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Peptidome Surveillance Across
Evolving SARS-CoV-2 Lineages
Reveals HLA Binding Conservation in
Nucleocapsid Among Variants With
Most Potential for T-Cell Epitope
Loss in Spike
Kamil Wnuk*, Jeremi Sudol , Patricia Spilman and Patrick Soon-Shiong

ImmunityBio, Inc., Culver City, CA, United States

To provide a unique global view of the relative potential for evasion of CD8+ and CD4+ T
cells by SARS-CoV-2 lineages as they evolve over time, we performed a comprehensive
analysis of predicted HLA-I and HLA-II binding peptides in Spike (S) and Nucleocapsid (N)
protein sequences of all available SARS-CoV-2 genomes as provided by NIH NCBI at a bi-
monthly interval between March and December of 2021. A data supplement of all
B.1.1.529 (Omicron) genomes from GISAID in early December was also used to
capture the rapidly spreading variant. A key finding is that throughout continued viral
evolution and increasing rates of mutations occurring at T-cell epitope hotspots, protein
instances with worst-case binding loss did not become the most frequent for any Variant
of Concern (VOC) or Variant of Interest (VOI) lineage; suggesting T-cell evasion is not likely
to be a dominant evolutionary pressure on SARS-CoV-2. We also determined that
throughout the course of the pandemic in 2021, there remained a relatively steady ratio
of viral variants that exhibit conservation of epitopes in the N protein, despite significant
potential for epitope loss in S relative to other lineages. We further localized conserved
regions in N with high epitope yield potential, and illustrated heterogeneity in HLA-I binding
across the S protein consistent with empirical observations. Although Omicron’s high
volume of mutations caused it to exhibit more epitope loss potential than most frequently
observed versions of proteins in almost all other VOCs, epitope candidates across its
most frequent N proteins were still largely conserved. This analysis adds to the body of
evidence suggesting that N may have merit as an additional antigen to elicit immune
responses to vaccination with increased potential to provide sustained protection against
COVID-19 disease in the face of emerging variants.
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INTRODUCTION

The ability to understand and predict the potential of new SARS-
CoV-2 variants to escape immune responses elicited by previous
lineages is vital to meeting and overcoming the challenge of the
COVID-19 pandemic. Amidst the multitude of parallel efforts to
characterize the adaptive immune response to the virus (1–3)
and the potential for it to be sustained against variants, many
have highlighted T-cell responses as playing an important role in
disease control, resolution, and immunity (4–10). Underscoring
the importance of T cells, earlier reports revealed that CD4+ and
CD8+ T-cell responses against the Spike (S), Membrane (M), and
Nucleocapsid (N) proteins of original SARS-CoV persisted for
up to 11 years post infection (11) and N-specific T-cell reactivity
to 17 years post infection (12).

Persistence of T-cell reactivity against viral proteins does not,
however, indicate that such pre-existing cellular immunity will
be sufficiently protective against highly mutated viral variants.
This risk has come to the forefront in the present COVID-19
pandemic because SARS-CoV-2 variants more transmissible
than the original strain have emerged at a rapid rate and
spread throughout the globe.

There is some encouraging evidence that, due to the broad
CD4+ and CD8+ T-cell responses against multiple SARS-CoV-
2 structural proteins (7, 10, 13–15), it is unlikely that variants
will escape the majority of T-cell immunity conferred by prior
infection or vaccination. In a study of peripheral blood
mononuclear cells (PBMCs) from 57 recovered or vaccinated
subjects, Tarke et al. (16) reported that on average 93% of
CD4+ and 97% of CD8+ T-cell epitopes verified from the
reference SARS-CoV-2 genome (14) were conserved across
genomes selected to represent 4 Variants of Concern (VOC).
Across the 4 variants, these conserved epitopes were found to
account for an average of 91.5% and 98.1% of CD4+ and CD8+
T-cell recognition, respectively. The authors went on to
demonstrate that COVID-19 patients showed no significant
difference in T-cell reactivity to peptide pools spanning 4 VOC
lineages compared to peptides sourced from the SARS-CoV-2
reference/ancestral genome (NCBI Reference Sequence:
NC_045512). This was true not only for peptide pools specific
to S, but also those spanning proteins across the whole viral
genome. Individuals who had received mRNA vaccines showed
some diminished T-cell response to S B.1.351 and B.1.427/B.1.429
variant peptide pools, but overall, responses were considered
robust. Conversely, Lucas et al. (17) found decreased CD8+ (but
not CD4+) T-cell responses against S peptides from the P.1 lineage
compared to peptides from the reference/ancestral lineage in
individuals who had received mRNA vaccines. Further, in
recovered COVID-19 patients, Agerer et al. (18) confirmed that
single mutations in CD8+ T-cell epitopes led to diminished HLA-I
binding, a weaker T-cell response, and ineffective cytotoxicity in
HLA-matched COVID-19 patients. Thus, mutations in SARS-
CoV-2 may evade aspects of the adaptive immune response at the
narrow scope of specific epitopes and HLAs.

Additionally, individuals or populations with significantly
different HLA phenotypes than those present in the referenced
Frontiers in Immunology | www.frontiersin.org 2
study cohorts may exhibit different levels of evasion risk. This may
be one possible explanation for conflicting findings across studies
(16, 17). As another example, even within a geographically limited
cohort, CD8+ T-cell epitopes were found to vary significantly
based on patient HLA-I repertoires (14).

Even if the risk for T-cell evasion by variants has not, thus far,
appeared to be great, given the emergence of highly-mutated new
variants such as B.1.1.529 (Omicron) (19), continued monitoring
of the potential impact on T-cell reactivity is warranted. Our
approach to understanding the implications of viral evolution
and provide a comprehensive view of CD4+ and CD8+ evasion
potential is the assessment of the dynamics of epitope – and
specifically predicted HLA binding - changes with time. HLA
presentation is an essential precursor to T-cell recognition, and
recent results have demonstrated that immunodominant CD4+
T-cell epitopes specific to SARS-CoV-2 correlate with HLA
binding promiscuity (14). We analyzed both the S and N
peptidomes, motivated by next generation vaccines currently in
development that include both S and N antigens (20–22) and
findings discussed above indicating broad T-cell response across
structural proteins.

We identified viral protein regions predicted to be the highest
frequency sources of HLA-I and HLA-II binding peptides, and
tracked the evolution of binding loss (and thus latent potential
for T-cell evasion) across all available viral genomes at bi-
monthly time points throughout 2021. Narrowing our focus to
specific protein locations with peak frequencies of potential
epitopes, that is, potential epitope hotspots, improved
robustness to noise when ranking viral variants according to
risk of epitope loss, and simplified identification of critical
regions or HLAs most impacted by epitope loss.

Our predictive analysis differs from that of others by focusing
on the evolution of SARS-CoV-2 viral lineages, integrating
results across a broad range of peptide lengths, considering
impacts of observed mutation co-occurrence by analyzing full
protein sequences versus independently considering key
mutations, demonstrating efficacy of CD4+ T-cell epitope
predictions, and by offering a distinct approach to capturing a
comprehensive set of HLA-I and HLA-II alleles. In an effort to
address fairness in studying the potential impact of SARS-CoV-2
variants on world populations, we sampled a representative set of
HLA-I and HLA-II alleles based not only on documented
frequency of appearance, but also leveraged learned
embeddings to capture functionally similar HLA clusters.
These functional groupings were then used in the hope of
ensuring that a uniquely behaving set of HLAs was not
excluded due to absence in majority populations.

Access to functional embeddings was enabled by in-house
neural networks trained to predict peptide binding to HLA-I and
HLA-II molecules. In our tests, the models compared favorably
to the state-of-the-art (NetMHCpan-4.1), and opened the door
to additional capabilities including abstaining from classification
in cases of ambiguity, and the ability to visualize and leverage
intermediate representations of HLAs or peptides.

Over the time period analyzed, there remained a relatively
steady ratio of viral variants that exhibited conservation of N
June 2022 | Volume 13 | Article 918928
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epitopes among lineages exhibiting most potential for epitope
loss in S. VOC lineages generally had greater overall loss in
binding for both HLA-I and HLA-II than VOI lineages across
both S and N proteins. This correlates with the expectation of
increased potential for immune evasive viral variants to emerge
over time as the pandemic progresses, highlights that lineages
exhibiting more rapid spread also have more opportunity to
develop evasion, and underscores the critical role of genomic
surveillance to uncovering how the immune landscape of viral
variants may be shifting. Interestingly, we also found that within
evolutionary trajectories of VOC and VOI lineages, protein
instances exhibiting worst-case binding loss have not become
the most frequent versions of S or N for any lineage; which
suggests T-cell evasion may not be a dominant evolutionary
pressure on SARS-CoV-2. This observation held true throughout
the initial surge of the Omicron variant, which despite its high
rate of mutations in S compared to other VOCs, also
demonstrated epitope conservation in the N protein. Finally,
we used our analyses to identify conserved regions in N most
likely to yield immunodominant CD4+ and CD8+ T-cell
epitopes, and illustrate heterogeneity of CD8+ T-cell epitope
loss potential in the S protein across our comprehensive set
of HLAs.

