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Hybrid-modality brain-computer Interfaces (BCIs), which combine motor imagery (MI)

bio-signals and steady-state visual evoked potentials (SSVEPs), has attracted wide

attention in the research field of neural engineering. The number of channels should

be as small as possible for real-life applications. However, most of recent works about

channel selection only focus on either the performance of classification task or the

effectiveness of device control. Few works conduct channel selection for MI and SSVEP

classification tasks simultaneously. In this paper, a multitasking-based multiobjective

evolutionary algorithm (EMMOA) was proposed to select appropriate channels for these

two classification tasks at the same time. Moreover, a two-stage framework was

introduced to balance the number of selected channels and the classification accuracy in

the proposed algorithm. The experimental results verified the feasibility of multiobjective

optimization methodology for channel selection of hybrid BCI tasks.

Keywords: brain-computer interfaces, channel selection, evolutionary multitasking, multiobjective optimization,

two-stage framework

1. INTRODUCTION

Brain-computer interface (BCI) develops a communication means between brains and
external devices (Alcaide-Aguirre and Huggins, 2014). This technology is used for developing
assistive devices for helping paralyzed patients or control gaming. Due to its convenience,
electroencephalography (EEG) is widely adopted in non-invasive BCIs for multi-channel signal
acquisition (Kevric and Subasi, 2017). In general, more channels would provide more information
that can improve the performance of BCI classification. However, channel selection is essential to
filter redundant information and simplify experimental manipulation. For example, MI tasks may
only need a number of channels as few as 3–5 without lowering the classification accuracy according
to temporal-spatio analysis (Pfurtscheller and da Silva, 1999). Furthermore, using more channels is
inconvenience for clinical operation and signal processing. Therefore, how to make a compromise
between channel number and classification accuracy is a worth-probing question, especially for
hybrid BCIs in real-world applications.

In previous works, several effective methods have been proposed for channel selection, such
as filter-based methods (Yang et al., 2016), wrapper-based methods (Qiu et al., 2016), correlation-
based methods (Jin et al., 2019), machine learning methods (Su et al., 2019), Heuristic searching
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methods (Sun et al., 2021), and so on. As mentioned
before, channel selection needs to make a compromise
between two objectives: the number of selected channels and
classification accuracy. This perfectly coincides with the goal of
multiobjective evolutionary algorithms (MOEAs), which is to
make a compromise among multiple optimization objectives. In
recent years, multiobjective evolutionary algorithms (MOEAs)
have demonstrated their effectiveness in channel selection. For
example, the classic Non-dominated Sorting Genetic Algorithm-
II (NSGA-II), Multiobjective Evolutionary Algorithm Based on
Decomposition (MOEA/D), and Multiobjective Particle Swarm
Optimization (MOPSO) have been successfully applied for
channel selection in the task of single-modality -based BCIs
(Hasan et al., 2010; Moubayed et al., 2010; Kee et al., 2015).
Current studies show that hybrid BCI, which combines motor
imagery (MI) signals and steady-state visual evoked potentials
(SSVEPs), can achieve certain goals more efficiently than single-
modality -based BCI systems (Long et al., 2012; Ko et al.,
2014). However, relevant works only focus on either the MI
classification task (Jin et al., 2020; Sun et al., 2021) or the SSVEP
classification task (Zhang et al., 2017; Ravi et al., 2019). Fewworks
conduct channel selection for hybrid BCI tasks.

