigh-

bors between CCA1 and LHY underscored their partial functional

redundancy (Mizoguchi et al., 2002). Furthermore, another compo-

nent of the core oscillator, GI (Martin-Tryon et al., 2007; Nohales &

Kay, 2020), which is involved in response to stress (Mishra &

Panigrahi, 2015), emerged as a hub linked to stress-response genes

specifically in the LD network, hinting at a dependency of GI expres-

sion and co-expression networks on light regimes.
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We applied a stringent threshold to determine the first neighbors

(Pearson correlation coefficient > .9 and adjusted p-value < .01), so we

cannot discard the hypothesis that a lower threshold would have led to

a different outcome, which is a limitation of most network reconstruc-

tion approaches. Comparisons with other Arabidopsis co-expression

databases such as Genemania, Genevestigator, and ACT (Dataset S5)

provided insights into the consistency of our networks. For instance,

LHY and LNK2 consistently co-expressed with CCA1 across all data-

bases, while genes like BBX19, COL1, COL2, and RVE8 exhibited high

consistency in co-expression with LHY in five out of six networks.

Our analysis not only uncovered mechanisms underlying plant

responses to LL, such as the early flowering phenotype in Arabidopsis

(Eddy & Hahn, 2008), but also identified potential new players in light

response and gene function. Genes such as FT and TSF, known to pro-

mote flowering (Kardailsky et al., 1999; Yamaguchi et al., 2005), were

among the most induced genes in LL compared to LD conditions.

Additionally, OBE1, implicated in meristem maintenance, exhibited

positive co-expression with flowering-related genes in the LD–LL net-

work, suggesting its involvement in flowering regulation.

Furthermore, observations regarding genes like ELIP1, co-

expressed with eight genes related to flavonoid metabolism, and top

DEGs like TPS04, involved in plant defense against abiotic stress

through terpene metabolism, underscore the utility of our approach in

predicting gene functions and having novel biological insights.

We provide a web application called Cyclath, which hosts all the

data presented in this study. This database contains the relative

expression of Arabidopsis genes under two different light regimes,

namely, diel cycles and LL. This database also shows differential

expression between both conditions, as well as an analysis of their

rhythmicity. The results obtained through Cyclath can thus comple-

ment other databases, such as DIURNAL.

Cyclath can additionally be used in combination with other avail-

able transcriptomic resources, such as Genemania, ACT, and Genevesti-

gator. However, it is important to point out that those databases were

built combining data from several different studies, while the high

amount of data generated in our study allowed us to build Cyclath

networks from a unique experimental design. An advantage of our

approach is the attainment of a Pearson correlation coefficient

exceeding 90%. Predicted co-expressed genes derived from Cyclath

networks can thus help build new research hypotheses and validate

co-expression predictions. These hypotheses may also contribute to

the functional validation of genes associated with skotoprotection.

Ultimately, we envision Cyclath as a valuable tool for devising strate-

gies to improve crop resilience to stressors.

4 | EXPERIMENTAL PROCEDURE

4.1 | Plant material and growth conditions

Arabidopsis thaliana (Arabidopsis) seed stock, ecotype Columbia-0

(Col-0), was supplied by the Nottingham Arabidopsis Stock Center

(NASC) (Scholl et al., 2000).

Seeds were sterilized as previously described (De Caluwé

et al., 2017) and sown individually on modified Murashige and Skoog

(MS) media, solidified with .5% w/v Mg-free high gel strength agar

(Sigma-Aldrich, Germany), containing 200 μM of Mg and 1% w/v

sucrose (de Melo et al., 2021). After stratification for 2 days in the dark

at 4�C, seedlings were entrained for 8 days at 20�C with a 12-h

day/12-h night photoperiod with white light (�100 μmol photons

m�2 sec�1) in a growth cabinet (Panasonic MLR-352-PE, the

Netherlands). Following entrainment, plantlets were transferred to

liquid-modified MS media either in a day/night photoperiod (LD) or in

LL. Pools of 20–50 plantlets were harvested after 30 min, 1 h, 2 h, 4 h,

and then every 4 h until 72 h, with two replicates at each time point.

The experimental design is shown in Figure 1. A total of

74 independent samples were harvested and sequenced by RNA-seq.

Zeitgeber time 0 (ZT0) indicates the onset of light on the day the experi-

ment started. Accordingly, all time points indicate the time after ZT0.