We provide our snapshots of the evolution of the SARS-CoV-2
peptidome as interactive visualizations at: https://research.
immunitybio.com/scov2_epitopes/. The interactive visualization
link also includes in-depth examples demonstrating localization of
potential epitope loss for most frequent versions of S and N
proteins corresponding to VOC lineages.
RESULTS

Localization of Potential Epitope Hotspots
on Viral Proteins
We observe that when HLA binding predictions are evaluated at
all possible peptides in a sliding window along a source protein
(see Methods), certain regions exhibit an increased frequency of
predictions with higher binding probability relative to elsewhere
on the same protein. When overlapping peptides agree on higher
probabilities of predicted binding, the chance that one or more
HLA binders do in fact exist within their region of overlap is
increased. This observation was leveraged to narrow the search
space of our analysis only to protein regions most likely to
impact CD8+ or CD4+ T-cell responses. Potential epitope
hotspot selection serves to improve robustness to noise (from
protein locations less likely to be impactful to immune response)
when globally comparing viral variants, and enables quick
localization of where potential epitope loss is most significant
when more resolution is desired.

For each protein considered, hotspot regions were identified
for a representative set of HLA-I only, HLA-II only, and an
aggregate that integrated all HLA-I and HLA-II binding
prediction information to create a map of pan-HLA potential
epitope hotspots. Representative sets of HLA-I and HLA-II
alleles used to inform hotspot selection were chosen by
Frontiers in Immunology | www.frontiersin.org 3
combining both global allele frequency information as well as
functional clustering based on embeddings from our trained
HLA binding prediction models, to ensure rare but functionally
unique HLAs were represented. Potential epitope hotspot
regions are shown in Figure 1 for both S and N proteins of the
SARS-CoV-2 reference genome, NCBI Reference Sequence
NC_045512 (23). Hotspot regions identified for four additional
reference proteins highlighted by Saini et al. (15) as containing
the top T-cell epitope counts are also shown in Supplementary
Figure S1: Membrane (M), Envelope (E), Open Reading Frame
1ab (ORF1ab) and ORF3a. Despite not being a major epitope
contributor, E was included in the latter list so that all structural
proteins were included in validation.

S was found to have 18 HLA-I binding hotspots, 8 HLA-II
binding hotspots, and 12 pan-HLA binding hotspots
(Figures 1A, C, and E); whereas the much shorter N protein
featured 4 HLA-I hotspots, 3 HLA-II hotspots, and 4 pan-HLA
hotspots (Figures 1B, D, and F). Note that pan-HLA hotspots
are not a simple union of HLA-I and HLA-II hotspots, so regions
that satisfied HLA-I or HLA-II hotspot criteria independently
may not satisfy pan-HLA hotspot thresholds upon fusion of
predictions (see Methods for further details).

Several notable locations on the S protein fall within our
hotspot locations. For example, the receptor binding domain
(RBD) of S that interfaces with host cell angiotensin-converting
enzyme 2 (ACE2) (24) overlaps pan-HLA hotspots 4, 5; HLA-I
hotspots 6, 7, 8; and HLA-II hotspot 3. From among all the
Centers for Disease Control (CDC) listed substitutions of
therapeutic concern (implicated in contributing to increased
transmissibility, severity, or reduced susceptibility to therapies)
based on data up to July 31, 2021 (25); only E484K does not fall
within any hotspots. For all others: L452R falls within HLA-I
hotspot 7; K417N/K417T is in pan-HLA hotspot 8, HLA-I hotspot
6, HLA-II hotspot 3; and N501Y falls in pan-HLA hotspot 5 and
HLA-I hotspot 8.

In alignment with our analysis, response frequencies from
empirically confirmed epitopes aggregated across 25 studies
spanning 1197 human subjects (9) aligned well with our
predictions (Figure 2 and Table 1). Further, epitopes verified
at the scope of individual studies such as by Saini et al. (15) were
shown to consistently be in zones that align with our hotspot
predictions, and were consistently assigned high HLA binding
confidence values (Supplementary Tables S1 and S2).

Verified T-Cell Epitope Response
Frequencies Correlate With
Aggregated Predictions
Grifoni et al. (9) collected confirmed CD8+ and CD4+ epitopes
across 25 studies and used the Immunome Browser (26, 27)
hosted by IEDB [https://www.iedb.org/] (28) to compute
position-specific T-cell response frequency (RF) along with
confidence interval (CI) for key viral proteins. The RF values
captured the number of individuals and assays reporting positive
responses to a peptide including that particular residue. Using
their provided data, we replicated the RF calculation to validate
alignment with our aggregate HLA binding predictions and
June 2022 | Volume 13 | Article 918928
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epitope hotspot locations for both the S and N proteins
(Figures 2A–D).

In N, the CD8+ RF lower bound (CI at 95%) correlated with our
aggregated HLA-I predictions with Spearman rs = 0.522 (p = 1.46e-
30); and with our pan-HLA aggregate with rs = 0.507 (p = 1.14e-28).
The correlation of the CD4+ RF lower bound in N was at rs = 0.560
(p = 6.27e-36) and rs = 0.634 (p = 2.51e-48) with our HLA-II and
pan-HLA predictions, respectively. For the S protein, the CD8+ RF
lower bound correlates with our HLA-I and pan-HLA aggregated
predictions at rs = 0.412 (p = 2.51e-53) and rs = 0.236 (p = 1.46e-17);
and the CD4+ RF lower bound correlates with our HLA-II and pan-
HLA predictions at rs = 0.201 (p = 4.21e-13) and rs = 0.302
(p = 2.65e-28).

Note that the lower bound CI for RF is a function of number
of subjects for which a certain protein position was interrogated.
Thus we do not expect perfect correlation due to non-uniform
coverage across studies, as well as the understanding that HLA
binding is necessary but not sufficient for T-cell response.
Further, the HLA composition of aggregated studies (9) is
limited by the regions in which each study was performed, and
thus not necessarily reflective of the same global distribution
Frontiers in Immunology | www.frontiersin.org 4
used to inform our HLA set. However, these correlations indicate
that when binding predictions are aggregated across a diverse set
of HLAs and peptide lengths, the resulting representation of
binding promiscuity is useful for predicting immunodominant
protein regions yielding peak T-cell epitope frequencies across
large samples of subjects.

Although correlation of aggregated HLA predictions with RF
lower bound was lower in S than N, significant peaks of the RF
were effectively captured in both proteins even when relative
magnitudes differed. Employing the same methodology used to
select our potential epitope hotspots on the unsmoothed RF
lower bound, we found that the majority of regions identified
based on the RF signal were indeed covered by our predicted
epitope hotspot regions (Table 1).

To layer insight from empirical epitope evidence across
studies on top of our predictive analysis, we ranked our
predicted epitope hotspots according to the maximum RF
lower bound within each hotspot range (Figure 3). This helped
interpret our subsequent results with an observation driven
approach to prioritizing the impact of HLA binding changes
that lead to potential for epitope loss.
A B

D

E F

C

FIGURE 1 | Epitope hotspots in SARS-CoV-2 proteins. Protein regions with peak frequency of predicted binding peptides (potential epitope hotspots) across HLAs are
indicated in red for our key proteins of interest from the SARS-CoV-2 reference genome (NCBI Reference Sequence: NC_045512): Spike (A, C, E) and Nucleocapsid (B,
D, F). Red lines (pooled max score) show the value of the nearest maxima of the aggregate signal (avg bind score in blue) within a set sliding window size (9 amino acids
for HLA-I, 15 for HLA-II, 12 for pan-HLA). For each protein we show hotspots on aggregate signals across all HLA-I molecules only (A, B), HLA-II only (C, D), as well as
the combined pan-HLA signal (E, F). The legend in panel (B) applies to all panels. Aggregate signals (avg bind score in the legend) are obtained by a filtered averaging of
predicted binding values across our representative HLA set. See Methods for details.
June 2022 | Volume 13 | Article 918928
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Verified CD8+ T-Cell Epitopes Coincide
With Predicted Epitope Hotspots
We also validated predictions against an individual study in
which DNA-barcoded peptide-MHC complex (pMHC)
multimers were used to identify 122 unique epitopes
recognized by SARS-CoV-2-specific CD8+ T cells across 10
HLA-I molecules in 18 COVID-19 patients (15). Of the total
unique epitopes from across the viral genome, 118 unique
epitopes (119 unique pMHC complexes) were found to
originate from the set of 6 proteins considered in Figure 1 and
Supplementary Figure S1. The most frequent sources of
epitopes reported were the ORF1, S, and ORF3 proteins.
Further, 4 immunodominant epitopes (recognized by T cells
in > 50% of analyzed patients) were found to come from ORF1
and one from N.
Frontiers in Immunology | www.frontiersin.org 5
For all proteins illustrated in Figures 1 and S1 except ORF3a,
the majority of verified epitopes occurred at our pan-HLA
potential epitope hotspots (Supplementary Table S1). As
previously shown with NetMHCpan-4.1 rank score results
(15), we also verified that immunogenic pMHC complexes
were dominated by high-confidence binding predictions from
our system (Supplementary Table S2). Following the prior
example of Saini et al. (15), we reported Mann-Whitney test p-
values when comparing predictions for immunogenic pMHCs
versus those that did not trigger immune response. Due to the
equivalence of the Mann-Whitney test with ROC AUC, the latter
was also included for clarity. Note that both our classifiers and
NetMHCpan-4.1 were trained to predict MHC binding, whereas
the ROC AUC scores in Supplementary Table S2 reflect how
much predicted binding contributes to separability of
A B