In this paper, a multitasking-based multiobjective
evolutionary algorithm (EMMOA) is proposed to perform
channel selection for MI and SSVEP tasks at the same time. In
EMMOA, the problems of channel selection for both MI and
SSVEP tasks can be regarded as multi-objective optimization
problems (MOPs). In order to make a balance between
classification accuracy and channel number, the problem of
channel selection for MI task can be formulated as a two-
objective optimization problem, which contains two objectives:
the classification accuracy for MI task and the number of
selected channels. Evolutionary multitasking mechanism, which
is inspired by bio-cultural models of multifactorial inheritance
(Gupta et al., 2015, 2016), provides the investigation of solving
multiple tasks via a single population concurrently. In the
evolutionary multitasking mechanism, different tasks will
experience information transfer during the evolution process
since they use the same population. Therefore, if multiple tasks
are related then the searching process of solving one task may
offer help in solving the other tasks (Gong et al., 2019; Bai
et al., 2021). As the evolutionary multitasking mechanism is
proved to be an efficient way to optimize multiple tasks, it has
been introduced in EMMOA to optimize MI and SSVEP tasks
simultaneously in this paper. Furthermore, EMMOA adopts
a two-stage framework to improve searching efficiency. The
first stage is based on an evolutionary multitasking mechanism
and aims to obtain the Pareto-optimal solutions (PS) for MI
and SSVEP tasks by one single population. The second stage is
local searching. The second stage constructs a three-objective
optimization problem, which used classification accuracy for MI
task, classification accuracy for SSVEP task, and the number of
selected channels as the optimization objectives. The constructed
three-objective problem is optimized according to decision
variable analysis based on the results obtained by the first stage.

The rest of this paper is organized as follows: Section 2
elaborates the data set, pre-processing and optimization methods

used in this paper. Section 3 presents experimental and result
analysis, followed by further discussion of this paper.

2. MATERIALS AND METHODS

2.1. Subjects and Data Acquisition
As shown in Figure 1, fifteen electrodes (i.e., “FC3,” “FC4,” “C5,”
“C3,” “C1,” “Cz,” “C2,” “C4,” “C6,” “CP3,” “CP4,” “POz,” “O1,” “Oz,”
and “O2”) were used to acquire EEG signals by using a high-
performance bio-signal amplifier. These electrodes were placed
at the frontal, central, parietal and occipital regions. And the
impedances were kept below 5 k�. EEG data was sampled at a
frequency of 256 Hz and band pass filtered at 0.1–30 Hz.

In this experiment, 7 healthy volunteers, aged from 21 to
30, were selected for data acquisition. Subjects had no prior
experience with the operation of hybrid BCI. They all gave
informed consent approved by the Ethics Committee.

2.2. Feature Selection and Classification
In our work, MI tasks including left- and right-hand imagery are
performed for pattern recognition. EEG signals are band pass
filtered from 5 to 30 Hz firstly. Then the features are extracted
by a well-known common spatial pattern (CSP) algorithm. The
CSP method is useful for discriminating two populations of EEG
dataset. The detailed methodology can be reviewed in Muller-
Gerking et al. (2004). And a radial basis function kernel support
vector machine (RBF-SVM) classifier is used for training these
feature vectors.

From Lin et al. (2006), we utilize the canonical correlation
analysis (CCA) method for SSVEP detection. CCA reflected
the correlation relationship between EEG response signals
and classical Fourier series at the stimulus frequency and
its harmonics. It is widely used for spectral analysis in the
biosignal process.

2.3. Multi-Objective Channel Selection
Problem Formulation
Suppose the number of total channels is K, then a solution for
the channel selection problem can be defined as a K-dimensional
vector x, as shown in Equation (1). xi(1 ≤ i ≤ K) is called a
decision variable. xi = 0 means the corresponding channel is not
selected. Otherwise, the corresponding channel is selected.

x = [x1, x2, ..., xK], xi ∈ {0, 1} (1)

The purpose of channel selection problems is to select a
smaller set of channels with as little sacrifice as possible in
classification accuracy. For the MI classification task, the first
objective function is the MI classification accuracy rate (MAR).
The second objective function is defined as NC = K − C,
where C is the number of selected channels (i.e., the number
of elements whose value is 1 in solution x). Therefore, the
ideal situation for an optimization algorithm is obtaining an
optimal solution x∗ that has the maximum values for both
MAR and NC. However, it is impossible to get the above-
mentioned x∗, since the confliction betweenMAR and NC. Thus,
evolutionary optimization algorithms will obtain a Pareto Set
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FIGURE 1 | Names and distribution of EEG electrodes.

(PS), which contains a set of Pareto-optimal solutions (non-
dominated solutions) (Wang et al., 2018). One solution x is called
a Pareto-optimal solution, if and only if there not exist any other
solutions that are better than x for all objective functions. The
Pareto optimal solutions are incomparable, since solution x may
be better than solution y for one objective function but worse
than y for the other one.

