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An increasing number of studies suggest that distinct pools of
synaptic vesicles drive specific forms of neurotransmission.
Interspersed with these functional studies are analyses of the
synaptic vesicle proteome which have consistently detected
the presence of so-called “non-canonical” SNAREs that typi-
cally function in fusion and trafficking of other subcellular
structures within the neuron. The recent identification of
certain non-canonical vesicular SNAREs driving spontaneous
(e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4)
release integrates and corroborates existing data from func-
tional and proteomic studies and implies that at least some
complement of non-canonical SNAREs resident on synaptic
vesicles function in neurotransmission. Here, we discuss the
specific roles in neurotransmission of proteins homologous
to each member of the classical neuronal SNARE complex
consisting of synaptobrevin2, syntaxin-1 and SNAP-25.

Introduction

The classical neuronal SNARE complex, comprised of the vesi-
cular protein synaptobrevin2 (syb2) and the plasma membrane-
associated proteins syntaxin-1 and SNAP-25 mediates synaptic
vesicle exocytosis.1 Studies of synaptic transmission in animals
lacking individual components of the synaptic vesicle exocytic
SNARE complex showed that SNAP-25, syntaxin-1 and syb2 are
required for normal synaptic transmission, but some types of
transmission are less dependent on these proteins. Deletion of the
mouse syb2 or SNAP-25 genes leads to lethality at birth, and
stimulus evoked neurotransmitter secretion is severely impaired.
In contrast, forms of neurotransmission such as spontaneous
neurotransmitter release and hypertonic sucrose evoked responses,
where calcium does not play an instructive role, are relatively less
affected by the lack of syb22 or SNAP-25.3-6 A similar phenotype
was observed in flies lacking syb2.7,8 Although syb2 and SNAP-25
appear to function in concert to promote fusion, a specific role of
syb2 in fast synaptic vesicle endocytosis after fusion has been
described9 that is not shared by SNAP-25.3 These results indicate

specific functions of related SNARE proteins during synaptic
vesicle exo-endocytosis coupling, and suggest the existence of
additional, non-canonical SNARE proteins involved in synaptic
vesicle fusion that may preferentially support spontaneous or
other forms of neurotransmission. In agreement with this notion,
the secretagogue a-latrotoxin can increase the rate of spontane-
ous vesicle fusion without relying on the canonical SNARE
machinery components, implying that a separate complement of
molecules may support spontaneous transmission.10 Further
support for this proposal comes from recent proteomic analyses
of purified synaptic vesicles which have consistently identified
many proteins homologous to those forming the classic neuronal
SNARE complex that typically reside in other subcellular
organelles11-15 (reviewed in ref. 16). Furthermore, a recent study
using a single-molecule quantification approach to assess the
intervesicle variability of several synaptic vesicle proteins found
that syb2 copy number varies significantly among individual
vesicles, again consistent with a role of non-canonical v-SNAREs
in synaptic vesicle fusion.17

In addition to these molecular studies, a growing number of
observations suggest that spontaneous and evoked transmission
arise from separate synaptic vesicle pools.18,19 The spontaneously
and activity-dependent recycling pools are differentially sensitive
to phorbol ester regulation20,21 as well as dynamin inhibition.22

Divergence in the vesicle populations released at rest or with
stimulation has also been observed in GABAergic terminals23 as
well as throughout neuronal development and synaptic matura-
tion.24,25 Furthermore, vesicles released under different forms of
neurotransmission may undergo mechanistically different fusion
reactions.26,27 Nevertheless, this proposal remains controversial as
a number of studies have concluded that spontaneous and evoked
release are dependent on the same vesicle pool.28-30 However, in
light of the earlier genetic knockout studies, from a molecular
perspective it is plausible that at least some fraction of vesicles
driving spontaneous and evoked synaptic vesicle fusion are likely
to diverge from the classical SNARE composition and thus
constitute separate pools. Indeed, such molecular tags for vesicles
released during specific modes of neurotransmission have recently
been identified for spontaneous31,32 and evoked asynchronous33

neurotransmitter release. Below we discuss these and a number
of other non-canonical synaptic SNARE proteins that have
been characterized with regard to their potential role(s) in
neurotransmission.
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Vesicular SNAREs