DC

FIGURE 2 | Epitope response frequency correlates with aggregated binding predictions in SARS-CoV-2 proteins. For CD8+ T-cell epitopes collected from across 25
studies by Grifoni et al. [9] we found position-specific response frequency (RF) (dash red) and RF lower bound (95% confidence interval) averaged with a 10 amino acid
sliding window (solid red) correlated with our aggregated HLA-I (turquoise) and pan-HLA (purple) binding prediction scores in the S (A) and N (B) proteins. CD4+ T-cell
epitope RF (dash blue) and RF lower bound (solid blue) also correlated with HLA-II (green) and pan-HLA aggregated predictions for S (C) and N (D). Legend in (A)
applies to (B) legend in (C) applies to (D).
TABLE 1 | Correlation and intersection at peaks of epitope response frequency with aggregated HLA binding predictions.

Protein T-cell epitope RF
restriction

Aggregate HLA prediction
class

Spearman rs Fraction of RF peaks that intersect with
hotspots

RF peak intersection/RF peak
length

S CD8+ HLA-I 0.412
(p = 2.51e-53)

0.842 0.6222

CD8+ pan-HLA 0.236
(p = 1.46e-17)

0.790 0.5497

CD4+ HLA-II 0.201
(p = 4.21e-13)

0.857 0.5305

CD4+ pan-HLA 0.302
(p = 2.65e-28)

1.000 0.6180

N CD8+ HLA-I 0.522
(p = 1.46e-30)

0.600 0.4433

CD8+ pan-HLA 0.507
(p = 1.14e-28)

0.600 0.5957

CD4+ HLA-II 0.560
(p = 6.27e-36)

0.667 0.6463

CD4+ pan-HLA 0.634
(p = 2.51e-48)

1.000 0.5528
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immunogenic vs. non-immunogenic peptides within the 18
patient samples in the study.

If hotspot selection had no benefit for the identification of
immunogenic peptides, then restricting the set of non-
immunogenic examples to only those outside of pan-HLA
hotspots when computing ROC AUC (or the Mann-Whitney
test) would not impact the score. However, we found that in these
scenarios, ROC AUC consistently increased (Supplementary
Table S2); indicating that hotspot selection is in fact a helpful
heuristic for rejecting peptides likely to be non-immunogenic.

Notably, when considering the S and N proteins on which we
focused our surveillance, the impact of pan-HLA hotspot
selection enhanced separability from an ROC AUC of 0.5914
(when all RNN predictions were considered), to 0.6366 after
negatives were restricted to samples outside of hotspot locations.
As a baseline comparison on these two proteins: NetMHCpan-
4.1 rank values (with no hotspot selection) led to an ROC AUC
of 0.5406.

Since MHC binding does not guarantee immunogenicity, it is
not surprising that at individual peptide resolution these scores
were low compared to what one might expect when a classifier is
trained and tested on the same task. It is precisely because
Frontiers in Immunology | www.frontiersin.org 6
individual peptide-MHC binding predictions are not directly
predictive of immunogenicity - but are a prerequisite - that we
focus on a holistic perspective of binding loss at critical locations
as an approach to track and highlight viral variants with most
potential for T-cell epitope loss.
Mutations in S and N Protein Across
SARS-CoV-2 Genomes Frequently Overlap
Potential Epitope Hotspots
At bi-monthly time points throughout 2021, a comprehensive
analysis was performed of HLA-I and HLA-II binding
predictions for S and N proteins across all available SARS-
CoV-2 genomes provided by NIH NCBI. In order to focus on
impactful variations and minimize erroneous samples, only
proteins whose amino acid sequences were observed at least 3
times were considered.

Potential epitope hotspots were mapped from the reference
protein sequences to each unique version of S and N to enable
direct comparison of predicted binder counts at hotspots.
Figure 4A and B summarizes the fraction of unique
versions of the S and N proteins, respectively, that are
A B

C

E F

D

FIGURE 3 | Observation-driven prioritization of epitope hotspots. Shown are our potential epitope hotspots based on binding predictions aggregated across HLAs and
peptide lengths, sorted according to the maximum position-specific response frequency (RF) lower bound [9] within their ranges. We ranked HLA-I hotspots according to
CD8+ RF (A, B), HLA-II hotspots according to CD4+ RF (C, D), and pan-HLA hotspots according to CD8+ RF (E, F), for S and N, respectively, for each. Each plot
illustrates the maximum RF within hotspot ranges, as well as the max of both the 95% confidence interval upper and lower bounds.
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impacted by hotspot mutations from the reference strain,
NCBI Reference Sequence NC_045512 (23). This alignment
led to the observation that a majority of unique versions of
both S and N proteins included at least one mutation at a T-
cell epitope hotspot region. For example, in data from July 27,
there were 3752 unique versions of the S protein, of which a
fraction of 0.868 had mutations at HLA-I hotspots, 0.686 had
mutations at HLA-II hotspots, and 0.779 had mutations at
pan-HLA hotspots. At the earlier time point of March 19th,
there were only 1081 unique versions of S and a fraction of
0.691 had HLA-I hotspot mutations, 0.398 had HLA-II
Frontiers in Immunology | www.frontiersin.org 7
hotspot mutations, and 0.563 had pan-HLA hotspot
mutations. In the first half of 2021, as the pandemic
progressed, the fraction of unique proteins that included
mutations impacting hotspots continued to increase rapidly.
It finally plateaued in the latter half of 2021, at a state where an
overwhelming majority of unique proteins included
mutations at epitope hotspots.

A noteworthy counter example to the above trend are
versions of the N protein with mutations at HLA-II
hotspots; the fraction of which has stayed steady throughout
2021. The key distinction between HLA-II hotspots identified
A B

D E F

G IH J

K L M N

C

FIGURE 4 | Unique protein count and fraction of unique proteins with hotspot mutations over time for Spike (S) and Nucleocapsid (N) proteins. For (A) S and
(B) N proteins, the unique protein count (right y-axis) and fraction of unique proteins with mutations at HLA-I, HLA-II, and pan-HLA hotspots (left y-axis) are
shown. Unique protein counts included all versions of a viral protein whose amino acid sequence appeared at least 3 times in the viral genomes available
through NIH NCBI at bi-monthly time points throughout 2021. Every unique protein that included at least one mutation relative to the SARS-CoV-2 reference
genome occurring within an HLA binding hotspot was counted in the fraction of unique proteins with hotspot mutations. For (C–F), total sample count (right y-
axis) and the number of unique versions (left y-axis) of S (C, E) and N (D, F) proteins classified as VOC (C, D) or VOI (E, F) are shown at each data sample
time. December 6 included November 26 data plus supplementary genomes from GISAID to capture the emergence of B.1.1.529 (WHO: Omicron). Average
bind loss per HLA-I (G-J) and HLA-II (K-N) were tracked over time where lineages were represented by their worst-case bind loss (solid lines) or most
frequently occurring versions of S and N (dashed lines). VOC lineages: B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529
(Omicron); VOI lineages: B.1.427 and B.1.429 (Epsilon), B.1.525 (Eta), B.1.526 (Iota), and B.1.617.1 (Kappa).
June 2022 | Volume 13 | Article 918928
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in N is that regions in the middle and end of the protein that
were prominently predicted as promiscuous HLA-I binders
(and included in HLA-I and pan-HLA hotspots) were
predicted to have minor success binding with HLA-II, and
thus did not pass hotspot selection thresholds for class II
(Figures 1B, D, F). The minor contribution of T-cell epitopes
from regions omitted in our HLA-II hotspots was confirmed
by empirical CD4+ epitope response frequency data
(Figures 3D and F). Overall, we did not observe the
emergence of mutations in the N protein over the course of
2021 that significantly affected predicted N-directed CD4+ T-
cell epitope repertoires.