4.2 | RNA extraction

Total RNA was isolated from 100 mg of frozen ground tissues of

whole plantlets. RNA was extracted with the Maxwell 16 LEV Plant

RNA Kit (Promega, Benelux BV) using the Maxwell 16 AS2000 Instru-

ment (Promega) according to the manufacturer’s instructions. The

quality and purity of the samples were verified with a NanoDrop

2000 UV–Vis Spectrophotometer (Thermo Scientific, UK).

4.3 | Library preparation and sequencing

Sequencing was conducted at VIB Nucleomics Core (VIB, Belgium,

www.nucleomics.vib.be). Library preparation was performed with the

TruSeq RNA Sample Preparation Kit (Illumina, USA), and the library

was sequenced using the NextSeq High Output Kit in single-end

mode (1 � 75 cycles) (Illumina).

4.4 | Read preprocessing

First, the fastq files were preprocessed to remove the adapter

sequences by hard-clipping, using cutadapt 1.15 (Martin, 2011). Then,

reads shorter than 35 bp after adapter trimming were removed. Using

FastX 0.0.14 (HannonLab, 2010) and ShortRead 1.36.0 (Morgan

et al., 2009), polyA-reads, ambiguous reads, low-quality reads, and

artifact reads were also removed. Finally, reads that were aligned to

phix_illumina (control for sequencing) were identified and removed

with bowtie 2.3.3.1 (Langmead & Salzberg, 2012).

4.5 | Mapping of RNA-seq data

The preprocessed reads were aligned to the reference genome of

A. thaliana (TAIR10) using STAR 2.5.2b (Dobin et al., 2013).
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Subsequently, mapped reads that were multi-mappings or with low

quality (more than 90% of the bases equal A, reads containing N, and

more than 50% of the bases < Q25) were removed, and the reads

were sorted according to the chromosomes with samtools 1.5 (Li

et al., 2009).

4.6 | Summarization of expression levels

The number of reads in the alignment that overlapped with the gene

features was determined using featureCounts 1.5.3 (Liao et al., 2014).

Reads that were ambiguous or that could not be attributed to any

gene were not counted. The raw counts per gene were extracted in

an Excel sheet, and genes for which all samples had less than 1 count

per million were removed.

Finally, the EDASeq package (Risso et al., 2011) in R (R-4.0.3) was

used for within-sample normalization, followed by a between-sample

normalization. The normalized counts were used to calculate the rela-

tive expression of each transcript in transcripts per million (TPM).

Genes with total relative expression over the time course (from 4 to

72 h) below 1 TPM were excluded, resulting in a final list of 21,487

expressed transcripts used for all the following analyses.

4.7 | Gene differential expression

Differential expression was assessed with DESeq2 in R (Love

et al., 2014), comparing gene expression in LL (treatment) with the

expression in LD (control). At each time point, a gene was considered

differentially expressed if log2 fold change (log2 FC) > 1 or log2

FC < �1, and adjusted p-value < .01 (Benjamini–Hochberg correction;

Benjamini & Hochberg, 1995). Gene ontology enrichment analysis

was performed with the Protein ANalysis THrough Evolutionary Rela-

tionships (PANTHER) classification system (http://pantherdb.org),

using the Fisher exact test and the Bonferroni correction for multiple

testing. Heatmaps were generated with Complexheatmap 2.6.2 (Gu

et al., 2016), and genes were clustered with Cluster 2.1.4 in R (Struyf

et al., 1997) using function partitioning around medoids (PAM). In our

case, a medoid is a gene that represents the trend of other genes in

the same cluster (Reynolds et al., 1992). Because samples harvested

from 30 min to 8 h were identical between LD and LL, the differential

expression analysis started at 12 h.

4.8 | Rhythmicity analysis

We assessed gene rhythmicity with the JTK_cycle algorithm included

in the Metacycle package in R (Hughes et al., 2010; Wu et al., 2016).

Minimum and maximum periods were set to 20 and 28 h, respectively.

Relative expression in TPM of the two replicates per time point from

24 to 68 h was used as input, and genes were considered rhythmic if

their adjusted p-value (Benjamini–Hochberg correction) was strictly

lower than .01.