Assembly of SNARE complexes catalyzes fusion by forcing
membranes into close proximity.34 Although SNARE complex
formation is primarily driven by hydrophobic interactions,
SNARE complexes contain a central ‘zero layer’ composed of a
hydrophilic electrostatic interaction mediated by three glutamine
residues and one arginine residue.35 As a result, SNARE proteins
are designated as Q-SNAREs (such as syntaxin-1 and SNAP-25)
or R-SNAREs (such as syb2) based on their SNARE motif
sequences.36 All R-SNAREs contain similar domain structures
and minimally contain a SNARE motif followed by a trans-
membrane anchor. Subgroups of R-SNAREs contain either a
short N-terminal region ahead of the SNARE motif, known as
the brevins, or an extended N-terminal region of 120–140 amino
acids, known as the longins.37-39 The major synaptic vesicle
R-SNARE, syb2/VAMP2, exemplifies the brevin subclass of
vesicular (v-) SNAREs, whereas the prototypical longin is
VAMP7,38 also present in some synaptic terminals.40,41 Several
R-SNAREs in addition to syb2 and VAMP7 have been detected
in synaptic vesicles by mass spectrometry, including syb1/
VAMP1, cellubrevin/VAMP3, VAMP4 and the structurally
homologous Q-SNARE Vti1a.11,12,14,15 Many of these synaptic
vesicle SNAREs have recently been shown to support membrane
fusion in an in vitro assay at levels comparable to the canonical
syb2,42 and accordingly each has specific roles in neurotransmitter
release as outlined below.

Brevins: synaptobrevin1 and cellubrevin. Other brevins that
reside on synaptic vesicles include syb1 and cellubrevin (also
known as VAMP3).11,12,14,15 Similar to syb2, syb1 is predomi-
nantly expressed in the nervous system; however, while syb2 is
the major isoform in the brain, syb1 is more highly expressed in
the spinal cord.43,44 Syb1 and syb2 are both present in excitatory
and inhibitory central nerve terminals12,45 but an investigation of
the relative contributions of syb1 and syb2 to central synaptic
transmission has not yet been performed. Syb1 was recently
shown to mediate neuromuscular transmission.46 Interestingly,
the absence of syb1 produced similar deficits in both evoked
and spontaneous release at the neuromuscular junction as did
the absence of syb2 in central synapses,2 though the effects were
somewhat less pronounced, perhaps due to compensation by
endogenous syb2 at the motor terminal.46

Cellubrevin is ubiquitously expressed and was originally
described as having a function in receptor-mediated endocytosis.47

Our group has previously tested the ability of cellubrevin to rescue
synaptic transmission in the syb2 knockout. Cellubrevin was able
to rescue both spontaneous and evoked vesicle fusion in the syb2
knockout, but a double knockout of syb2 and cellubrevin showed
no greater loss of transmission than the single knockout of syb2.26

These data demonstrated that although syb2 and cellubrevin are
potentially functionally interchangeable, the remaining fusion in
syb2-deficient central synapses is not mediated by cellubrevin.
While cellubrevin may in fact exhibit functional redundancy in
both neurons and non-neuronal tissues, recent studies implicate
this protein in regulated secretion in both astrocytes48 and
endothelial cells.49

Longins and related proteins: VAMP7, Vti1a and VAMP4.
The longin family of R-SNAREs has a similar domain organi-
zation to that of the brevins, but these proteins also possess
conserved extended N-terminal regions. VAMP7 (also known as
tetanus-insensitive or TI-VAMP) is the founding member of this
subfamily.38 Although vti1a and VAMP7 have similarly extended
N-termini and are both vesicular SNAREs, vti1a is not techni-
cally a member of the longin family due to its designation as a
Q-SNARE. The N-terminus of VAMP4 is intermediate in length
between the brevins and the true longins. In both neurons and
non-neuronal cells, these proteins function in fusion reactions of
the endocytic pathway and reside predominantly in the Golgi
apparatus, endosomes and, in the case of VAMP7, lysosomes.50-52

