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Abstract: The increasing prevalence of multi-site diffusion-weighted magnetic resonance

imaging (dMRI) studies potentially offers enhanced statistical power for investigating brain

structure. However, these studies face challenges due to variations in scanner hardware

and acquisition protocols. While several methods exist for dMRI data harmonization, few

specifically address structural brain connectivity. We introduce a new distribution-matching

approach to harmonizing structural brain connectivity across different sites and scanners.

We evaluate our method using structural brain connectivity data from two distinct datasets

of OASIS-3 and ADNI-2, comparing its performance to the widely used ComBat method.

Our approach is meant to align the statistical properties of connectivity data from these two

datasets. We examine the impact of harmonization on the correlation of brain connectivity

with the Mini-Mental State Examination score and age. Our results demonstrate that our

distribution-matching technique more effectively harmonizes structural brain connectivity, of-

ten producing stronger and more significant correlations compared to ComBat. Qualitative

assessments illustrate the desired distributional alignment of ADNI-2 with OASIS-3, while

quantitative evaluations confirm robust performance. This work contributes to the growing
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2 1 INTRODUCTION

field of dMRI harmonization, potentially improving the reliability and comparability of struc-

tural connectivity studies that combine data from different sources in neuroscientific and

clinical research.

1 Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) is a powerful non-invasive technique for probing

the microstructure of biological tissue, particularly the brain white matter (Tournier et al., 2011). By

measuring the diffusion of water molecules, dMRI allows us to infer the organization and integrity of neural

tissue, which makes it instrumental in both neuroscientific research and clinical applications. Structural

brain connectivity, typically represented as networks derived from dMRI fiber tracking (tractography)

(Behrens et al., 2007; Mori et al., 1999), provides crucial insights into the architecture of white-matter

pathways and the organization of communication pathways in the brain (Bazinet et al., 2023; Yeh et al.,

2021).

dMRI has been widely used to study brain development, aging, as well as various neurological and psy-

chiatric disorders (Beck et al., 2021; Frau-Pascual et al., 2021; Pines et al., 2020; Wheeler & Voineskos,

2014), with recent years seeing an increase in multi-site dMRI studies to investigate brain disorders on a

larger scale, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2015; Weiner

et al., 2015), Huntington’s disease research (Magnotta et al., 2012), and the Parkinson’s Progression

Markers Initiative (Marek et al., 2011). These studies offer the potential for increased statistical power

and the ability to detect subtle effects that may not be apparent in smaller, single-site studies. However,

the variability in scanner hardware, acquisition protocols, and processing methods across different sites

can introduce unwanted variability in the data, potentially confounding biological effects of interest. This

challenge has highlighted the critical need for robust methods to harmonize dMRI data across different

scanners, protocols, and populations (Zhu et al., 2019).

Several approaches have been proposed to address the harmonization problem. One widely used method

is ComBat, initially designed for genomics data and later adapted for neuroimaging (Johnson et al.,

2007). ComBat and its variants have been successfully applied to a variety of neuroimaging studies to

harmonize diffusion tensor imaging (DTI) measures, cortical thickness, regional volumetric measures,

and functional connectivity properties (Fortin et al., 2017, 2018; Pomponio et al., 2020; Yu et al., 2018;

Zhou et al., 2022, 2023). However, a limitation of ComBat is that its optimization procedure assumes a

normal distribution for the data, which may not necessarily be appropriate for all types of neuroimaging

measures or data (Johnson et al., 2007; Pinto et al., 2020; Pomponio et al., 2020).
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3

Another notable method designed explicitly for dMRI data harmonization is the Rotation Invariant Spher-

ical Harmonics (RISH) approach, introduced by Mirzaalian et al. (2016). RISH features are computed

from spherical harmonic decompositions of the diffusion signal, with linear mappings used to harmonize

these features across sites. Karayumak et al. (2019) extended this method for varying acquisition pa-

rameters, while De Luca et al. (2022) validated it on multi-shell dMRI data from three sites. Building on

RISH, several deep-learning methods have been developed to leverage Convolutional Neural Networks to

harmonize dMRI data (Koppers et al., 2017, 2019; Tax et al., 2019), preserving rotational invariance while

leveraging the power of deep-learning architectures to learn complex mappings between scanner-specific

features. More recently, an adaptive template estimation approach combined with RISH features was

proposed to better account for inter-subject anatomical variability when harmonizing voxel-wise dMRI

signals or surface-based features across different scanners (Xia & Shi, 2022, 2024). The RISH method

requires well-matched control subjects (16-20 per site) to learn harmonization parameters, which can be

challenging for retrospective or rare-condition studies. Furthermore, harmonizing diffusion images early

in the pipeline necessitates rerunning subsequent processing steps, which increases the computational

time.

