
sensors

Communication

Pass/Fail Quality Assessment in Last Mile Smart Metering
Networks Based on PRIME Interface

Piotr Kiedrowski * and Beata Marciniak

����������
�������

Citation: Kiedrowski, P.;

Marciniak, B. Pass/Fail Quality

Assessment in Last Mile Smart

Metering Networks Based on PRIME

Interface. Sensors 2021, 21, 7444.

https://doi.org/10.3390/

s21227444

Academic Editor: Antonio Puliafito

Received: 2 September 2021

Accepted: 7 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Telecommunications Computer Science and Electrical Engineering, Bydgoszcz University of Science
and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland; Beata.Marciniak@pbs.edu.pl
* Correspondence: Piotr.Kiedrowski@pbs.edu.pl; Tel.: +48-52-340-83-39

Abstract: The pass/fail form is one of the presentation methods of quality assessment results. The
authors, as part of a research team, participated in the process of creating the PRIME interface
analyzer. The PRIME interface is a standardized interface—considered as communication technology
for smart metering wired networks, which are specific kinds of sensor networks. The frame error
ratio (FER) assessment and its presentation in the pass/fail form was one of the problems that needed
to be solves in the PRIME analyzer project. In this paper, the authors present their method of a unified
FER assessment, which was implemented in the PRIME analyzer, as one of its many functionalities.
The need for FER unification is the result of using different modulation types and an optional forward
error correction mechanism in the PRIME interface. Having one unified FER and a threshold value
makes it possible to present measurement results in the pass/fail form. For FER unification, the
characteristics of FER vs. signal-to-noise ratio, for all modulations implemented in PRIME, were used
in the proposed algorithm (and some are presented in this paper). In communication systems, the
FER value is used to forecast the quality of a link or service, but using PLC technology, forecasting is
highly uncertain due to the main noise. The presentation of the measurement results in the pass/fail
form is important because it allows unskilled staff to make many laborious measurements in last
mile smart metering networks.

Keywords: industrial IoT; PRIME; smart metering; wired sensor networks

1. Introduction

New measurement techniques solutions are the natural “consequences” of implement-
ing new technologies in communication services. This is also true for communication
systems that are designed for remote reading of electrical energy consumption. In most
cases, smart metering (SM) systems use wireless [1,2] or power line communications
(PLC) [3,4] technologies for last mile network realization. PLC is gaining popularity [5]
among other technologies due to its standardization by ITU-T [6–8]. These standards define
such PLC interfaces as: PoweRline intelligent metering evolution (PRIME), G3-PLC [9],
and G.hnem [10]. These interfaces are based on orthogonal frequency division multiplex-
ing (OFDM) as physical layers [11] and differential phase shift keying (DPSK) as carrier
modulations. For the PRIME interface, they are: differential binary phase shift keying
(DBPSK) modulation, differential quaternary phase shift keying (DQPSK) modulation, and
differential 8-phase-shift keying (D8PSK) modulation. The PRIME interface, as with all
interfaces used in SM, uses carrier frequencies within the CENELEC A band [9,12], i.e.,
from 42 to 89 kHz. The authors of this paper constructed a PLC PRIME analyzer to meet
the expectations of smart metering maintenance personnel.

Analyzers used for measurements in communication networks have similar construc-
tions. Nowadays, they consist of microcomputers with a touch screen and a specialized
module. In case of PLC, the specialized module is a standard PLC modem. If PLC technol-
ogy is used for SM systems, the same modem that is used in the traffic concentrator (TC) can
be deployed. Depending on the used modem, dedicated software must be implemented
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based on the conformity with the host modem interface documentation. This software is a
modem driver.

Further software components of the PLC PRIME analyzer are: implementation of ITU-
T G.9904 protocols, a quality assessment module, a graphical user interface, a reports creator,
a remote manager, a statistic data processor, and presenter. The presented methods were
implemented on a Raspberry Pi microcomputer using Python 3 programming language.
This paper focuses on a specific form of statistic data presentation—pass/fail. The pass/fail
presentation form allows unskilled staff to make measurements in a low voltage (LV) power
network. This method of presentation is useful in a fault localization. The most common
fault source, which degrades the communication quality in last mile SM networks based
on PLC, is the capacitive load.