VAMP7 is also well-known to regulate neurite outgrowth,53-55

and a second, rapid form of neurite outgrowth has been recently
described that depends on VAMP4-mediated fusion of specialized
exocytic organelles called enlargeosomes.56,57

The functions of VAMP7, Vti1a and VAMP4 in neurotrans-
mission are still emerging, but recent work has illuminated
essential roles in specific types of neurotransmission for each of
these proteins. VAMP7 is expressed throughout the adult brain,
typically in somatodendritic compartments, but is found in
presynaptic terminals in a subset of brain regions, most notably
in the granule cells of the hippocampal dentate gyrus,40 where it
appears to mediate a form of asynchronous neurotransmitter
release at the mossy fiber terminals dependent on its proper
presynaptic targeting by the adaptor complex AP-3.41 VAMP7
was recently identified as a specific marker of the resting vesicle
pool which is generally unresponsive to stimulation (Fig. 1).31

VAMP7 is clearly less responsive to stimulation than a broad
glutamatergic vesicle marker, VGLUT1, though some vesicles
containing VAMP7 do exhibit stimulation-dependent exocytosis.
A larger fraction of VAMP7-pHluorin tagged vesicles resides in
the resting pool than does VGLUT1, as suggested by the
observation that VAMP7 release at rest proceeded at a faster rate
than that of VGLUT1, but slower than that of syb2. However,
VAMP7-pHluorin appears to undergo both stimulus-evoked and
spontaneous release. In agreement with this study, further
analysis of the trafficking of VAMP7-pHluorin demonstrated
measureable amounts of both spontaneous and evoked release of
vesicles containing this protein, although both parameters were
decreased relative to that of syb2 measured concurrently in the
same synapses.32

Vti1a is another synaptic vesicle SNARE that appears to
specifically mediate spontaneous neurotransmission.32 Optical
imaging experiments demonstrated little mobilization of vesicles
containing pHluorin-tagged vti1a during stimulation, but
robust release of these vesicles at rest. The effect was confirmed
electrophysiologically in both inhibitory and excitatory synapses,
where loss- or gain-of function of vti1a produced bidirectional
effects on spontaneous event frequency but no effect on evoked
neurotransmission. These results are in agreement with a recent
proteomic study comparing the protein composition of glutama-
tergic and GABAergic synaptic vesicles which confirmed the
presence of vti1a on synaptic vesicles but found no differential
expression of this protein between excitatory and inhibitory
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synaptic vesicles.12 Furthermore, the ability of vti1a to support
spontaneous neurotransmission does not require the canonical
v-SNARE, syb2, as shown by similar effects of vti1a loss or gain-
of-function in neurons cultured from syb2 knockout embryos.
This result, taken together with optical demonstrations of
concurrent evoked release of syb2 with little response of vti1a
in the same boutons, supports the segregation of vesicle pools
driving spontaneous and evoked neurotransmitter release (Fig. 1).
It is not surprising that two distinct non-canonical v-SNAREs
(VAMP7 and vti1a) can mediate spontaneous release; indeed, as
shown in syb2 knockout neurons, syb2 is quantitatively the
most important v-SNARE for neurotransmitter release in all its
forms, including spontaneous and stimulus-evoked synchronous
and asynchronous release.2,9 From the existing data, it appears that
vti1a has a more restricted localization to spontaneously releasing
vesicles than does VAMP7, although electrophysiological analysis

of the VAMP7 loss- or gain-of-function on spontaneous and
evoked neurotransmission has not yet been performed. Even
though VAMP7 and vti1a can both undergo spontaneous release,
it is unlikely that these proteins are participating in the same
SNARE complex to mediate vesicle fusion due to their differences
in kinetics and absolute magnitudes of release.32 However, it is
important to note that a SNARE complex containing VAMP7
and vti1a has been reported to function in a novel constitutive
trafficking pathway in neurons.58