A few other notable approaches to dMRI harmonization are as follows. The Method of Moments (MoM),

proposed by Huynh et al. (2019), matches the first and second moments (spherical mean and variance) of

the diffusion signal across sites using a linear mapping function. To capture all sources of scanner-specific

variations, Zhang et al. (2023) proposed RELIEF (REmoval of Latent Inter-scanner Effects through

Factorization), which uses a structured multivariate approach based on linked matrix factorization to

model and remove sources of scanner effects such as scanner-specific means, variances, and latent

patterns. Moyer et al. (2020) proposed an unsupervised approach using variational autoencoders to learn

scanner-invariant representations, which can map dMRI data between different scanners and protocols

without requiring paired training data, while preserving biologically meaningful information.

While these methods have shown success in harmonizing the diffusion signal and derived measures such as

fractional anisotropy and mean diffusivity, fewer approaches have been developed explicitly for harmoniz-

ing structural brain connectivity (a.k.a. the connectome) (Bazinet et al., 2023). Importantly, structural

connectivity may be particularly sensitive to scanner and protocol differences (Panman et al., 2019; Zhu

et al., 2019), as well as the parameters specified for parcellation and tractography (Sotiropoulos & Za-

lesky, 2019; Yeh et al., 2021), highlighting the need for robust harmonization methods specifically tailored

to the quantified structural connectivity (Kurokawa et al., 2021; Onicas et al., 2022; Patel et al., 2024).

To address the gap in harmonization methods for structural connectivity, we propose a new approach,

based on distribution matching, to harmonize structural brain connectivity across different sites and scan-

ners. Distribution matching aligns the statistical properties of different datasets to minimize biases and
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4 2 MATERIALS AND METHODS

improve comparability (Bishop & Nasrabadi, 2006; Evans & Rosenthal, 2004). This process aligns the

data distributions using methods ranging from simple linear transformations to complex techniques such

as quantile normalization or histogram matching. By reducing dataset-specific variabilities, distribution

matching enhances the reliability of subsequent analyses when integrating data from various sources. In

a previous study, structural MRI images were harmonized across different scanners and sites by aligning

voxel intensity distributions (Wrobel et al., 2020), demonstrating improved reduction of scanner-related

variability while preserving biological differences in multi-site neuroimaging studies compared to existing

techniques. In this study, we validated our method by assessing its performance in harmonizing multi-site

structural brain connectivity data while comparing it with the ComBat approach.

The rest of the paper is organized as follows. Section 2 introduces the two datasets, the distribution-

matching approach, and related numerical algorithms. Experimental results are presented in Section 3 to

qualitatively and quantitatively demonstrate the ability of the proposed method to harmonize structural

brain connectivity in comparison with other methods. Finally, discussions and conclusions are provided

in Section 4.

2 Materials and methods

2.1 Datasets

We used the following two public dMRI datasets in our analysis, with the number of subjects indicating

those processed and included in our study (see Table 1): the third phase of the Open Access Series

of Imaging Studies (OASIS-3) (LaMontagne et al., 2019) comprising 761 cognitively normal and AD

subjects, and the second phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-2) (Beckett

et al., 2015) including 209 participants ranging from cognitively normal individuals to those diagnosed

with AD. Compared to a previous study where we used these two datasets (Aganj et al., 2023), here

we excluded 10 and 8 outlier subjects from OASIS-3 and ADNI-2, respectively, during quality check.

We included the Mini-Mental State Examination (MMSE) score and age as non-MRI variables in our

correlation analyses.

2.2 Data processing

Anatomical MR images from the two datasets were processed using FreeSurfer (Fischl, 2012). We

included each subject only once, specifically the earliest visit containing dMRI (which was often the
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2.3 Distribution matching 5

Table 1: Demographic information and scanner types of the two datasets

Dataset OASIS-3 ADNI-2

Number of subjects 761 209
Percentage of males 45.0% 55.5%
Age (mean ± std) 69.4 ± 9.0 73.5 ± 6.9

MMSE (mean ± std) 28.2 ± 2.7 27.2 ± 2.6
Scanner Siemens (Trio Tim & Biograph mMR) GE

baseline visit), to maintain the independence of our data points through a cross-sectional study design.

We then executed the FreeSurfer dMRI processing pipeline, incorporating commands from the FMRIB

Software Library (FSL) (Jenkinson et al., 2012). This process involved propagating 85 automatically

segmented cortical and subcortical regions from the structural to the diffusion space using boundary-

based image registration (Greve & Fischl, 2009).