Similarly, the two objectives for SSVEP classification task
are the SSVEP classification accuracy rate (SAR) and NC. In
the proposed algorithm, the second stage aims to improve the
optimization performance for both MI and SSVEP tasks by
local searching, therefore a three-objective optimization problem,

which uses MAR, SAR, and NC as the objective functions, is
adopted in this stage.

2.4. Evolutionary Multitasking-Based
Multiobjective Optimization Algorithm
(EMMOA)
The framework of EMMOA is given in Figure 2. As shown in
Figure 2, EMMOA adopts a two-stage framework. In EMMOA,
the first stage is designed according to evolutionary multitasking
mechanism and uses one single population to optimize two tasks
(MI task and SSVEP task) simultaneously. In this case, the two
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FIGURE 2 | Framework of EMMOA.

tasks will experience information transfer during the evolution
process since they use the same population. The information
transfer can share underlying similarities between the two tasks
thereby facilitating improved optimization performance for both
MI and SSVEP tasks. Based on the output of the first stage, the
second stage aims to obtain the final output of the algorithm.
With the help of decision variables analysis, the local searching
strategy in the second stage makes a better compromise among
MI classification accuracy, SSVEP classification accuracy, and the
number of selected channels. More specifically, in the second
stage, a decision variable analysis operator will be carried out
on the Pareto-optimal sets obtained by the first stage and aims
to divide the decision variables into different groups. The local
searching operator will determine the searching directions of
individuals according to the type of each decision variable
and help the algorithm search more efficiently. The detailed
description of the two stages is given below.

In the first stage, suppose the population size is N and the
total number of channels is K, then the individual population
can be initialized by generating N individuals (solutions) and
each individual contains K elements. In this case, the individual
population can be initialized as a N × K matrix. Each element
in the individual population is uniformly generated from [0,
1]. If the value of an element is larger than 0.5, then the
element will take the value of 1. Otherwise, the element will
be set to 0. By associating each individual with a task label
by the task assignment operator. In the initialization step,
the task assignment operator is carried out by giving each
individual the label, which is generated from {1, 2} randomly.
In the evolution process, the task labels of individuals are
inherited from their parents. Each individual will optimize the
task that is specified by its task label. For a task label, 1 and 2
represent the corresponding individual is assigned to optimize
MI task and SSVEP task, respectively. The individual population
is updated by using the population evolution step, which
includes the tournament selection operator (Zhang et al., 2016),

partial-mapped crossover operator (Ismkhan and Zamanifar,
2015), and flip-bit mutation operator (Chicano et al., 2015).
The tournament selection operator, partial-mapped crossover
operator, and simple mutation operator are classic operators,
which are widely adopted in evolutionary algorithms to generate
offspring populations (lines 1–21 inAlgorithm 1). The task labels
of offspring individuals are inherited from their parents in the
evolution process (line 7 and line 19 in Algorithm 1). After
updating the individual population (lines 22–23 inAlgorithm 1),
the Pareto-optimal sets for MI and SSVEP tasks will be
updated accordingly (line 24 inAlgorithm 1). Therefore, the first
stage will output two Pareto-optimal sets (namely PS_MI and
PS_SSVEP) forMI and SSVEP tasks separately. PS_MI contains a
set of non-dominated solutions which aim to optimizeMAR and
NC, while PS_SSVEP contains a set of non-dominated solutions
which aim to optimize SAR and NC. In this paper, the maximum
size of both PS_MI and PS_SSVEP is set to 100. Take PS_MI
for an example, if the size of PS_MI exceeds 100, then the
non-dominated solutions in PS_MI will be decreased according
to Crowding Distance (Deb et al., 2002). Crowding Distance,
which is proposed to estimate the density of solutions, is widely
adopted to maintain population diversity in EAs. The solution
with a larger Crowding Distance value can be considered to
make great contributions for maintaining population diversity.
Therefore, if the number of the solutions in PS_MI exceeds 100,
then the members with larger Crowding Distance values will
be remain.

The second stage is implemented based on the output of
the first stage, i.e., the current Pareto-optimal sets for MI
and SSVEP tasks (PS_MI and PS_SSVEP). The purpose of the
second stage is to obtain a set of Pareto-optimal solutions that
make a compromise among MI classification accuracy, SSVEP
classification accuracy, and the number of selected channels.
Therefore, in this stage, the optimization problem becomes a
maximum three-objective optimization with MAR, SAR, and
NC as its objective functions. In this case, the Pareto-optimal
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Algorithm 1 First stage of EMMOA.