Recent work has identified VAMP4 as a v-SNARE specifically
driving evoked asynchronous release.33 VAMP4 localization was
confirmed at hippocampal synapses and VAMP4 expression was
shown to rescue both evoked asynchronous release and some
spontaneous release in the absence of syb2. Furthermore, up- or
downregulating VAMP4 levels could directly regulate asynchroni-
city of the evoked responses. Finally, optical imaging experiments

Figure 1. This cartoon depicts an emerging model on the distributions of vesicular SNAREs syb2, vti1a and VAMP7 among synaptic vesicle pools.
At central synapses, syb2 is the predominant vesicular SNARE that ensures rapid execution of synaptic vesicle fusion. However, loss-of-function studies
of syb2 suggest that a parallel pathway involving non-canonical SNAREs may mediate fusion and recycling of a subset of vesicles. Recent studies
revealed that both vti1a and VAMP7 could fulfill this role and specifically traffic at rest. Vti1a possesses a more prominent intracellular pool and more
robust trafficking in the absence of activity compared with VAMP7. On the other hand, vesicles containing vti1a or VAMP7 show relatively reluctant
responses to action potential evoked stimulation compared with swift mobilization of syb2-containing vesicles during evoked neurotransmission.
Given their relative reluctance for mobilization VAMP7 containing vesicles could constitute at least a fraction of the vesicles within the resting pool.
The co-existence of molecularly distinct synaptic vesicle populations with different fusion properties may allow certain regulatory pathways to impact
a particular type of neurotransmission selectively, thereby triggering a specific cellular response. In this way, the nature of presynaptic activity can
determine the impact of downstream postsynaptic signaling events.
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identified a unique trafficking pathway of this protein, whereby
VAMP4-enriched vesicles are generated by endocytosis from the
plasma membrane and are subsequently utilized to maintain
asynchronous release during periods of intense neuronal activity
(Fig. 2). It is interesting to note that a SNARE complex
consisting of syntaxin-6, syntaxin-13, vti1a and VAMP4 is well-
documented in the endosomal system of neurons and non-
neuronal cells and functions in the retrograde transport of
endosomes to the Golgi apparatus59-61 and in the homotypic
fusion of early endosomes.62 Thus, in light of the ability of
VAMP4 to support a small amount of spontaneous transmission
in the absence of syb2, VAMP4 and vti1a may have some
overlapping functions in neurotransmission. Together with the
recent work described above identifying VAMP7 as a resident of
the resting vesicular pool31 and vti1a as a specific mediator of
spontaneous neurotransmitter release,32 it seems clear that the
particular complement of v-SNAREs on synaptic vesicles can
directly influence their fusion behavior.

Negative regulation of SNARE complex formation by intra-
molecular binding of the longin domain with the SNARE motif
has been demonstrated for the longins Ykt6 and Sec22,63,64 and
suggested for VAMP7.65 Indeed, exogenous expression of the
longin domain of VAMP7 in PC12 cells has a dominant negative

effect on neurite outgrowth, whereas overexpression of a mutant
VAMP7 lacking the longin domain enhances this process.55

Furthermore, VAMP7-pHluorin lacking the longin domain
facilitated both spontaneous and evoked release of VAMP7- and
syb2-pHluorin and has an increased rate of spontaneous exo-
cytosis compared with full-length VAMP7.31 These results are
consistent with the increase in spontaneous excitatory release at
the mossy fiber synapses in brain slices from mocha mice which
are deficient in functional AP-3.41 Consistent with the effects of
deleting the VAMP7 N-terminus described above, expression of
truncated vti1a triggered a prominent augmentation of baseline
levels of spontaneous release detected electrophysiologically,
suggesting the existence of a mechanism that may relieve potential
autoinhibition of vti1a.32 Autoinhibition of SNARE complex
formation is a well-known feature of some syntaxins, which also
possess an elongated N-terminus, although their fold is markedly
different from that of the longins.37,39,66 Therefore, it is not
unexpected that the extended N-termini of vti1a and VAMP7
regulate their abilities to support synaptic vesicle fusion.