We also compared mutation frequency within versus outside
of hotspot regions. In November 26 data, the ratio of mutation
frequency in the S protein at pan-HLA hotspots versus outside of
pan-HLA hotspots was 0.563, and 0.490 when normalized for
length. For HLA-I and HLA-II these ratios were 1.094 (0.933
normalized) and 0.341 (0.412 normalized) respectively.

In the N protein the mutation frequency ratios were 1.319
(1.094 normalized), 1.181 (1.614 normalized), and 0.259
(0.306 normalized), for pan-HLA, HLA-I, and HLA-II
hotspots respectively.

These differences in distribution of mutation frequency
further highlight our identification of conserved regions of N
with high epitope potential, which were captured in better
isolation from often mutated regions by HLA-II hotspots. Also,
the nearly equal mutation distribution at HLA-I hotspots versus
the rest of the S protein connects to a previously made
observation that CD8+ T-cell response frequencies aggregated
over many studies led to a more homogeneous positional
distribution than for CD4+ T-cells or other proteins (9). A
more uniform distribution of mutation frequencies, as well as
considerable heterogeneity due to patient HLA-I repertoire (14),
are likely both factors leading to the greater uniformity in
aggregate. We illustrate this HLA-I binding heterogeneity later
in VOCs (Figure 8).

Sorting Protein Variants by Fraction of
Binders Lost Across Representative HLAs
To track the evolution of predicted binding loss - thus potential
for epitope loss - across viral variants, we counted the number of
predicted binders at each pan-HLA hotspot for every unique
version of S and N. This enabled us to measure the fractional
change in binding between any two versions of a protein at any
specific hotspot location, or in aggregate over all hotspots.

Interactive visualizations illustrating per-HLA aggregate
binder count fraction relative to the reference SARS-CoV-2
genome (NCBI Reference Sequence NC_045512) for all S and
N epitopes have been made available at https://research.
immunitybio.com/scov2_epitopes/, and a static example is
illustrated in Figure 5.

Independently for our comprehensive HLA-I and HLA-II
sets, all versions of the S and N proteins were ranked according
to sum fraction of binders lost (see Methods and Figure 5) such
that protein versions with the most significant overall loss in
HLA binders relative to the reference genome were ranked
Frontiers in Immunology | www.frontiersin.org 8
above proteins with less epitope loss potential. A fractional
value (bind loss rank fraction) was assigned to represent
ranking position; where values near 0 correspond to the top
of the ranking order (most loss of HLA binders), and values
near 1 indicate a rank at the end (least loss of HLA binders).
This was done at each bi-monthly data time point. Since the
number of unique proteins increased through time and
therefore impacted relative rankings, to enable comparison of
lineages between sample times sum fraction of binders lost was
divided by the number of HLAs considered to obtain an average
bind loss per HLA.

To prioritize browsing protein versions with most potential
for epitope loss, all interactive plots were sorted as described
above. Visualizations were also supplemented with average bind
loss per HLA thresholds drawn at 0.01, 0.005, 0.002, 0.001, and 0
to clearly delineate zones where binding loss is likely to have little
or no impact.

High Fraction of Lineages With the Most
Binder Loss in S Show Conserved HLA
Binding in N
Motivated by vaccine approaches currently in trials that include
both the S and N proteins (20–22), we investigated the
relationship between HLA binder loss in S and N across all
viral lineages in the data.

Note that one viral lineage is often defined to span multiple
alternative versions of each protein. Conversely, one specific
protein sequence may be produced by several viral lineages. To
summarize results, each lineage was represented by the sample
with worst-case potential epitope losses in S and N proteins
(highest sum fraction of binders lost), and alternatively by the
most frequent instance of each protein occurring across genomes
assigned to a single lineage classification. Worst-case scenarios
were considered independently so that bind loss rank fraction
values assigned to a lineage were allowed to come from different
genomes for S and N. This assumed that versions of the lineage
may already exist outside the data, or come to exist through
continued evolution, where proteins with most significant loss co-
occur in the same viral genome. Most frequent versions of S and N
representing each lineage were also selected independently.

Figure 6 shows the relationship between lineages with
representative versions of the S protein ranked at the top
according to most significant loss in HLA-I or HLA-II binders
(bind loss rank fraction) and different thresholds of HLA binder
loss in N (average bind loss per HLA). In data analyzed from
November 26, it was found that lineages whose worst-case S
protein ranked within the top 1% most potential for epitope loss,
17.5% had an average bind loss per HLA less than 0.005 in N for
HLA-I (Figure 6A). Further, as the scope was increased to
consider lineages with S ranked in the top 10% most epitope
loss potential, 33.3% of those lineages demonstrated the same level
of conservation in N (Figure 6A). The picture was similarly
optimistic when it came to conservation of potential CD4+
epitopes. The same level of HLA-II binder conservation (average
bind loss per HLA < 0.005) in N was exhibited by 26.5% of lineages
that fell in the top 10% according to binder loss in S (Figure 6C).
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When a stricter requirement was imposed that an equal threshold
of binder conservation be observed across bothHLA-I and HLA-II
in N, there was little change in outcome: the strict N conservation
criteria was satisfied by 19.1% of lineages in the top 10% of those
with most loss in S (Figure 6E).

In addition to being robust to a strict requirement of binder
conservation across both HLA-I and HLA-II, this conclusion
also held robustly throughout the course of the pandemic in
2021. Looking at the lineages with worst-case S demonstrating
binder loss within the top 10% at data sample times in March,
May, July, September, and November; the percentage of lineages
satisfying the same N conservation criteria as above was 23.5%,
19.3%, 18.1%, 18.8%, 19.1%, respectively (Figure 6E).

Even more compelling is the observation that the most
commonly occurring versions of S and N within each lineage
(Figures 6B, D, and F) were not typically the versions exhibiting
the worst-case HLA binder loss (Figures 6A, C, and E). Lineages
with their most frequent S ranking within the top 10% for binder
loss, demonstrated strict HLA-I and HLA-II binder conservation
in N (at average bind loss per HLA < 0.005) at percentages of
40.0%, 37.5%, 50.0%, 40.5%, 37.5% across time (March, May,
July, September, and November respectively) (Figure 6F).

Variants of Concern (VOC) and Variants of
Interest (VOI) Over Time
Our global analysis was leveraged to highlight the evolution of
the peptidome in VOC as defined by the Centers for Disease
Frontiers in Immunology | www.frontiersin.org 9
Control and Prevention (CDC): B.1.17 (World Health
Organization (WHO): Alpha), B.1.351 (WHO: Beta), B.1.617.2
(WHO: Delta), P.1 (WHO: Gamma), and B.1.1.529 (WHO:
Omicron). The evolution of VOI was also tracked: B.1.427 and
B.1.429 (WHO: Epsilon), B.1.525 (WHO: Eta), B.1.526 (WHO:
Iota), and B.1.617.1 (WHO: Kappa). Note that someWHO labels
such as Beta or Delta can correspond to multiple PANGO
lineages, thus the complete history of Delta may not be fully
captured only by its originating PANGO lineage B.1.617.2.

To supplement NIH NCBI data from November 26, 2021 to
cover the emergence and rapid spread of the B.1.1.529
(Omicron) lineage in late 2021, we obtained all Omicron
genomes from GISAID (29–31) up to December 6, 2021. All
unique versions of S and N proteins that included less than 1
percent unspecified amino acids and were classified by GISAID
as Omicron were appended to the November 26 data. This
augmented dataset is labeled as December 6 throughout
figures. We also later verified that according to all GISAID
data available up to two additional time points (December 20,
2021 and December 29, 2021), the versions of Omicron S and N
proteins identified as the top two most frequent remained
unchanged in their rankings.