Next, we used our publicly available toolbox (www.nitrc.org/projects/csaodf-hough) to reconstruct the

diffusion orientation distribution function in constant solid angle (CSA-ODF) (Aganj et al., 2010) and run

Hough-transform global probabilistic tractography (Aganj et al., 2011) to generate an optimal (highest-

score) streamline passing through each of the 10,000 seed points for each subject. We computed a

symmetric structural connectivity matrix with non-negative elements for each subject by summing the

tracts passing through each pair of ROIs weighted by the tract score, which is a function of the ODFs

and generalized fractional anisotropy (Aganj et al., 2011). We then augmented the matrices with indirect

connections using the mathematical calculation of the electric conductance (Aganj et al., 2014), resulting

in a new matrix that reflects multi-synaptic pathways. More details are provided in our previous study

(Aganj et al., 2023).

We transformed the connectivity values c (each element in the connectivity matrix) into the logarithmic

space as c ← log(1 + c). This transformation helps to reduce the impact of outliers and enables more

robust statistical analysis.

2.3 Distribution matching

The goal of distribution matching is to align the statistical properties of different datasets, ensuring that

they share similar distributions. The positive values in our structural connectivity matrices are lower-

bounded by zero, peak at some positive value, and have a tail with no theoretical upper bound. This

led us to choose the gamma distribution as the appropriate model to represent our connectivity data,

as it is well-suited for modeling positive continuous data with a skewed distribution, which is typical for
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6 2 MATERIALS AND METHODS

structural connectivity values. Characterized by its shape and scale parameters, the gamma distribution

is formulated as:

gβ,γ(c) =
1

Γ(γ)βγ
cγ−1e−

c
β . (1)

In our case, c ≥ 0 is the structural connectivity value, β > 0 scales c hence named the scale parameter,

γ ≥ 1 is the shape parameter, and Γ is the gamma function (Γ(γ) = (γ − 1)! for integer γ). Note that

the distribution domain has a lower bound of zero, but is unbounded in the positive direction. Raw (orig-

inal unaugmented) structural connectivity matrices often contain numerous zero values, indicating the

absence of direct connections between certain brain regions. Accordingly, we formulated the probability

density function (PDF) of each element in our original (unaugmented) structural connectivity matrix as

a combination of a Dirac delta function at the origin and the gamma function, as follows:

f(c) := λδ(c) + (1− λ)gβ,γ(c), (2)

where δ(c) = 0 for c ̸= 0 and
∫
R δ(c)dc = 1, and 0 ≤ λ ≤ 1 represents the portion of zeros in a

connectivity value across all subjects.

The above PDF describes the likelihood of the continuous random variable (structural connectivity)

taking on the specific value c. The cumulative distribution function (CDF), F (c) :=
∫ c

−∞ f(c′)dc′, on

the other hand, represents the probability of connectivity taking a value no larger than c. By applying

the inverse CDF, also known as the quantile function, we will transform the data from one distribution

to match another, thereby achieving distributional alignment.

Given two datasets, collected at a reference site R and a new site N, with CDFs FR and FN , respectively,

we want to calculate the transformation TN→R that takes a connectivity value from the new site, cN ,

and returns a value harmonized in the reference site, cR = TN→R(cN). The harmonization task is to

find the value cR that shares the same percentile in the reference site as that of cN in the new site,

which is accomplished by subsequently applying the CDF of the new site and then the inverse CDF of

the reference site to the connectivity value, i.e., cR = TN→R(cN) = F−1
R (FN(cN)), or:

TN→R = F−1
R ◦ FN . (3)

For our distribution model, with the PDF in Eq. (2), the CDF is calculated as:
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2.3 Distribution matching 7

F (c) = λu(c) + (1− λ)Gβ,γ(c), (4)

where u is the Heaviside step function (u(c) is 0 for c < 0 and 1 otherwise) and Gβ,γ is the CDF

corresponding to gβ,γ. The inverse of the CDF in Eq. (4), which is used in Eq. (3), has the following

closed form:

F−1(p) =

0, if p < λ

G−1
β,γ

(
p−λ
1−λ

)
, if p ≥ λ

. (5)

Applying TN→R to a connectivity value from the new site harmonizes it into a value that preserves its

percentile in the distribution of the reference site, thereby achieving distributional alignment.

Our study uses OASIS-3 as the reference site and ADNI-2 as the new site. Analyzing the brain connections

between each pair of the 85 cortical and subcortical regions results in 3570 unique connectivity values. We

harmonized each original connectivity value (across all subjects) independently, and then re-augmented

the harmonized values (see Section 2.2). After harmonization, we undid the log transformation as

c← ec − 1 to ensure the interpretability of the results.