Input:

POP (the individual population)
PS_MI and PS_SSVEP (the original Pareto-optimal sets for MI
and SSVEP tasks)
Output:

PS_MI and PS_SSVEP (the updated Pareto-optimal sets for MI
and SSVEP tasks)

1: Generate parent population (parent_POP) by tournament
selection operator from POP;

2: i = 1, offspring_POP= ∅;
3: while i <size(parent_POP) do
4: Select parent_POP(i) and parent_POP(i+1) as parent1 and

parent2, respectively;
5: if task_label(parent1)=task_label(parent2) then
6: Generate two offspring individuals (offspring1 and

offpring2) according to partial-mapped crossover
operator;

7: task_label(offspring1)=task_label (parent1),
task_label(offspring2)= task_label (parent2);

8: else

9: Obtain r1 which is randomly generated from [0, 1];
10: if r1 is smaller than the predefined crossover probability

then

11: Generate two offspring individuals (offspring1 and
offpring2) according to partial-mapped crossover
operator;

12: else

13: Obtain r2 which is randomly generated from [0, 1];
14: if r2 is smaller than the predefined mutation

probability then
15: Generate two offspring individuals (offspring1 and

offpring2) according to flip-bit mutation operator;
16: end if

17: end if

18: end if

19: task_label(offspring1) = task_label (parent1),
task_label(offspring2)= task_label (parent2);

20: offspring_POP = offspring_POP ∪ { offspring1,offspring2
};

21: end while

22: temp_POP= POP ∪ offspring_POP;
23: Obtain the next POP by selecting the fittest individuals from

temp_POP
24: Update PS_MI as the non-dominated solutions from the

original PS_MI and the individuals with task_label = 1 in
POP and update PS_SSVEP as the non-dominated solutions
from the original PS_SSVEP and the individuals with
task_label= 2 in POP.

set outputted by the whole algorithm consists of a set of non-
dominated solutions which aim to make a compromise among
MAR, SAR, and NC. To improve the searching efficiency, a local
searching operator, which is based on a decision variable analysis
strategy, is introduced in this stage.

TABLE 1 | Parameter settings of algorithms.

Algorithm Parameter settings

EMMOA Population size: 100; crossover

parameter: 0.8; mutation probability: 0.2

NSGA-II Population size: 100

MOEA/D Population size: 105

MOPSO Population size: 100

FIGURE 3 | Classification accuracies for MI and SSVEP tasks with different

numbers of selected channels.

The main idea of the proposed decision variable analysis
operator is to divide the decision variables into three groups:
add_group, delete_group, and invalid_group. The division of
the first 11 and the last 4 decision variables are based on
PS_SSVEP and PS_MI, respectively. Take the jth (1 ≤ j ≤

11) decision variable for an example. At first, initialize flag
to 0. For a non-dominated solution (xi) in PS_SSVEP, if the
classification accuracy is raised with xi(j) = 0, then one
can consider the performance of xi will be improved without
selecting the jth channel. In this case, flag = flag − 1. If
xi(j) = 1 gets a better classification accuracy, then flag =

flag + 1. If the classification accuracy is not affected by
xi(j), then the value of flag will remain unchanged. All the
members in PS_SSVEP will be executed to get the final value
of flag.The jth decision variable will be divided into different
groups according to the value of flag. The detailed procedure
of the proposed decision variable analysis operator is given in
Algorithm 2.

After decision variable analysis, the local searching operator
is implemented on PS_MI and PS_SSVEP. The detailed
procedure of the proposed local searching operator is shown
in Algorithm 3. For the Pareto-optimal solutions in PS_MI,
the searching directions are obtained according to the types
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FIGURE 4 | Average classification accuracies for MI and SSVEP tasks with

different numbers of selected channels for all subjects.

of the last four decision variables (lines 2–11 in Algorithm 3).
For the Pareto-optimal solutions in PS_SSVEP, the searching
directions are obtained according to the types of the first eleven
decision variables (lines 12–21 in Algorithm 3). The current
Pareto-optimal set of EMMOA will be acquired by selecting the
non-dominated solutions in the original Pareto-optimal set and
newPOP obtained by the local searching operator.