With each of the VOC and VOI lineages, we observed that as
both overall sample count and variety of unique proteins
increased over time for S and N (Figures 4C and D; and
Figures 4E and F, respectively), there was a distinct
correlation with increased worst-case HLA-I and HLA-II
A

B

DC

FIGURE 5 | Illustration of per-HLA aggregate binder count fraction at pan-HLA hotspots illustrated for all HLAs across all unique versions of S and N. All plots were
sorted according to sum fraction of binders lost, such that proteins with the most loss appear on the left. Each plot has 5 vertical black lines indicating average bind
loss per HLA thresholds at 0.01, 0.005, 0.002, 0.001, and 0. For compactness, binder count fractions in data only from March 13, 2021 are shown here: HLA-I
binder count fractions for all unique versions of (A) S and (B) N; and HLA-II binder count fractions for (C) S and (D) N variants. Interactive plots from all data sample
times are available online.
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binder loss (Figures 4G, H, K, L and Figures 4I, J, M, N,
respectively). As a result of this evolution, lineages increased
their chances of successful CD8+ and CD4+ T-cell evasion.
However, we also observed that this did not occur at the same
rate in all lineages. For example, worst-case HLA-I binder loss in
S changed extremely rapidly between July 27 and September 25
for both VOC B.1.617.2 (Delta) (Figure 4G) and VOI B.1.429
(Epsilon) (Figure 4I) compared to any other variants. We also
saw from the emergence of B.1.1.529 (Omicron) that novel
strains can feature high average bind loss per HLA in the
context of existing lineages. The most frequent versions of
B.1.1.529 proteins exhibited the highest potential for epitope
loss compared to the most frequent proteins corresponding to
almost all other VOCs and VOIs (Figures 4G, H, K and
Figures 4I, J, M, N). The one exception was a close match in
average bind loss per HLA-II with B.1.1.7 in the N protein
(Figure 4L). Emergence of novel variants and differences in rate
of evolution occasionally impact the relative rankings of linages
according to most epitope loss potential, and thus underscore the
importance of continued genomic surveillance.
Frontiers in Immunology | www.frontiersin.org 10
VOCs Demonstrate Increased Potential for
Loss of Epitopes When Compared to VOI
Across both the S and N proteins, we observed that VOC lineages
demonstrate a consistently higher average bind loss per HLA
than lineages classified as VOI; especially when focusing on the
most frequent proteins within each lineage. This held true for
VOC versus VOI across both HLA-I (Figures 4G and H versus
Figures 4I and J, respectively) as well as HLA-II (Figures 4K
and L versus Figures 4M and N, respectively). In summary,
lineages which have spread most successfully, and have been
identified as the most concerning, consistently demonstrate a
higher rate of epitope loss potential relative to VOI and
other lineages.
Proteins Instances With Worst-Case
Binding Loss Did Not Become the Most
Frequent for Any VOC or VOI Lineage
Perhaps the most notable observation from our tracking of
VOC and VOI lineages is that in no instance did the S or N
A B

D

E F

C

FIGURE 6 | N epitope conservation in SARS-CoV-2 lineages with representative S protein ranking in the top percent potential epitope loss. All viral lineages within
the data were represented either by the S and N protein exhibiting the worst-case epitope loss potential (A, C, E), or by the most frequently occurring versions of
S and N (B, D, F). For lineages with the S protein ranking in the top percent for the most significant loss in HLA-I or HLA-II binders (x-axis), shown are the fractions
of those top loss lineages that exhibited (A, B) HLA-I binder conservation in the N protein, (C, D) HLA-II binder conservation in the N protein, or (E, F) both HLA-I
and HLA-II binder conservation in the N protein; all at various conservation thresholds of average (avg.) bind loss per HLA, as represented by the colors shown in the
legend. The strictest N conservation criteria was used to illustrate the dynamics of the relationship throughout the span of the 2021 (E, F).
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proteins exhibiting the worst-case HLA-I or HLA-II binding
loss become the most frequent protein version for a lineage
(Figures 4G–N). Even though we found an increasing
occurrence of mutations at T-cell epitope hotspots over time
(Figures 4A and B), genomes with the most potential for T-cell
evasion within the trajectory of each lineage were not the most
successful at spreading across the population. This appears
consistent with hypotheses expressed earlier (7, 10, 13–15),
suggesting that T-cell evasion is unlikely to be a primary
evolutionary pressure on SARS-CoV-2. Instead of a gradual
evolution, we observed step changes in T-cell evasion potential
when tracking most frequent versions of S and N within VOCs,
as demonstrated by the emergence of B.1.617.2 (Delta) and
B.1.1.529 (Omicron) during our sampling period (Figures 4G,
H, K, and L).

High Levels of Epitope Conservation Hold
Across Most Frequent Versions of N
Protein in VOC and VOI Lineages
For both VOC and VOI lineages, regardless of epitope loss
potential in versions of their S protein, a high degree of
epitope conservation was observed across nearly all most
frequent versions of N. Even lineages whose most common N
protein exceeded our earlier defined conservation threshold
(average bind loss per HLA < 0.005, Figure 6) did so only by a
narrow margin: B.1.617.2 and B.1.1.529 (Figure 4H), B.1.617.1
and B.1.525 (Figure 4J) with respective average bind loss per
HLA-I values: 0.0072, 0.0098, 0.0072, 0.0088; B.1.1.7 and
B.1.1.529 (Figure 4L) with average bind loss per HLA-II
values: 0.0072, 0.0070.

Localization of Significant Epitope Change
Across VOC and VOI Lineages Highlights
Regions of N Conservation
On the S protein the hotspot locations that exhibited some of the
most significant potential drops in epitope count across
sequenced genomes of VOCs and VOIs also corresponded to
regions confirmed to have the highest frequency of T-cell
epitopes across aggregated empirical studies (9). Specifically
pan-HLA hotspots 2 and 4, which ranked first and third in
terms of confirmed epitope response frequency (Figure 3E),
were regions where both B.1.351 (Beta) and B.1.1.529 (Omicron)
demonstrated notably lower HLA-I binder count fraction values
(0.953 and 0.961 at hotspot 2, and 0.922 and 0.938 at hotspot 4;
respectively for the two lineages) relative to other VOCs and
VOIs (Figure 7A). B.1.617.2 (Delta) also stood out at pan-HLA
hotspot 5 with a low HLA-I binder count fraction of 0.958
relative to others. However, hotspot 5 ranked in the middle
according to empirical response frequencies.

In terms of HLA-II binder count fraction across S protein
hotspots, only Omicron stood out at hotspot 3 with a distinctly
lower value than other lineages (Figure 7C). Considering hotspot
3 is toward the end of rankings according to response frequency,
CD4+ epitopes may, in general, be less subject to T-cell evasion
across VOCs and VOIs than CD8+ epitopes.
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For N protein, pan-HLA hotspots 1 and 3 were verified as
the highest frequency contributors of both CD4+ and CD8+
epitopes according to empirical evidence (Figure 3F). As
previously discussed, we were able to infer that these
hotspots were conserved, that is, less subject to mutation in
the course of viral evolution (Figure 4B); and - as expected -
we observe that they are the most stable across all variants in
terms of HLA-I and HLA-II binder count fraction at or near 1
(Figures 7B and D).

VOCs Demonstrate Heterogeneity of
Epitope Loss Potential at pan-HLA
Hotspots Across Our Comprehensive
HLA Set
Finally, to illustrate that epitope loss is not uniform across HLAs,
we visualized the HLA-I binder count fraction relative to
reference proteins at pan-HLA hotspots for the most frequent S
(Figures 8A–E) and N (Figures 8G–K) proteins of all VOCs. We
also included the second most frequent instances of Omicron S
(Figure 8F) and N (Figure 8L). Again the HLA binding stability
of N hotspots 1 and 3 was apparent across HLAs, even when not
averaged as in Figure 7B. In contrast, multiple hotspots on the S
protein demonstrated significant diversity in binder count fraction
across our HLA-I set (Figures 8A-F). This was consistent with
findings that S regions yielding CD8+ epitopes vary with patient
repertoire of HLA-I alleles (14), thus leading to a more
homogeneous distribution of position specific response
frequency in S across aggregated studies (9) than observed for
CD4+ epitopes or the N protein. For closer inspection, interactive
visualizations of Figure 8 are available online along with other
supplementary content.
DISCUSSION

With our unique approach to integrating HLA binding
predictions across a broad range of peptide lengths and a
representative HLA set, we were able to demonstrate that our
aggregate signals representing candidate epitope frequency
and HLA promiscuity correlated well with empirical evidence
of T-cell response frequencies, and correctly identified protein
regions yielding immunodominant epitopes across multiple
different cohorts (9, 14, 15) (Figures 1, 2 and Table 1 and
Supplementary Tables S1, S2). It is particularly noteworthy that
multiple prior studies had omitted predictive analysis when
investigating CD4+ T-cell reactivity, attributing this omission
to HLA-II binding prediction algorithms not effectively
predicting epitope recognition (14). Our results have
demonstrated that our binding prediction algorithms coupled
with our approach to integrating predictions across lengths and
HLAs were similarly effective at identifying regions of both
immunodominant CD4+ epitopes and CD8+ epitopes
(Figure 2 and Table 1).

Our approach to selecting representative HLA sets also
benefitted from our binding prediction models. We leveraged
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learned HLA representations to construct a global HLA set based
not only on population frequency, but also on uniqueness of
function. The goal was to ensure we did not miss consideration
of HLAs that may not be frequently studied or well characterized
in datasets, but were predicted to be distinct from other HLA
groups in how they interact with peptides.