In addition, we performed internal harmonization within the OASIS-3 dataset that includes data from

two types of Siemens MRI scanners (655 subjects scanned by Trio Tim and 106 subjects by Biograph

mMR). For the OASIS-3 internal harmonization, we considered subjects scanned by Trio Tim as the

reference site while the others were treated as the new site.

In both aforementioned experiments, for comparison, we also harmonized the structural brain connectivity

data using three variations of ComBat: (1) including both sex and age as covariates, (2) including only

sex as a covariate, and (3) without including either age or sex as a covariate. In contrast to the proposed

distribution matching, ComBat does not guarantee the non-negativity of the connectivity values, which

is required for augmentation. Consequently, to harmonize augmented connectivity with ComBat, we

applied ComBat directly to augmented connectivity (rather than applying it to original connectivity and

re-augmenting the results, as we did with distribution matching). We systematically compared the results

of ComBat variations with those obtained from our distribution matching method.
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8 2 MATERIALS AND METHODS

2.4 Correlation analysis

We used MMSE and age for almost all subjects to investigate how they correlated with structural brain

connectivity before and after harmonization and determine if harmonization improved the outcomes

of correlation analysis. For robustness, we computed the correlation on a transformed version of the

connectivity value (each element in the original or augmented connectivity matrix) as c ← 1 − e−
c
c ,

where c is the cross-subject average of c, thereby confining the connectivity values to the range [0, 1]. We

performed Pearson’s correlation analysis to correlate original (cO) and augmented (cA) connectivity values

with MMSE and age within OASIS-3 and ADNI-2 individually. Subsequently, we extended these analyses

to examine correlations on the combined dataset before and after applying harmonization techniques,

specifically the proposed distribution matching as well as ComBat with three covariate configurations

(both sex and age, only sex, and neither). We then applied one-sided Wilcoxon signed-rank tests to the

absolute values of the correlation coefficients between MMSE/age and structural brain connectivity to

compare the effects of the harmonization methods against no harmonization. These tests were conducted

once for each harmonization method against no harmonization. We used four measures to assess the

performance: the absolute value of the correlation coefficient for each connection, the p-value generated

by the abovementioned one-sided Wilcoxon signed-rank test, the number of brain connections surviving

the Bonferroni correction (i.e., multiplication of the p-value by the number of connections, 3570), and

the lowest Bonferroni-corrected p-value generated from the correlation analysis across brain connections.

2.5 Permutation within ADNI-2

To investigate the potential impact of the reduction in the number of subjects during internal harmoniza-

tion, we conducted a permutation analysis focusing on the two brain connections most strongly correlated

with age and MMSE. We selected a random subset of 106 subjects from the 209 subjects of the ADNI-2

dataset, mirroring the reduction in the number of subjects in our internal harmonization experiment

within OASIS-3, and estimated the distribution of the selected connectivity value. We repeated this

random selection 1000 times to create a robust permutation set, which helped to elucidate the potential

variability introduced by sample size reduction relative to the gold-standard distribution obtained from

the full set.
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3 Results

3.1 Qualitative assessment of distribution matching

We measured how much the significance (s := − log p) values, corresponding to the correlation between

MMSE and structural brain connectivity, increase after harmonization, i.e. ∆s, for all brain connections.

We then sorted the connections with respect to their ∆s and chose the five connections with the smallest,

25th percentile, median, 75th percentile, and largest ∆s. As shown in Fig. 1, the peaks of the fitted

gamma curves for ADNI-2 and OASIS-3 better align after (than before) harmonization.

Figure 1: Normalized histograms of five connectivity values selected by choosing the smallest, 25th

percentile, median, 75th percentile, and largest differences of significance values (∆s) from the correlation
between MMSE and brain connectivity, before and after distribution-matching harmonization. Each
column represents a structural brain connection, with the first row showing the reference OASIS-3 data
and the second and third rows representing the ADNI-2 data before and after harmonization, respectively.
The red curves show the fitted gamma distribution.
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10 3 RESULTS

3.2 Correlation between harmonized structural connectivity and MMSE/age

We present the results of the quantitative evaluation of the proposed method in this section and in

tables 2 and 3. Table 2 presents the correlations between age/MMSE and connectivity values, both

within each dataset separately and in the combined dataset before and after harmonization. The com-

parison involves four harmonization approaches: the proposed distribution matching, ComBat with age

and sex as covariates, ComBat with only sex as a covariate, and ComBat without any covariates. For

the correlation between MMSE and original connectivity, distribution matching showed the highest mean

absolute correlation (0.07±0.05) and the highest number of significant relationships (361, also shown in

Fig. 2(a)), with a minimum p-value of 1× 10−16. All three variations of ComBat showed slightly lower

performance compared to distribution matching, with similar mean absolute correlations of 0.06± 0.05

and no more than 267 significant relationships. In correlations with augmented structural connectivity,

distribution matching similarly outperformed other methods, showing the highest mean absolute cor-

relation (0.17 ± 0.06) and the largest number of significant relationships (2406, shown in Fig. 2(b)),

with a minimum p-value of 5× 10−32. This compares favorably to the no-harmonization case. ComBat

harmonization incorporating both age and sex as covariates outperformed ComBat variants excluding

age (both with and without sex as a covariate).