3. EXPERIMENT AND RESULT ANALYSIS

3.1. Experimental Setup
This section contained two experiments. The first one aimed to
demonstrate whether the proposed channel selection algorithm
(EMMOA) could obtain a smaller set of channels with as little
sacrifice as possible in MI and SSVEP classification accuracy. The
second one aimed to evaluate the effectiveness of EMMOA by
comparing with three widely used multiobjective optimization
algorithms, including NSGA-II (Deb et al., 2002), MOEA/D
(Zhang and Li, 2007), and MOPSO (Coello et al., 2004). The
number of total function evaluations was 10000 in a single run
for all 4 algorithms. The detailed parameter settings of algorithms
were given in Table 1.

3.2. Results and Analysis
The purpose of the proposed EMMOA is to find the
optimum number of channels that would result in a promising
performance for both MI and SSVEP tasks. Take subject 3 as
an example, Figure 3 illustrated the classification accuracies for
MI and SSVEP tasks with different numbers of selected channels.
It can be observed from Figure 3, the classification accuracy for
MI task tends to become higher at first and then become lower
as the number of selected channels increases. The classification
accuracy for SSVEP task tends to be stable when the number of

Algorithm 2 Detailed procedure of division variable analysis
operator.

Input:

PS_MI and PS_SSVEP
n1(number of the solutions in PS_MI), n2(number of the

solutions in PS_SSVEP)
Output:

add_group, delete_group, and
invalid_group

1: add_group=∅, delete_group = ∅, invalid_group = ∅;
2: for j = 1 TO 11 do
3: flag = 0;
4: for i = 1 TO n1 do
5: x is the ith solution in PS_MI, x1 = x;
6: x_MAR is the MI classification accuracy of the ith

solution in PS_MI;
7: if x1(j) = 0 then
8: x1(j) = 1 and x1_MAR is theMI classification accuracy

of x1;
9: if x_MAR < x1_MAR then

10: flag = flag + 1 ;
11: else if x_MAR > x1_MAR then

12: flag = flag − 1 ;
13: end if

14: else

15: x1(j) = 0 and X1_MAR is the MI classification
accuracy of x1;

16: if x_MAR < x1_MAR then

17: flag = flag − 1 ;
18: else if x_MAR > x1_MAR then

19: flag = flag + 1 ;
20: end if

21: end if

22: end for

23: if flag > 0 then
24: add_group = add_group ∪ {i};
25: else if flag< 0 then
26: delete_group = delete_group ∪ {i};
27: else

28: invalid_group = invalid_group ∪ {i};
29: end if

30: end for

selected channels. Figure 4 illustrated the average classification
accuracies for all 7 subjects with different numbers of selected
channels. Figure 4 demonstrated that the larger number of
selected channels cannot lead to better performance for MI
and SSVEP tasks. This may indicate the necessity of selecting a
promising subset of channels.

Table 2 demonstrated the classification accuracy for MI and
SSVEP tasks by using all channels and the reduced set of EEG
channels selected by the proposed EMMOA. As Table 2 shows,
EMMOA can find a smaller set of channels without depredating
the classification performance for all 7 subjects. For example, the
classification accuracies for MI and SSVEP tasks using 5 channels
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Algorithm 3 Detailed procedure of local searching operator.

Input:

add_group, delete_group, and invalid_group
n1 (number of the solutions in PS_MI), n2 (number of the

solutions in PS_SSVEP)
Output:

newPOP

1: newPOP=∅;
2: for i = 1 TO n1 do
3: x is the ith solution in PS_MI, x1 = x;
4: r is a random integer from [12, 15];
5: if r ∈ add_group and x(i) = 0 then
6: x1(i) = 1;
7: else if r ∈ delete_group and x(i) = 1 then
8: x1(i) = 0;
9: end if

10: newPOP = newPOP ∪x1;
11: end for

12: for i = 1 TO n2 do
13: x is the ith solution in PS_SSVEP, x1 = x;
14: r is a random integer from [1, 11];
15: if r ∈ add_group and x(i) = 0 then
16: x1(i) = 1;
17: else if r ∈ delete_group and x(i) = 1 then
18: x1(i) = 0;
19: end if

20: newPOP = newPOP ∪x1;
21: end for

TABLE 2 | Classification accuracies for each subject by using all channels and the

selected channels obtained by EMMOA.