In contrast to in-silico analyses of singular (9, 13) or select
(13, 32) sequences derived from representative viral genomes or
impacts of individual mutations, our focus on full protein
sequences obtained from all available viral genomes at each
sample time enabled us to capture deeper co-occurrence
relationships between mutations and their impact on epitope
loss potential within and across lineages. This yielded a
unique view of viral evolution from the perspective of potential
for T-cell evasion.

Notably, we observed that throughout 2021 there were no
cases among VOC or VOI lineages where the S or N protein
versions with the most epitope loss potential became the most
frequently observed within a lineage. This occurred despite
trends of increasing rates of mutations at potential epitope
hotspots overall (Figure 4), and worst-case protein versions
exhibiting more epitope loss within lineages as time
progressed (Figures 7 and 8). This suggests that T-cell
evasion is not a dominant evolutionary pressure on SARS-
CoV-2 evolution, in agreement with prior hypotheses (7, 10,
13–15).

When looking across all SARS-CoV-2 lineages, we observed
that among lineages with their S protein demonstrating worst-
case binder loss within the top 10%, 19.1% had a high level of
epitope conservation in their worst-case version of N. This
relationship proved even more distinct when representing
Frontiers in Immunology | www.frontiersin.org 12
lineages by their most frequent versions of S and N; boosting
the fraction of lineages with N conservation to 37.5% among
lineages with their S in the top 10% of binder loss. We observed
that these relationships remained stable over time throughout
the course of the pandemic, even as new variants emerged and
existing lineages continued to mutate (Figure 6).

Delving deeper, we found that predicted hotspots aligning
with the highest frequencies of empirically verified epitopes were
among the most impacted by HLA binding loss on the S protein.
Whereas on the N protein, the top two epitope contributing
hotspots happened to be conserved across time, showing almost
no loss in HLA binding (Figure 7). We further found that
candidate epitope regions most impacted by N protein
mutations were specific to CD8+ T cells and that the virus did
not show an accelerated rate of mutation that significantly
impacted the predicted CD4+ T-cell epitope repertoire of the
N protein over the course of 2021.

A key limitation of this study is that our analysis is built upon
predictions of peptide binding to HLA-I and HLA-II molecules,
which is known to be necessary but not sufficient, for T-cell
recognition. Not all predicted binders are likely to be T-cell
epitopes, and thus not all changes in HLA binding prediction are
guaranteed to lead to epitope loss. We aimed to minimize this
disparity with our approach to integrating predictions across
peptides, lengths, and HLAs; and by focusing on relative change at
hotspots of potential epitopes. But ultimately there are unmodeled
factors between HLA presentation and T-cell response, and an
additional layer of predictive tools trained directly for the task may
be necessary to improve precision in the future.

A secondary limitation to the analyses presented herein is
that our conclusions are based around a representative set of
A B

DC

FIGURE 7 | Distribution of binder count fraction relative to reference SARS-CoV-2 at pan-HLA hotspots for VOC and VOI lineages. The box plots illustrate the
distribution of HLA-I (A, B) and HLA-II (C, D) binder count fraction averaged across HLAs (y-axis) at S (A, C) and N (B, D) pan-HLA hotspots (x-axis) for all unique
proteins classified as VOC and VOI lineages. Binder count fractions specific to the most frequent protein versions of each lineage are annotated with an ‘X’ on top of
the box plots. VOC and VOI lineage labels are indicated in the legend at right.
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HLAs selected to cover the most general picture of the world
population (and be inclusive of any minority but distinctly
functioning HLA groups). Thus conclusions may vary if the
analysis were to be repeated with a different HLA set, for
example one specific to a population or region. We also
encountered very sparse coverage in population statistics
of HLA-II alpha-beta haplotypes. To overcome this, we
selected our HLA-II set based on all individual alpha and
beta chain frequencies and considered all permutations, and
may have incurred a risk of overrepresenting the impact of
some alleles.

Finally, it is important to note that our conclusions were
based on viral genome data curated by the NIH NCBI and
GISAID. Therefore, there may be multitudes of unaccounted
factors such as regional variability in available testing, processing
times, sequencing methodologies, etc.; which might affect how
representative the data was of the true state of the virus at any
one point in time.

Overall, our work yielded a novel perspective into the
evolving landscape of T-cell evasion potential over the time
period studied, and added to the mounting body of evidence
suggesting that the inclusion of proteins such as N, along with S,
in vaccines is likely to be an effective strategy for improving
robustness and duration of immune memory protective against
SARS-CoV-2 infection and severe COVID-19 in the face of
evolving viral variants.
METHODS

HLA-I and -II Binding Prediction With RNN
and CNN
A convolutional neural network (CNN) as well as an attention
augmented recurrent neural network (RNN) were developed for
HLA-I and HLA-II binding prediction using data from IEDB
[https://www.iedb.org/] (28) downloaded in January 2020.
Training data included 436,805 unambiguously labeled
peptide-HLA examples across 159 unique HLA-I A, B, and C
alleles; and 96,818 examples spanning 17 unique HLA-II alpha
chains and 73 unique HLA-II beta chains.

Both neural net architectures utilize the full HLA protein
sequence as well as the full peptide amino acid sequence
as inputs. HLA-I and HLA-II binding prediction systems were
trained independently, but weights learned from the best HLA-I
systems were used to initialize corresponding architecture
components for HLA-II training. Rather than estimating
affinity, both systems predict binding as classification. This
design choice alleviates issues due to high variance in
affinity measurements observed in IEDB data (Supplementary
Figure S2), which required prior systems to add ranking to
normalize predictions across HLAs (33–35).

As represented in Supplementary Figure S2A, IEDB affinity
measurements were found to exhibit high variance across
curated qualitative assessments of binding. Although some
biases may have been due to measurement method, even when
the same assay was used, significant variance in affinity
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values across binding categories remained (Supplementary
Figure S2B). The commonly selected cutoff of 500 nM for
confidently binding peptides is thus likely to mislabel or ignore
many valid binders. Transforming the problem to classification
of qualitative labels entirely removed the need for such a
threshold, enabling models to learn to assign a probability of
being an HLA binder independent of any affinity biases between
HLA alleles, assay methods, or other potential noise factors. We
therefore expected that classification of peptide binding and
presentation was likely to be a better posed problem than
attempting to predict extremely noisy binding affinities.

Validating our selection of classification over regression, our
RNN classifier’s raw predictions were consistently confident of
binding for verified eluted ligands across 27 HLA-I molecules in
the Pearson et al. dataset (36) (Supplementary Figure S3). Large
variance of predicted affinity values across HLAs in this dataset
was the motivation for re-scoring raw NetMHCpan-4.0
predictions (12) by instead reporting HLA specific ranking
values. By achieving comparable outcomes to affinity
prediction followed by re-ranking, but without needing the
additional independent ranking step to re-calibrate predictions,
we confirmed that classification based on IEDB’s curated
qualitative labels was better posed when considering a
multitude of HLAs.

During each RNN and CNN training epoch, data for every
distinct HLA was augmented with an additional 20 percent
background negative peptides (or a minimum of 150 for each
HLA-I and 25 for each HLA-II) randomly sampled from the
Swiss-Prot human proteome (https://www.uniprot.org/
proteomes/UP000005640) and required to not already exist
in training.

To help address data imbalance between HLAs, as well as
positive/negative sample imbalance within each HLA, we
adapted the sample weighting strategy proposed by Cui et al.
(37) independently across both scenarios (weight smoothing
parameter beta = 0.99 was used within each HLA to balance
positive/negative examples, and beta = 0.999 was used to balance
contributions from each HLA). To ensure average batch loss
magnitudes were not impacted by the re-weighting scheme, the
combined weights were re-normalized to sum to twice the
number of distinct HLAs in training.

Both trained RNN and CNN neural networks were evaluated
to compare favorably on the test set of eluted ligands across 36
HLA-I molecules published with the release of NetMHCpan-4.1
(test data and results from other evaluated systems (33, 34, 38,
39) are available at: https://services.healthtech.dtu.dk/service.
php?NetMHCpan-4.1).

To compare directly to the state-of-the-art (34), we used the
same methodology to estimate PPV for each HLA: based on the
fraction of true positive peptides in the top N predictions, where
N was defined by the total number of true positives for the HLA
of interest multiplied by a factor of 0.95. The mean of this PPV
estimate across HLAs is reported in Table 2 along with mean
ROC AUC.