Rhythmic transcripts with phases between 0 and 12 h

(0 ≤ phase < 12) were considered day phased, while those between

12 and 24 h (12 ≤ phase < 24) were considered night phased. The

phase was recalculated according to Romanowski et al. (2020), where

“recalculated phase = JTK_cycle phase � 24/JTK_cycle period.”
We performed a comparison of our results with other published

circadian studies (Covington et al., 2008; Hsu & Harmer, 2012;

Romanowski et al., 2020), as well as with data present in the DIUR-

NAL database (http://diurnal.mocklerlab.org; Mockler et al., 2007),

which gathers diurnal and circadian microarray data for Arabidopsis

and other model species. Among the seven datasets included in that

database, we selected the light/dark dataset (LDHC) and the continu-

ous light dataset (LLHC) for comparison as they had the most similar

design to our study. Gene rhythmicity in LDHC and LLHC datasets

was recalculated using the JTK_cycle algorithm with a significance

threshold set to .05 (adjusted p-value), which is the value commonly

used with microarray data.

To visualize intersections between rhythmic genes from LD and

LL datasets, we used the UpsetR package in R (Conway et al., 2017;

Lex et al., 2014).

4.9 | Gene co-expression networks

Gene co-expression networks were constructed in R, according to

Contreras-López et al. (2018). Briefly, raw counts from 12 to 72 h in

LD cycles, in LL, or a combination of both (LD time series followed by

LL time series) were used to generate three distinct co-expression

networks. Read counts were median normalized using R package

EBSeq 1.30.0 (Leng et al., 2013), and the whole list of 21,487

expressed transcripts was analyzed. The value and significance of cor-

relations between transcripts were then calculated using R package

psych 2.2.9, selecting Pearson correlation as the method to analyze

the normalized data (Revelle, 2017). To build the network, we selected

only the genes for which an absolute correlation threshold strictly

greater than .9 and an adjusted p-value strictly lower than .01. Before

visualizing the networks, degree and betweenness centrality were cal-

culated with the R package igraph 1.2.6 (Csardi & Nepusz, 2006) and

used to compute a ranking statistic. Finally, Cytoscape software

3.8.21 was used to visualize the networks, and the cytoscape plug-in

clusterMaker 2.0 (Morris et al., 2011) was employed to group genes

and infer possible biological functions for those with unknown

annotation.

4.10 | Determination of metabolite content

For the determination of metabolite content, Arabidopsis plantlets

were grown on modified MS solid media in a 12-h photoperiod (LD) at

100 μmol m�2 sec�1. After 17 days, they were either kept in LD

cycles or transferred to LL. Whole leaves were harvested at 24, 28,

32, 36, 40, 44, and 48 h after transfer and flash frozen in liquid N2.

After grinding, they were separated into two aliquots of 50 mg of leaf
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fresh weight per time point and condition. Polar and semipolar metab-

olites were then extracted. A total of 1.5 ml of methanol/water/ace-

tone/TFA, V/V 40/32/28/.05%, and 200 ng of apigenin (used as an

internal standard) were added to each sample. The mixtures were

placed in an ultrasonic bath for 5 min at 25 kHz at 4�C and shaken for

30 min at 4�C using a ThermoMixer™ C (Eppendorf). These samples

were then centrifuged at 20,000 g for 20 min. Extraction was per-

formed twice with the same sample, and the two resulting superna-

tants were pooled and dried in a rotary evaporator and freeze dryer.

The dry pellet was dissolved in 150 μl of water ULC/MS grade

(Biosolve) with 10% of ACN ULC/MS grade (Biosolve) and filtered

through a Whatman filter. Chromatography (ultra-performance liquid

chromatography and tandem mass spectrometry [UPLC–MS/MS])

analysis of polar/semipolar specialized metabolites, UPLC–MS/MS

data processing, and metabolite annotation were carried out accord-

ing to Boutet et al. (2022), normalizing metabolite content per api-

genin and per fresh weight.

We removed the metabolites with low quality (QC > 40%) and

further normalized each metabolite content by the total ion count per

sample as described elsewhere (da Silva et al., 2021; Deininger

et al., 2011). We finally multiplied the result for each metabolite by a

thousand. This normalization method is similar to the TPM normaliza-

tion of RNA-seq. A paired Student’s t test was performed to evaluate

significant differences between metabolite content (p-value < .05).

4.11 | Comparison with other network databases

Co-expression networks for Arabidopsis were obtained from other

databases, namely, Genemania (https://genemania.org/; Warde-farley

et al., 2010), Genevestigator (GENEVESTIGATOR 9.6.1; Hruz

et al., 2008), and ACT (https://www.michalopoulos.net/act/;

Zogopoulos et al., 2021).

On Genemania, we selected genes that were co-expressed tran-

scriptionally with our queries.

On Genevestigator, we selected the top 25 genes that were posi-

tively and negatively correlated with our queries, giving a final list of

around 50 genes.

On ACT, we selected the default output.
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