Syntaxins 6, 7, 12/13 and 16

Alternative syntaxin isoforms typically involved in fusion reac-
tions throughout the endocytic pathway have been recently
detected in purified synaptic vesicle fractions by several proteomic
analyses. These include syntaxin-6, syntaxin-7, syntaxin-12/13
and syntaxin-16.11,12,14,15 Each of these proteins is highly expressed
in brain, but also widely distributed in other tissues.67-70 The
detection of these particular endosomal syntaxins by multiple
proteomic approaches in which synaptic vesicles were isolated by
different methods is striking. These results suggest that they may
have additional functions specific to synaptic vesicle fusion or
recycling. However, none of these proteins has a documented role
in neurotransmission, with the possible exception of syntaxin-13.
Recent work provided evidence that synaptic vesicles belonging
to the readily releasable pool (RRP) are sorted through an
endosomal intermediate, and showed significant reduction of the
RRP size upon expression of a dominant-negative syntaxin-13
soluble fragment.71 Thus, the endosomal syntaxins may influence
neurotransmission in an indirect manner by regulating synaptic
vesicle recycling. Indeed, inhibition of presynaptic endosomal
recycling via the dominant-negative syntaxin-13 fragment was
also reported to increase the spontaneously released vesicle pool.71

Real-time measurements of spontaneous synaptic vesicle fusion
using pHluorin-tagged syntaxin-6 (presumably operating in the
same SNARE complex as syntaxin-13) failed to detect any
spontaneous fusion of structures containing this protein, though a
small amount of trafficking was observed upon supraphysiological
high potassium stimulation,32 consistent with the notion that
endosomal proteins may be enriched in a subpopulation of
synaptic vesicles (such as the RRP).71

SNAP-25-Related Proteins

Three proteins related to the canonical plasma membrane-
anchored SNARE protein SNAP-25 have been identified,

Figure 2. Recent work supports a model where the vesicle-associated
SNARE VAMP4 functionally diverges from the key vesicular SNARE syb2
and predominantly maintains asynchronous release. Experiments using
a combination of electrophysiology and optical imaging indicate
that a small but significant population of vesicles appears to be enriched
in VAMP4, follows a distinct route of stimulation-dependent trafficking
facilitated by VAMP4’s N-terminal di-leucine motif and selectively
supports asynchronous release. According to this model, sustained
activity can generate a synaptic vesicle population enriched in VAMP4.
A VAMP4-dependent SNARE complex formed after recruitment
of these vesicles provides a substrate upon which a Ca2+ sensor acts
to drive asynchronous release.
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including SNAP-23, SNAP-29, and SNAP-47. Putative functions
of these Qbc SNAREs in neurotransmission have not been
extensively characterized but are summarized below.

SNAP-23. SNAP-23 is ubiquitously expressed,72 preferentially
but promiscuously binds a number of plasma membrane-
associated syntaxins,73 and assumes the essential functions of
SNAP-25 in a variety of exocytic reactions in non-neuronal
cells.74-76 A recent study revealed an essential role of SNAP-23 in
embryogenesis, as Snap23 null mouse embryos died prior to
implantation at E3.5.77 Although SNAP-23 appears to function
primarily in non-neuronal cells, it has been detected in cortical
neurons78 and in purified synaptic vesicles.14 SNAP-23 has been
shown to support the evoked4 and basal79 release of granules in
neuroendocrine cells, as well as both spontaneous and evoked
asynchronous synaptic vesicle release in Snap25 null neurons,80