Our RNN and CNN systems both incorporate an ensemble
of 5 models with different random weight initializations and
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different random training/validation splits, but otherwise
identical model architecture and hyperparameters. The
variance of predictions from such an ensemble has been
shown to be an effective proxy for model uncertainty (40),
particularly in cases such as unseen data. Using this additional
metric, our models are able to abstain from forcing a
classification decision when uncertainty is high. Specifically,
ensemble predictions for which the classification decision
boundary falls within a standard deviation of the mean are
classified as ambiguous and can be disregarded from
consideration as either binders or non-binders. The mean
and standard deviation of predicted values from the ensemble
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are provided for all peptide HLA binding predictions, and
where not otherwise specified, the mean value is used in
subsequent analyses. Additional columns in Table 2 indicate
that this ability to abstain from classification improves
accuracy for both the RNN and CNN. In addition to the
mean accuracy metrics across HLAs provided in Table 2,
individual metrics for each HLA (Supplementary Data Sheet
2) and binding predictions for all peptides in the test
set (Supplementary Data Sheet 3, 4) are provided as
Supplementary Data. On average, across all HLAs, only
2.2% of samples were excluded as ambiguous by both RNN
and CNN systems, with HLAs showing the lowest levels of
TABLE 2 | Performance evaluation on eluted ligand test NetMHCpan-4.1, [34] dataset including 77,053 peptides (lengths 8-14) across 36 distinct HLA-I molecules.

RNN(no ambig.) RNN CNN(no ambig.) CNN NetMHCpan-4.1 NetMHCpan-4.0 MHCflurry MixMHCpred

Mean ROC AUC 0.9657 0.9639 0.9615 0.9610 0.9498 0.9462 0.9335 0.9324
Mean PPV
@ 0.95 * n_pos

0.8237 0.8038 0.8651 0.8446 0.8162 0.786 0.7255 0.7705
June 2022
 | Volume 13 |
Our system identifies situations where predictions are ambiguous; columns with the “(no ambig.)” label do not include ambiguous data; this is in contrast to a forced decision in all cases for
columns labeled only RNN or CNN. For consistency with referenced study methodology, PPV for each HLA was evaluated considering only a fraction of ranked predictions equal to 0.95
times the number of true positives. See methods for more detail. The mean of these metrics across HLAs is labeled “Mean PPV @ 0.95 * n_pos”.
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FIGURE 8 | Change in HLA-I binder count from SARS-CoV-2 reference at pan-HLA epitope hotspots for most frequent S and N proteins of VOC lineages. Change in
potential epitope count as a fraction of reference count is shown for all HLA-I in our analysis set (y-axis) for the most frequent versions of S (A–F) and N (G-L) in each of
the VOC lineages: (A, G) B.1.1.7 (Alpha), (B, H) B.1.351 (Beta), (C, I) B.1.617.2 (Delta), (D, J) P.1 (Gamma), (E, K) B.1.1.529 (Omicron), as well as the second most
frequent versions of Omicron proteins (F, L). For both S and N proteins pan-HLA hotspots (x-axis) were used. Interactive versions of all plots above are available online.
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ambiguous sample counts being at 0.7%, and highest
ambiguous sample counts at 6%.

Our HLA binding prediction software is currently
proprietary, but will be made commercially available to
researchers. Please contact us if interested.

HLA-I Grouping and Selection
HLA nomenclature was originated by the World Health
Organization (WHO) Nomenclature Committee for Factors of
the HLA System, which issued its first report in 1968 based on
serology analysis (41) and has continued to refine the resolution
of its methods by incorporating molecular and genetic
information (42).

In this study, we sought to ensure that examples from
uniquely functioning HLA groups were represented in our list
of alleles to analyze, even if they were not present in majority
populations. To achieve this, we needed to characterize
functional similarity relationships between all HLAs in a way
that would estimate the magnitude of difference between distinct
HLAs and enable clustering at resolutions that vary from the
curated nomenclature. Prior efforts have constructed HLA-I
clusters and hierarchies based on distances defined by binding
peptide set overlap or motif similarity identified from peptide
binding data (2, 43). However, by the nature of their methods,
such studies were limited to HLAs for which abundant data was
available at the time and thus did not cover the full set we wished
to consider.

To leverage all data used to train our binding prediction
systems, we utilized a fixed length embedding of the full HLA
amino acid sequence generated at an intermediate step in our
trained neural networks as a basis for calculating distances
between HLAs. For robustness, the embeddings from each
model in the ensemble were stacked into one vector, and all
clustering operations were performed on these concatenated
ensemble embeddings. This approach to HLA grouping
enabled consideration of all HLAs whose full sequence was
known to our system (all data from the IPD-IMGT/HLA
Database up to July 2019 (44, 45), including those for which
limited empirical binding data is currently available.

To capture both local and global structure in high dimensional
data, PHATE (46) was used to approximate relationships between
our HLA embeddings in two dimensions (knn = 20 was used to
focus more on global relations). For additional robustness to noise
in cluster assignment, agglomerative clustering was used in the
simplified PHATE coordinate space to group HLAs. Using a
sweeping threshold across agglomerative clustering runs, a stable
point was identified at 38 HLA-I clusters that maximized the
silhouette score (Supplementary Figure S4A).

Cluster assignments were then paired with data from the
Allele Frequency Net Database (AFND) (47, 48) to select the set
of HLA-I molecules for consideration in analysis. To first ensure
all functional clusters were represented, the set was initially
populated by the top 2 highest frequency HLAs from each of
the 38 clusters. Subsequently, all HLAs with fHLA ≥ min (µ,M)-
0.6 * s were added to the set (where fHLA is the frequency of
appearance of an HLA, and µ,M, s are the mean, median and
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standard deviation of the initial selection of 76 HLA-Is). The 0.6
multiplier was used so that the threshold ensured all top 100
most frequent HLA-I molecules were included. The final
selection of 114 HLA-I molecules thus spanned all functional
groups at the resolution of our clusters as well as the highest
frequency alleles.

HLA-II Grouping and Selection
The same studies that had previously approached HLA-I functional
grouping (2, 43) did not attempt clustering of HLA-II. Using our
trained neural nets for predicting HLA-II binding, we followed a
similar pipeline as with HLA-I for creating functional clusters and
selecting a comprehensive set for analysis.

In the case of HLA-II, our neural network architectures first
process the full amino acid sequence of the alpha and beta chains
independently, before allowing the information to be combined
for binding prediction. These independent intermediate
representations constitute the embeddings used to represent
HLA-II alpha and beta chains for clustering. As with HLA-I,
each representation was a stack of embeddings from all 5 models
in an ensemble.

HLA-II clusters were assigned at 3 resolutions. For alpha
chains alone, we found 18 clusters via agglomerative clustering
and threshold sweep; and 16 clusters for all beta chains
considered. Note that only alpha and beta chains with full
amino acid sequences available (IPD-IMGT/HLA Database up
to July 2019 (44, 45) were used. Finally, we considered the
space of all compatible permutations of alpha + beta pairs.
Each compatible pair (for example: DQA1*05:01-DQB1*06:02)
was represented by the concatenation of the independent alpha
and beta embedding, and all such pairs were represented in two
dimensions with PHATE (at knn = 20). A total of 93 clusters
were assigned to explain all alpha + beta permutations with our
agglomerative approach (Supplementary Figure S4B). The full
lists of HLA-I and HLA-II cluster membership assignments are
provided as Supplementary CSV files and interactive plots.

Selecting a comprehensive HLA-II set for analysis utilized all
3 clustering assignments to ensure a fair sampling. The top 2
highest frequency alpha chains were selected from each of the 18
alpha clusters (4 singular clusters only contributed 1
alpha chain), and all other alpha chains that satisfied fa ≥ min
(µ,M)- 0.5 * s were added to the set (where fa is the frequency of
appearance of an HLA-II alpha chain, and µ,M, s are the mean,
median and standard deviation of the initial set of 32
alpha chains).

Independently, the top 3 highest frequency beta chains from
each of the 16 beta clusters were selected, and supplemented with
all other beta chains that met fb ≥min (µ,M)- 0.5 * s (where fb is
the frequency of appearance of an HLA-II beta chain, and µ,M, s
are the mean, median and standard deviation of the initial set of
47 beta chains).

The above sets were then combined to create 645 compatible
permutations of alpha + beta chain pairs. The top 2 HLA-II
alpha + beta pairs from any of the 93 clusters that were not
covered by the selected set were added; bringing the augmented
total to 661 HLA-II alpha + beta pairs. Since haplotype
June 2022 | Volume 13 | Article 918928
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information in the AFND (47, 48) was less comprehensive than
allele frequencies for independent alpha and beta chains, pairs
within clusters were sorted by max ( fa ,fb ); first at 4 digit allele
nomenclature resolution and secondarily at 2 digit allele
nomenclature resolution.

Finally, a pruning stage removed some HLA-II alpha + beta
pairs from each of the 93 clusters in the analysis set only if: they
were not in the top 2 samples representing a unique combination
of alpha cluster (18 labels) and beta cluster (16 labels), and fb ≤
0.05 at the 4-digit HLA-II nomenclature resolution. This ensured
that we kept all functionally unique HLA-II alpha + beta
combinations and spanned the entire set of 93 clusters in our
analysis set, but did not heavily oversample functionally similar
pairs unless they appeared with very high frequency in the
world population.