2. Problem Definition

Typical interface analyzers consist of three functional parts: a protocols analyzer, a
physical layer tester, and a quality monitor. The quality monitor uses statistics data for
assessing the communication reliability in a particular layer. For the quality assessment in
physical and data layers, these statistic data involve the frame error ratio (FER). The FER
depends on the signal-to-noise ratio (SNR) [13]. There are different characteristics of FER
vs. SNR for different kinds of modulations [14], length of frames, and whether a forward
error correction (FEC) technique is deployed. According to ITU-T recommendation G.9904,
the convolutional coding (CC) method [15] is used as a FEC realization for PRIME. The
value of FER is defined as:

FER =
fe

fTx
, (1)

where: fe is the number of received erroneous frames, fTx is the number of sent frames.
In the monitoring mode, the value of fTx is unknown, because frames are generated

by SMs and TC, and not by the analyzer. In such a case, the value of FER is obtained by the
following formula:

FER =
fe

fe + fe f
, (2)

where fe f is the number of received error free frames.
The frame is classified as erroneous when the cyclic redundancy check (CRC) [16]

mismatches. CRC-8 and CRC-32 are used in the PRIME interface, the CRC field may be
placed at the end of the frame or at the end of the frame overhead. Considering that,
the PRIME frame may have a length in the range of 18 to 2268 bytes (the upper range
depends on the type of modulation). There are three types of modulation; for every kind
of modulation, the FEC can be on or off. There are thousands of options, in regard to
FER vs. SNR characteristics. Thus, many observation results are difficult to present or
interpret; another main problem is the duration of the observation, which is required to
obtain measurement results with the resolution, at least 10−2 for each type of FER. Of
course, we can use the data obtained from the frames of rare lengths, but the problem is
still not solved, especially as the network analyzer dedicated for technical staff should have
so-called easily interpretable result presentation forms, e.g., pass/fail form. The pass/fail
presentation method depends on the comparison of the resulting value with the threshold
constant value. The software implementation of the result presentation in the form of
past/fail is not difficult if only threshold constant values are known; the difficulty is posed
by the unification of the FER vs. SNR characteristics to one characteristic, which may act as
a reference characteristic. The solution to this problem and the problem of the proposed
method evaluation is also discussed in this paper.

3. The Method for Unified FER Assessment

According to the PRIME specification [8], the value of SNR is delivered from the PLC
modem by PHY−SNR.con f irm primitive as result of sending the PHY−SNR.get primitive
to the modem. The semantics of this primitive are as follows: PHY−SNR.con f irmSNR.
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The SNR parameter refers to the signal-to-noise ratio, defined as the ratio of the
measured received signal level to noise level of the last received PHY protocol data unit
(PPDU) [8]. It may take one of eight values. The mapping of the three-bit index to the
actual SNR value is given below:

0: ≤0 dB

1: ≤3 dB and > 0 dB

2: ≤6 dB≤ and > 3 dB

· · ·
7: > 18 dB.

To create and present the communication performance for a particular kind of modu-
lation, two matrices are declared: the matrix of received erroneous frame counters and the
matrix of all received frame counters. The size of the matrix is 2250 × 8, because there are
2250 possible frame lengths and eight ranges of SNRs. According to (2), for the given kind
of modulation and frame length, FER is:

FER =
∑8

i=1 ei,k

∑8
i=1 ai,k

, a ∈ N+ (3)

where ek are error counters (eight elements in the matrix of received erroneous frames), ak
are all frame counters (eight elements in the matrix of all received frame counters), k is the
index of frame length.

Such data organization also allows to create FER(SNR) characteristics, as done in [17],
using simulation methods, or in [18], using a virtual lab methodology; we used the data
obtained from real, long time measurements. FER(SNR) characteristics presented in the
graph format are called performance curves, and for the same frame length, they differ,
depending on the type of modulation. As an example, two characteristics of FER(SNR), for
DBPSK with CC, and D8PSK with CC modulations, are presented in Figure 1.

Figure 1. FER vs. SNR characteristics, for DBPSK with CC, and D8PSK with CC modulations,
performed with the frame size of 18 bytes.

The characteristics of FER(SNR) also allows to assess the robustness of the modulation,
e.g., using the data presented in Figure 1, we can conclude that DBPSK with CC is more
robust than D8PSK with CC. Due to the same value of SNR, the level of FER is smaller
for DBPSK with CC. The effectiveness of the FEC, which is based on the CC method, is
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illustrated in Figure 2, where two characteristics of FER(SNR) for DBPSK and DBPSK with
CC are presented.

Figure 2. FER vs. SNR characteristics, for DBPSK with CC and DBPSK without CC modulations,
performed with a frame size of 18 bytes.

Three characteristics for 18-byte frames are presented in Figures 1 and 2. For two
types of modulation (e.g., A and B) and for the same constant value of SNR, the equivalent
of FERA calculated over the number of erroneous and error free frames modulated with
the use of B modulation may be expressed as follows:

FERA = αAB(SNR) · FERB(SNR) (4)

where αAB(SNR) is a FER conversion factor, to express FER as if frames were modu-
lated with use of the A modulation, while in fact they were modulated with use of the
B modulation.

The value of αAB(SNR) is the quotient of FERA(SNR) and FERB(SNR), i.e., αAB =
1/αBA. The values of FER, which are used to determine the conversion factor, must come
from long-term measurement results, e.g., these presented in Figure 1 or Figure 2. Below, in
Table 1, we present the values of αDBPSKcc−D8PSKcc factors obtained from the data presented
in Figure 1.

Table 1. αDBPSKcc−D8PSKcc conversion factors for 18-byte frames.