indicating a possible role for the endogenous protein in neuro-
transmission. Interestingly, the evoked asynchronous release
mediated by SNAP-23 in the absence of SNAP-25 appears
strikingly similar to that observed in the absence of synaptotag-
min1, the fast calcium sensor.81 While the canonical neuronal
SNARE complex including SNAP-25 is well known to utilize
syt1 as the calcium sensor in the presence of elevated intra-
terminal calcium, SNAP-23 is proposed to bind another syn-
aptotagmin isoform, syt7, which binds calcium with ~10-fold
higher affinity82,83 and allows SNAP-23 to mediate granule
docking and fusion at resting calcium levels.79 Thus, SNAP-23
can support synaptic vesicle fusion in the absence of SNAP-25
and may function in a SNARE complex driving asynchronous
and/or spontaneous neurotransmitter release. A postsynaptic role
in NMDA receptor trafficking has also been recently ascribed to
SNAP-23.84 Taken together these results point to a rather
ubiquitous role for SNAP-23 beyond synaptic vesicle fusion.

SNAP-29. SNAP-29 is ubiquitously expressed and localizes to
multiple intracellular organelles, including the endosome, lyosome
and Golgi apparatus, where it binds plasma membrane and
intracellular syntaxins equally well.73,85 Due to these charac-
teristics, SNAP-29 was proposed to be involved in general
membrane trafficking reactions and was recently identified in a
screen of genes required for constitutive secretion in mammalian
cells.86 However, synaptic SNAP-29 has been proposed to
function not in exocytosis but rather as a negative regulator of
SNARE complex disassembly after fusion. This action is mediated
by SNAP-29 binding to the assembled SNARE complex and
competitively preventing the binding of a-SNAP, thus slowing
synaptic vesicle recycling and inhibiting efficient transmission
under repetitive stimulation.87,88

SNAP-47. SNAP-47 is the most recently identified protein
in this subfamily, and is ubiquitously expressed but found at

particularly high levels in the brain.89 It is also enriched in crude
synaptic vesicle preparations as detected by immunoblotting89 and
was detected in purified synaptic vesicles by mass spectrometry.14

SNAP-47 reportedly can functionally substitute for SNAP-25 by
forming SNARE complexes with syntaxin1 and synaptobrevin2
in vitro and in a liposome fusion assay, although with reduced
efficiency compared with SNAP-25.89 These results imply that
endogenous SNAP-47 may have a role in synaptic vesicle fusion
but so far none has been identified. However, regulated exocytosis
in adrenal chromaffin cells lacking SNAP-25 cannot be rescued
by SNAP-47 expression.89

Conclusion

The recent identification of VAMP7,31 vti1a32 and VAMP433 as
molecular tags for independently functioning synaptic vesicle
populations strongly supports the divergence of the synaptic
vesicle pools that drive spontaneous and evoked neurotransmis-
sion (reviewed in ref. 90). These studies molecularly dissect vesicle
populations within individual synapses via identification of
synaptic vesicle pool-specific integral membrane proteins. This
notion also extends to the postsynaptic side of the synapse, where
emerging evidence points to spatially segregated receptor activa-
tion91,92 triggering independent signaling pathways downstream of
spontaneous or evoked release.93,94 Therefore, it is plausible that
one could target the vesicular proteins vti1a, VAMP4 or VAMP7,
eliciting selective regulation of spontaneous or asynchronous
neurotransmitter release without significantly altering fast syn-
chronous neurotransmitter release. These manipulations may
nevertheless trigger specific behavioral responses, as shown by a
recent report of increased anxiety in mice lacking VAMP7.95 As
fast synchronous release is critical for information coding and
processing in the brain, any manipulation sparing this type
of synaptic transmission would be expected to have limited
side effects compared with more global regulation of neuro-
transmission. This approach has important implications for the
development of novel treatment strategies targeted against
neuropsychiatric disorders, as suggested by recent work des-
cribing and essential role of spontaneous neurotransmission in
mediating the fast anti-depressant effects of NMDA receptor
antagonists.96
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