Subject
All Channels Using EMMOA

MAR (%) SAR (%) MAR (%) SAR (%) Number of

selected

channels

Subject-1 1 0.6111 1 0.6667 4

Subject-2 0.5824 0.5 0.6574 0.5833 5

Subject-3 0.6571 0.6388 0.7143 0.6389 5

Subject-4 1 0.8611 1 0.9444 4

Subject-5 0.67 0.5833 0.75 0.5833 4

Subject-6 1 0.7222 1 0.7222 5

Subject-7 1 0.9722 1 1 4

selected by EMMOA are better than those using all channels.
For subject 6, the classification performance using all channels
is same to that of using 5 channels. However, a smaller number
of channels is certainly more convenient for real-life applications.
Table 3 gives the average classification accuracies for all subjects
by using all channels and the Pareto-optimal set obtained by
EMMOA in a single run. It can be observed from Table 3, the
classification performance by using 6, 7, and 8 channels selected
by EMMOA is better than using all channels. Therefore, the

TABLE 3 | Average classification accuracies for all subjects by using all channels

and the pareto-optimal set obtained by EMMOA for all subjects.

All channels PS by EMMOA

MAR (%) SAR (%) MAR (%) SAR (%) Number of selected channels

0.8442 0.6984

0.5661 0.6032 2

0.5661 0.6944 3

0.8490 0.6032 3

0.8561 0.5893 3

0.8561 0.6944 4

0.8597 0.6012 4

0.5661 0.6984 5

0.8597 0.6944 5

0.8561 0.6984 6

0.8581 0.6984 7

0.8611 0.6468 7

0.8611 0.6984 8

TABLE 4 | Average results obtained by all algorithms.

Algorithm Average

MAR (%)

Average

SAR (%)

Average number

of selected

channels

Average

rank

NSGA-II 0.7606 (4) 0.6601 (2) 4.48 (1) 2.33

MOEA/D 0.8480 (1) 0.6586 (2) 6.67 (4) 2.67

MOPSO 0.7684 (3) 0.6553 (4) 4.83 (3) 3.33

EMMOA 0.7969 (2) 0.6653 (1) 4.57 (2) 1.67

TABLE 5 | Maximum results obtained by all algorithms.

Algorithm Maximum

MAR (%)

Maximum

SAR (%)

Number of selected

channels

NSGA-II 0.8561 0.6032

3
MOEA/D 0.8362 0.6032

MOPSO 0.5661 0.6944

EMMOA 0.8561 0.6944

NSGA-II 0.8597 0.6944

5
MOEA/D 0.8526 0.6548

MOPSO 0.8597 0.6984

EMMOA 0.8611 0.6984

NSGA-II 0.8611 0.6984

7
MOEA/D 0.8397 0.6984

MOPSO 0.8597 0.6984

EMMOA 0.8611 0.6984

experimental results demonstrated the effectiveness of using the
proposed channel selection algorithm.

For further comparison of the proposed EMMOA with
other classical multi-objective evolutionary algorithms, three
algorithms, including NSGA-II, MOEA/D and MOPSO, are
adopted in this section. All the comparative algorithms have
been running 30 times to get the statistical results, which are
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FIGURE 5 | Convergence of four algorithms for MI task.

shown in Table 4. In Table 4, the numbers in brackets indicate
the rank of the corresponding algorithm in terms of average
MI accuracy, average SSVEP accuracy, and average number
of selected channels, respectively. A smaller rank value of an
algorithmmeans a better performance achieved by the algorithm.
In the last column of Table 4, EMMOA obtained the smallest
(best) average rank. In other words, the proposed channel
selection algorithm achieved the best performance in terms of
average rank. Table 5 gives the maximum average classification
accuracies for MI and SSVEP tasks in the PS obtained by all
the 4 algorithms with different numbers of selected channels.
The numbers in boldface give the best accuracy rates in different
cases. It can be observed from Table 5, EMMOA obtained the
best classification accuracies for all 3 cases.