For MMSE correlations both with original and augmented structural connectivity, the distribution match-

ing method had the most significant p-values from the Wilcoxon rank test. In the case of MMSE, we

expected a positive correlation between MMSE and brain connectivity because lower MMSE indicates

more advanced cognitive decline. Figure 3 (top row) demonstrates that distribution matching has en-

hanced the correlation between MMSE and (both original and augmented) structural connectivity, as

visible in most of the dots being above the identity line.

For age correlations with original structural connectivity cO, distribution matching and ComBat with

age and sex as covariates showed a similar mean absolute correlation, while the former had the most

significant p-value from one-sided Wilcoxon signed-rank test whereas the latter had the highest number

of significant relationships and most significant minimum p-value. Both methods increased the mean

absolute correlation and number of significant relationships after harmonization. ComBat variants ex-

cluding age (either with or without sex as a covariate) showed lower performance. In correlations with the

augmented structural brain connectivity cA, distribution matching demonstrated the best performance

with a mean absolute correlation of 0.24 ± 0.08, the highest number of significant relationships (3228,

see Fig. 2(d)), smallest p-values from one-sided Wilcoxon signed-rank test, and a minimum p-value

of 8 × 10−60. This was a significant improvement over the no-harmonization case. ComBat with age

harmonization performed slightly worse, but still better than the two variants excluding age in covariates.
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3.2 Correlation between harmonized structural connectivity and MMSE/age 11

Table 2: The comparison of the correlations between age/MMSE and connectivity values before/after
harmonization for the ADNI-2 and OASIS-3 datasets.

1|r|
mean ± std

2One-sided

Wilcoxon

test, pw

3#(p < 0.05) 4min p

M
M
S
E

cO

OASIS-3 0.06± 0.05 — 199 5× 10−14

ADNI-2 0.07± 0.06 — 2 4× 10−2

O
A
S
IS
-3

an
d
A
D
N
I-
2

No harmonization 0.06± 0.05 — 288 2× 10−19

Distribution matching 0.07± 0.05 8× 10−60 361 1× 10−16

ComBat

w/ age, w/ sex 0.06± 0.05 1 267 5× 10−18

w/o age, w/ sex 0.06± 0.05 1 217 5× 10−16

w/o age, w/o sex 0.06± 0.05 1 229 8× 10−16

cA

OASIS-3 0.15± 0.06 — 1634 6× 10−25

ADNI-2 0.16± 0.09 — 288 6× 10−6

O
A
S
IS
-3

an
d
A
D
N
I-
2

No harmonization 0.14± 0.07 — 1739 6× 10−33

Distribution matching 0.17± 0.06 0 2406 5× 10−32

ComBat

w/ age, w/ sex 0.16± 0.07 4× 10−261 2097 2× 10−32

w/o age, w/ sex 0.15± 0.07 8× 10−117 1965 4× 10−30

w/o age, w/o sex 0.15± 0.07 1× 10−111 1962 8× 10−30

A
ge

cO

OASIS-3 0.11± 0.09 — 804 2× 10−51

ADNI-2 0.09± 0.07 — 34 2× 10−6

O
A
S
IS
-3

an
d
A
D
N
I-
2

No harmonization 0.10± 0.08 — 898 2× 10−57

Distribution matching 0.11± 0.09 4× 10−61 1013 5× 10−55

ComBat

w/ age, w/ sex 0.11± 0.09 0.001 1074 1× 10−152

w/o age, w/ sex 0.09± 0.08 1 770 7× 10−56

w/o age, w/o sex 0.10± 0.08 1 855 5× 10−55

cA

OASIS-3 0.24± 0.09 — 2874 5× 10−50

ADNI-2 0.13± 0.09 — 181 7× 10−8

O
A
S
IS
-3

an
d
A
D
N
I-
2

No harmonization 0.20± 0.09 — 2666 5× 10−62

Distribution matching 0.24± 0.08 0 3228 8× 10−60

ComBat

w/ age, w/ sex 0.22± 0.08 4× 10−232 2970 9× 10−60

w/o age, w/ sex 0.21± 0.08 8× 10−94 2895 4× 10−55

w/o age, w/o sex 0.21± 0.08 1× 10−88 2901 1× 10−54

1 Mean and standard deviation of the absolute values of the correlation coefficients.
2 p-value generated from one-sided Wilcoxon signed-rank test, comparing r with the no-harmonization case.
3 Number of significant relationships with p-values surviving the Bonferroni correction.
4 Minimum Bonferroni-corrected p-value of Pearson’s correlation.
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12 3 RESULTS

Table 3: The comparison of the correlations between age/MMSE and connectivity values be-
fore/after harmonization for internal harmonization within OASIS-3 dataset.