The final HLA-II set for analysis included 373 alpha + beta
pairs, with 37 unique alpha chains and 66 unique beta chains
represented. See supplementary files in online content for details.

HLA-I Potential Epitope
Hotspot Localization
Protein regions that featured an increased frequency of
peptides with high predicted HLA binding confidence
relative to elsewhere on the same protein were identified
as potential epitope hotspots. These hotspots helped narrow
our search space, added robustness to noise for global
comparisons, and enhanced the interpretability of global
analysis by enabling localization of regions at most risk for
potential epitope loss.

To detect hotspots, first an aggregate signal was
independently obtained for each HLA-I in our analysis set. All
Frontiers in Immunology | www.frontiersin.org 16
peptides of lengths from 8 to 12 were considered in a sliding
window fashion, and the value at each protein position was the
average binding prediction of all overlapping peptides.
Figure 9A illustrates these aggregate signals for the reference S
protein of SARS-CoV-2 across all 114 HLA-I (rows).

Max pooling with a window size based on the dominant
binding peptide length (9 amino acids) was then applied to the
aggregate signal for each HLA, and all values in the top 10% of
maxima were selected as hotspots (Figure 9B). The max
thresholding operation was applied independently per HLA to
help discount remaining uncorrected biases potentially causing
systematic shift in prediction scores for some HLAs (ensuring
peak binder locations of less well characterized HLAs were not
discarded in later analysis).

Once potential epitope hotspots were selected independently
for each HLA-I, they were used to narrow the scope of the
aggregate signal to average only peptides classified as binders that
overlap their respective HLA-I hotspots (Figure 9C). These
masked binder signals were averaged across HLAs to create a
global HLA-I average binder score, which was then max pooled
(size = 9), and the top 25% of maxima were selected as general
HLA-I binding hotspots for the protein of interest (Figure 9D).

HLA-II Potential Epitope
Hotspot Localization
The same procedure was followed for identification of HLA-II
potential epitope hotspots as for HLA-I, except all peptide sizes
considered ranged from 11 to 21, and all max pooling steps
utilized the most frequent HLA-II ligand length of 15 (instead of
9 used in HLA-I). The set of selected HLA-II for analysis was also
considerably larger: 373 alpha + beta pairs.
A B

D

C

FIGURE 9 | Method for detection of binder hotspots. (A) Binding prediction scores of all overlapping peptides at each position along the S protein (x-axis), averaged
independently for each HLA-I molecule (y-axis). (B) Top binding score locations based on thresholding max pooled averaged prediction scores independently for
each HLA (per-HLA hotspots). Unselected regions are masked out and appear in gray. Values before pooling are shown to keep relation to the prior plot clear. (C)
Averaged scores of all peptides classified as binders that overlap per-HLA hotspots. Color bars in (A–C) indicate scale of averaged binding prediction values for each
sub-plot. See Methods for details. (D) The final HLA-I hotspot locations (red) selected by max pooling and thresholding the masked binder signal averaged across
HLAs (blue).
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Pan-HLA Candidate Epitope Hotspot
Localization
To identify locations along a protein with the highest
concentration of peptides predicted to bind both HLA-I and
HLA-II with high confidence, we averaged the global HLA-I and
HLA-II signals before their respective final max pooling steps
were applied. This pan-HLA average binder signal was then max
pooled (with size = 12) and hotspot locations were selected based
on the top 25% of the max pooled signal. Figure 1 and
Supplementary Figure S1 illustrate HLA-I, HLA-II, and pan-
HLA hotspot locations for 6 key proteins from the SARS-CoV-2
reference genome.

SARS-CoV-2 Genome Data
SARS-CoV-2 genome and protein data were downloaded from
the NIH NCBI portals (https://www.ncbi.nlm.nih.gov/
datasets/coronavirus/genomes/, https://www.ncbi.nlm.nih.
gov/datasets/coronavirus/proteins/ respectively) on the dates
of March 19, May 11, July 27, September 25, and November 26,
2021. Upon download all genomes were classified with the
latest version of the Pangolin tool available at each time point
(49), to enable analysis with respect to the PANGO lineage
classifications (50).

To base our viral surveillance on the most confident and
critical data, our analyses of the S and N proteins considered only
samples for which the S or N protein sequences were observed at
least 3 times (Figure 4).

Potential Epitope Hotspot Alignment
Across Variants
Potential epitope hotspots for all considered proteins were
localized based on the SARS-CoV-2 reference genome (NCBI
Reference Sequence: NC_045512 (23). To map hotspot locations
onto each new mutated version of a protein as it was processed,
dynamic time warping (DTW) (51) was used. This enabled direct
comparison of relative predicted HLA binder counts at hotspot
locations between viral variants.

Ranking Protein Variants by Sum Fraction
of Binders Lost
To summarize how mutations in a protein variant ,p, impact its
predicted peptide binding, we defined the binder count fraction
for each HLA molecule, m as:

bp,m = 1 +oh∈HBh,p,m

� �
= 1 +oh∈HBh,WT ,m

� �
:

Bh,p,m is the number of peptides at the hotspot, h, in protein
variant, p, that were classified as binders for a specific HLA, m,
Bh,WT,m is the corresponding binder count in the wildtype WT
version of the protein being considered; and H is the set of all
corresponding hotspot regions in WT and p. All wildtype
proteins sequences were obtained from the SARS-CoV-2
reference genome (NCBI Reference Sequence: NC_045512).

The overall potential for epitope loss of a protein variant
when compared to wild type was captured by the sum fraction of
binders lost, defined as:
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lp =om∈Mmax 0, 1 − bp,m
� �

,

where M is our set of all HLA molecules selected for analysis.
Cases where epitope count for a specific HLA increased
compared to the reference were intentionally omitted from the
summation to focus only on the risk of losing epitopes that may
be critical to immune response.

To compare overall binder lossmagnitudes across time and across
class I and class II, sum fraction of binders lost was divided by the
number of HLAs considered to obtain average bind loss per HLA.

Independently for HLA-I and HLA-II, all versions of the
S and N protein at each data time point were ranked according to
sum fraction of binders lost, such that protein versions with the
most significant overall loss in HLA binders appeared at the top.
Prior to ranking and all later stages of analysis, any protein
version that featured unspecified amino acids with a quantity
greater than 1% of protein length were removed from
consideration. A fractional value (bind loss rank fraction) was
assigned to represent ranking position; where values near 0
correspond to the top of the ranking order (most loss of HLA
binders), and values near 1 indicate a rank at the end (least loss of
HLA binders). Bind loss rank fraction was used in the analysis
illustrated in Figure 6 to select lineages whose representative S
ranked within a percentage of unique proteins exhibiting most
binder loss, as captured by the plot’s x-axis.

Capturing the Emergence of B.1.1.529
With Supplementary Data From GISAID
To supplement NIH NCBI data from November 26, 2021 to
cover the emergence and rapid spread of the B.1.1.529
(Omicron) lineage, we obtained all Omicron genomes from
GISAID (29–31) up to December 6, 2021. Genomes were
required to be complete, and those with low coverage were
excluded from the query. Each downloaded genome was
aligned to reference using MAFFT (52). All unique versions
of S and N proteins that included less than 1% unspecified
amino acids and were classified by GISAID as Omicron were
combined with the November 26 data. This augmented
December 6 dataset was then used to capture a more timely
picture of relative potential for epitope loss across VOC
lineages. To verify that our early Omicron data remained
representative of the rapidly spreading lineage, we used two
additional time points (December 20, 2021 and December 29,
2021) to confirm that the top most frequent versions of S and
N proteins representing the lineage had in fact not changed.
Thus, our analysis remained representative throughout the
remainder of 2021.

Characterizing Binding Loss Variation at
pan-HLA Hotspots Across Lineages
The B.1.1.529 augmented December 6, 2021 data was used to
analyze the full range of epitope loss potential in VOC and VOI
lineages at all pan-HLA hotspot regions (Figure 7). To
summarize changes, binder count fraction relative to reference
(WT) was first computed independently per hotspot, h, then
averaged across the set of all HLAs, M, for each protein,
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p :  bh,p =om∈M 1 + Bh,p,m

� �
= 1 + Bh,WT ,m

� �� �
= Mj j :

For each VOC and VOI lineage, box plots in Figure 7 were created
by collecting bh,pvalues of all unique protein sequence instances that
included at least one corresponding source genome classified as the
lineage being considered. Finally, bh,p values (averaged across HLA-
I) for all most frequent instances of S andN proteins representing all
VOC lineages are illustrated in Figure 8.
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