The results in Tables 4, 5 demonstrated the effectiveness of
the proposed algorithm. This may be because the multitasking
mechanism adopted in the first stage of EMMOA help the
algorithmfindmore promising PS for each task efficiently. On the
other hand, with the help of decision variables analysis, the local
searching strategy in the second stage makes a better compromise
among MI classification accuracy, SSVEP classification accuracy,
and the number of selected channels.

Figures 5, 6 illustrated the convergence of four algorithms
for MI and SSVEP tasks, respectively. In Figures 5, 6, the x-axis
represented the number of function evaluations and the y-axis
displayed the maximum classification accuracy averaged over
all the 7 subjects. As Figure 5 showed, the proposed EMMOA
obtained the second-best and the best convergence speed for
MI and SSVEP tasks among four algorithms, respectively. This
is because the decision variable analysis strategy adopted in
EMMOA helped the algorithm searching more efficiently.

4. DISCUSSION

It can be observed from Figure 4, the best classification
accuracy can be achieved when the number of selected
channels is not very large. This observation can be

FIGURE 6 | Convergence of four algorithms for SSVEP task.

TABLE 6 | Results outputted by decision variable analysis operator.

First 11 channels (for MI Task) Last 4 channels (for SSVEP Task)

Middle Stage of EMMOA

add_group {2, 3, 5, 8, 9} add_group {12, 13, 14, 15}

delete_group {1, 7, 10, 11} delete_group {}

invalid_group {6} delete_group {}

Last stage of EMMOA

add_group {2, 3, 4, 7, 8, 9} add_group {12, 13, 14, 15}

delete_group {1, 5, 6, 10, 11} delete_group {}

invalid_group {} delete_group {}

validated by the results demonstrated in Table 3. The
classification accuracies for both MI and SSVEP tasks are
higher than 0.65 when the number of selected channels
is larger than 3. As Figure 4 showed, the improvement
in classification accuracy is not obvious by adopting 4
channels when compared with using more than 4 channels.
Especially for MI task, the classification accuracy by using
4 channels is even better than using all 15 channels.
The phenomenon is in agreement with the conclusion in
Moubayed et al. (2010), which showed that some channels
may bring artifacts and then lead to a degeneration in
classification accuracy.

In the proposed algorithm, the decision variable analysis
operator played a vital role in the second stage of EMMOA,
since it provided searching directions for the next local
searching operator. Table 6 showed the results outputted by
the decision variable analysis operator in the middle and last
stages of the optimization process by using EMMOA. add_group,
delete_group and invalid_group contains a set of channels that
are considered to be profitable, disadvantageous, and invalid for
the corresponding classification task. As Table 6 shows, most
results obtained by the decision variable analysis operator in
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FIGURE 7 | The distribution diagrams in conditions of different numbers of selected channels.

the middle stage overlap with those obtained in the last stage.
However, the results in different stages are not exactly the same.
This phenomenon may indicate the uncertainty of the decision
variable analysis operator to some extent. As described in section
2.4, the performance of the second stage of EMMOA depends on
the results of the proposed decision variable analysis operator.
Therefore, the second stage may not obtain a promising output if
the decision variable analysis operator cannot get an appropriate
division of the decision variables, especially in the early stage
of the evolution process. How to improve the stability of the
proposed decision variable analysis operator will be the next work
of this paper.

As shown in Figure 7, the distribution diagrams were
illustrated in conditions of different numbers of selected
channels. Evidently, the electrodes were first eliminated from
motor cortex when the number was sufficient for MI and SSVEP
recognition. And the quantity of channels were close between
central area and occipital area along with the decline of total
number. Meanwhile, the priority of selecting was unclear in these
two regions because of the alternate quantitative superiority.
However, the feature information needed to be reserved those
extracted from left- and right- motor cortex for spatial filtering.
Thus, the limitation of channel number in the occipital area
might be firstly considered as the kernel factor of EMMOA.

5. CONCLUSION

In our study, a multitasking-based multiobjective evolutionary
algorithm (EMMOA) was proposed to select appropriate
channels for these two classification tasks at the same
time. Moreover, a two-stage framework was introduced
to balance the number of selected channels and the
classification accuracy in the proposed algorithm. The
experimental results verified the feasibility of multiobjective
optimization methodology for channel selection of hybrid
BCI tasks.
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