1|r|
mean ± std

2One-sided

Wilcoxon

test, pw

3#(p < 0.05) 4min p

M
M
S
E

cO

No harmonization 0.06± 0.05 — 202 3× 10−13

Distribution matching 0.06± 0.05 1 182 5× 10−14

ComBat

w/ age, w/ sex 0.06± 0.05 1× 10−8 207 2× 10−14

w/o age, w/ sex 0.06± 0.05 2× 10−18 202 2× 10−14

w/o age, w/o sex 0.06± 0.05 4× 10−41 203 2× 10−14

cA

No harmonization 0.15± 0.06 — 1642 2× 10−24

Distribution matching 0.15± 0.07 1 1612 8× 10−24

ComBat

w/ age, w/ sex 0.15± 0.06 2× 10−290 1708 3× 10−25

w/o age, w/ sex 0.16± 0.07 0 1787 2× 10−25

w/o age, w/o sex 0.16± 0.07 0 1792 1× 10−25

A
ge

cO

No harmonization 0.11± 0.09 — 805 5× 10−51

Distribution matching 0.11± 0.09 1 795 8× 10−50

ComBat

w/ age, w/ sex 0.11± 0.09 1 879 1× 10−94

w/o age, w/ sex 0.10± 0.09 1 801 1× 10−49

w/o age, w/o sex 0.10± 0.09 1 800 1× 10−49

cA

No harmonization 0.24± 0.09 — 2864 7× 10−50

Distribution matching 0.24± 0.09 4× 10−154 2921 1× 10−49

ComBat

w/ age, w/ sex 0.22± 0.09 1 2766 2× 10−47

w/o age, w/ sex 0.23± 0.09 1 2812 3× 10−49

w/o age, w/o sex 0.23± 0.09 1 2812 3× 10−49

1 Mean and standard deviation of the absolute values of the correlation coefficients.
2 p-value generated from one-sided Wilcoxon signed-rank test, comparing r with the no-harmonization case.
3 Number of significant relationships with p-values surviving the Bonferroni correction.
4 Minimum Bonferroni-corrected p-value of Pearson’s correlation.
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3.2 Correlation between harmonized structural connectivity and MMSE/age 13

Figure 2: The histogram of s := − log p from Pearson’s correlation between original (a,c) or augmented
(b,d) structural brain connectivity and MMSE (a,b) or age (c,d), before and after harmonization. The
red dashed vertical line represents the significance cutoff threshold of − log 0.05.

In the case of age, we expected a negative correlation between age and structural brain connectivity. This

is well illustrated in Fig. 3 (bottom), where distribution matching has improved the correlation between

age and (both original and augmented) structural connectivity, as evidenced by most of the dots being
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14 3 RESULTS

Figure 3: Scatter plots comparing post- vs. pre-harmonization Pearson’s correlation (r) between MMSE
(top) or age (bottom) and original (left) or augmented (right) structural brain connectivity. The identity
line is plotted in red. In all cases, the proposed distribution-matching harmonization increased the overall
|r|.

below the identity line.

Next, since the OASIS-3 dataset includes data from two types of Siemens MRI scanners, we performed

internal harmonization within that dataset, the results of which are shown in Table 3. Different harmo-

nization methods resulted in only small differences in the mean absolute correlations and the number

of significant relationships. In particular, for correlations with age, no significant improvements were

observed in the mean absolute correlations except for the correlation with augmented connectivity after

distribution matching (p = 4× 10−154). For MMSE correlations with original and augmented structural

connectivity, ComBat methods slightly improved the mean absolute correlations, whereas distribution

matching showed no improvement.

Lastly, regarding the permutation experiments within ADNI-2 (Section 2.5), the PDFs of the 1000

permutations of the subsampled datasets and the full dataset are visualized in Figure 4, illustrating the
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Figure 4: Distribution of the PDFs of the brain connection most correlated with (a) age and (b) MMSE.
Each plot compares 1000 random permutations to select a subset of 106 subjects (red curves), to the
full dataset with 209 subjects (blue curve), in ADNI-2. The brain connection most correlated with age is
between the left thalamus and left hippocampus. The connection most correlated with MMSE is between
the left lingual cortex and left middle temporal cortex.

extent of variability introduced by cohort size reduction.

4 Discussion

In this study, we proposed a distribution-matching technique for harmonizing multi-site structural brain

connectivity data, and evaluated it while comparing it with the ComBat harmonization approach. We

analyzed structural brain connectivity data from two datasets, OASIS-3 and ADNI-2, and examined

the impact of harmonization on correlations between brain connectivity and both MMSE and age. We

evaluated the efficacy of our distribution matching method both qualitatively and quantitatively, with

both assessments showing robust performance. Qualitatively, our distribution matching harmonization

achieved the expected distributional alignment of ADNI-2 to OASIS-3. The effectiveness of harmonization

was assessed quantitatively by comparing correlation strengths and statistical significance after applying

each harmonization method to those before harmonization. Consistently through our cross-dataset

analyses, we found distribution matching almost always produced higher mean absolute correlations and

more significant p-values compared to ComBat (as shown in Fig. 2 and Table 2), suggesting it is a more

effective method for harmonizing structural connectivity data in these datasets. Our findings provide

insight into the complexities of harmonizing multi-site structural brain connectivity data and lay the

groundwork for further refinements in harmonization techniques.
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16 4 DISCUSSION

While minimum p-values can provide insight into the strongest individual correlations, relying solely on this

measure has some limitations in the context of large-scale neuroimaging studies. In datasets involving

thousands of brain connections, extremely low p-values can occur by chance, potentially leading to

misleading conclusions about harmonization effectiveness. Moreover, minimum p-values are not robust

to outliers or extreme values, which could disproportionately affect the final conclusions. To address these

limitations and provide a more comprehensive assessment of harmonization performance, we incorporated

the following additional measures. Absolute correlation coefficients offer a direct indication of the strength

of association between brain connectivity and MMSE/age, providing insight into effect sizes that are

theoretically independent of sample size and reflect practical significance. Wilcoxon signed-rank tests,

comparing results before and after applying different harmonization methods, help us understand whether

harmonization significantly improves the overall strength of correlations across all connections, providing

a whole-brain measure of effectiveness. (This test requires the conditional distribution of each observation

given the others to be symmetric about a common point, which may, however, not always be satisfied

in our case, hence reduced accuracy of the Wilcoxon p-values.) The number of connections surviving

Bonferroni correction reflects the overall sensitivity for detecting meaningful correlations while controlling

for multiple comparisons, providing insight into the breadth of harmonization effects throughout all brain

connections. By utilizing these multiple measures, we aim to capture different aspects of harmonization

performance. This offers a more comprehensive and nuanced evaluation that enables the assessment of

both the strength and prevalence of brain-behavior relationships across the entire brain, providing a more

reliable basis for comparing different harmonization techniques.

Our evaluation consisted of distribution matching harmonization on the combined OASIS-3 and ADNI-2

datasets, as well as internal harmonization within the OASIS-3 dataset. Interestingly, we observed that

internal harmonization within OASIS-3 rarely improved the correlation results, regardless of whether our

distribution matching or the ComBat method was used (see Table 3). This outcome can be attributed

to the following two factors. The OASIS-3 data has a high degree of consistency and standardization,

e.g. in terms of data collection protocols, acquisition parameters, and possibly some preprocessing. If

there is minimal variability between different scanner types or parameters within OASIS-3, the impact of

harmonization will be negligible, thereby making internal harmonization less beneficial. Furthermore, in

the harmonization of the combined OASIS-3 and ADNI-2 datasets, we used OASIS-3 as the reference site,

which included 761 subjects, while the ADNI-2 dataset with 209 subjects served as the new site. For the

internal harmonization within OASIS-3, we divided OASIS-3 into two sites: one with 655 subjects (used

as the reference site) and the other with 106 subjects (used as the new site). The reduced number of

subjects during internal harmonization (especially the number of subjects in the new site decreasing from

209 to 106), could be a contributing factor. We performed permutation tests by randomly selecting 106
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subjects from the total 209 subjects in the ADNI-2 dataset to simulate the reduction in the sample size in

our internal harmonization experiment, and computed the distribution of the selected feature. As shown

in Figure 4, we found a non-negligible variation among the permuted PDFs (red curves), which often

deviated from the full sample distribution (blue curve) to some extent. This suggests that a smaller new

site might represent the variability and distribution less precisely, leading to less robust harmonization.

The lack of improvement in correlation results within the OASIS-3 dataset after internal harmonization

could therefore be attributed to the possible homogeneity of the dataset and the smaller new site in

internal harmonization. Accounting for these factors can help us refine harmonization techniques and

better tailor them to specific datasets, ultimately improving the reliability and consistency of large-scale

multi-site neuroimaging analyses.

We compared the distribution matching method with three variants of ComBat harmonization on struc-

tural connectivity data: ComBat with both age and sex as covariates, ComBat with only sex as a

covariate, and ComBat without covariates. The inclusion of age or sex as covariates aims to remove

site-specific variability attributable to these demographic factors, potentially harmonizing data more ef-

fectively across different sites, age ranges, and sex groups (Pomponio et al., 2020; Zhou et al., 2023).

However, this approach results in harmonized connectivity values that are partially conditioned on age

and/or sex. We observed significant correlations between sex, age, and MMSE across all subjects in our

study (sex with age, p = 9 × 10−6; age with MMSE, p = 3 × 10−18; sex with MMSE, p = 3 × 10−5).

These relationships raise concerns about potential information leakage when including age and/or sex

as covariates during harmonization, particularly when subsequent analyses involve correlating these very

variables with harmonized structural connectivity. As shown in Table 2, ComBat with age and sex as

covariates generally produced better correlation coefficients than ComBat without them. While this

suggests improved effectiveness of harmonization, it is crucial to consider the potential for information

leakage. The enhanced correlations may partly result from age and sex influences being embedded in the

harmonized values, potentially biasing the results and even creating spurious correlations. Notably, our

distribution matching harmonization method did not incorporate age or sex information, thanks to which

it avoided the risk of age- or sex-related information leakage 1. By excluding these covariates, distribution

matching may offer a more straightforward and potentially less biased evaluation of how structural brain

connectivity relates to age, sex, and other variables of interest.

As shown in Fig. 1, we selected five brain connections by ranking the difference of negative logarithm of

p-values (∆s) generated from the correlation between MMSE and structural brain connectivity before vs.

after harmonization, and choosing the smallest, 25th percentile, median, 75th percentile, and largest ones.

1We could have controlled for sex in our distribution-matching approach simply by applying it to the two sex groups
separately.
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18 4 DISCUSSION

We chose these five examples in this way so they were selected in an unbiased manner. This, however,

might create the expectation that the harmonization-caused shift in the peak of the histogram would

increase with respect to ∆s. However, as shown in the figure, the amount of change after harmonization

does not necessarily correlate with the ranking of ∆s. It is worth noting that ∆s is related to not only the

harmonization effect size, but likely also to the significance (s) of the correlation with MMSE itself, with

the latter varying largely across different structural brain connections and not expected to be necessarily

related to the effectiveness of harmonization. In other words, brain connections that benefit the most

from harmonization and possibly go through a sizable distribution shift may not necessarily coincide with

those that are highly correlated with MMSE and have a high ∆s.

Our current study has several limitations that present opportunities for future research. First, our analysis

was confined to two imaging datasets and one tractography method, which limits the generalizability

of our findings. Future studies should extend this work to include multiple datasets from diverse sites

and data processed with various tractography methods, allowing for a more comprehensive evaluation

of the distribution matching method. Second, to further validate the effectiveness of our harmonization

approach, downstream analyses, such as predictive modeling, classification, and more complex network

analyses, could be employed. Such analyses would provide concrete evidence of the impact of harmo-

nization on real-world applications in neuroimaging research, potentially revealing subtle effects that

might be obscured by harmonization methods less tailored to structural brain connectivity. Finally, fu-

ture work could investigate the impact of harmonization on longitudinal data, explore its effectiveness

in harmonizing different imaging modalities, and examine its performance in clinical populations with

specific neurological or psychiatric conditions. Addressing these limitations and exploring these new di-

rections, which would enhance the robustness, applicability, and sensitivity of our distribution-matching

harmonization in multi-site neuroimaging studies, is part of our ongoing research.

Data and Code Availability

Data used in this study were obtained from two public databases: the third phase of the Open Access

Series of Imaging Studies 3 (OASIS-3) (LaMontagne et al., 2019), which is freely available from www.

oasis-brains.org, and the second phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-2),

which is available for download from http://adni.loni.usc.edu for researchers who meet the criteria for

access to these data.

The code for reconstructing the diffusion orientation distribution function in constant solid angle, perform-

ing Hough-transform global probabilistic tractography, computing the connectivity matrix, and augment-
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ing it with indirect connections is available at www.nitrc.org/projects/csaodf-hough. Combat data har-

monization was performed using a package available at https://github.com/rpomponio/neuroHarmonize.

FreeSurfer (Fischl, 2012) and FSL (Jenkinson et al., 2012) are available to download at https://freesurfer.

net and https://fsl.fmrib.ox.ac.uk, respectively.

We are currently making our distribution-matching codes user-friendly and will deposit them in an open-

access platform, providing the link here upon the acceptance of this manuscript.
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