SNR [dB] ≤0 (0, 3] (3, 6] (6, 9] (9, 12] (12, 15] (15, 18] >18

αDBPSKcc−D8PSKcc 1 1 0.39 0.02 4.7× 10−4 3.5× 10−4 2.5× 10−4 1× 10−5

The values of conversion factors presented in Table 1 are not bigger than 1. It is because
αDBPSKcc−D8PSKcc is the factor used to express the FER of the more robust modulation using
the data obtained from the less robust modulation. If it were opposite, the conversion
factors would not be less than 1. Thus, using (4), for conversion FER, from the more robust
modulation to FER, of the less robust modulation, we must remember that FER cannot be
bigger than 1. In practice, we always convert to the most robust modulation (that is DBPSK
with CC) from data obtained from all used by the PRIME modulation. Using the data from
more than one type of modulation, we cannot use (4) or average them. In such a case,
we use Formula (5), which includes the numbers of received frames per modulation type.
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Using the same variables, which were used in (3), we can express the value of one unified
FER for the different types of modulations, and the particular length of frames, as follows:

FERA(k) =
∑8

i=1(eAi,k + αA•e•i,k)

∑8
i=0(aAi,k + a•i,k)

(5)

where • denotes all types of modulations, except the A modulation, other designations,
such as in (3).

The index A of FER means that this FER is equal to the FER value of the A modulation
calculated from the data taken from six pairs of counters. To have one, the global FER
value, which is independent from SNR, nominators, and denominators, were summed
before dividing.

The last problem is the influence of the frame length on FER, which is that, for the
constant value of SNR, the FER increases as the frame length increases. We could use the
same method that we used to become independent from the type of modulation, but there
is a statistical problem. The FER is the probability of error occurrence determined from
the sample, and when we receive very few frames of the specified lengths, even during
a long-term observation, we can only consider this sample as insignificant. To solve this
problem, we decided to only use two types of frames for the unified FER assessment: the
“beacon” frame and the “promotion need MAC” frame. The “beacon” frame is transmitted
very often—the frequency of the “beacon” frame generation is one “beacon” frame per 2n

other frames, where n may be: 0, 1, 2, 3, 4, or 5. The length of the “beacon” frame is fixed
and equals 18 bytes, the last 4 bytes are CRC-32 field. The “promotion need MAC” frame
length is also 18 bytes, but it ends with CRC-8. Based on the two types of frames with the
same length, and the fact that there are two types of CRC, it could be possible to assess FER
over CRC-32 and FER over CRC-8, but it is not necessary due to the fact that they give the
same values of FER. The algorithm for the FER calculation for the pass/fail presentation is
presented in Figure 3, in sequence diagram language form.

Figure 3. The algorithm for FER calculation.

The presented algorithm based on Formulas (4) and (5) has two procedures: Up-
dateNominator and UpdateDenominator; the argument of both procedures is the Counter
value. Nominator and denominator variables are global variables, similar to conversion
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factors. Sample codes of the bodies of these procedures are presented below, respectively.

Nominator = Nominator + E−DBPSKcc[Counter][0]+
E−DBPSK[Counter][0] ∗ al f aDBPSKcc−DBPSK+
E−DQPSK[Counter][0] ∗ al f aDBPSKcc−DQPSK+
E−DB8SK[Counter][0] ∗ al f aDBPSKcc−D8PSK+
E−DQPSKcc[Counter][0] ∗ al f aDBPSKcc−DQPSKcc+
E−DB8SKcc[Counter][0] ∗ al f aDBPSKcc−D8PSKcc
Denominator = Deominator + A−DBPSKcc[Counter][0]+
A−DBPSK[Counter][0] + A−DQPSK[Counter][0]+
A−DB8SK[Counter][0] + A−DQPSKcc[Counter][0]+
A−DB8SKcc[Counter][0]

Counters matrices have two indexes, the first index is the variable counter, whilst
the second is 0, because 18-byte frames are the shortest ones. The E−DBPSKcc and
A−DBPSKcc matrices are also used in the FER self-assessment evaluation method, which
is described in the next section.

4. The Self-Evaluation of Measurement Reliability

The proposed method of the unified FER assessment was implemented on a Raspberry
Pi microcomputer, which, together with PLC PRIME modem, separate circuits, three-phase
line interface, and a piece of software created in Python 3, constitute an embedded system
named PRIME analyzer. A photograph of the prototype of this analyzer is presented in
Figure 4.

Figure 4. Photograph of the PRIME analyzer α-prototype.

One of the functionalities of the PRIME analyzer presented in Figure 4 was to en-
able unskilled staff to make serial measurement sessions with the purpose of finding
fault sources. The localization of the fault source is carried out with the use of the uni-
fied FER value compared to the configured FER−threshold value. If FER is greater than
FER−threshold, then the test is failed; in other case, it is passed. The FER−threshold value
is not configurable from the level of GUI, it is only configurable from the operation system
by a system administrator. For the evaluation of the implemented method of the FER assess-
ment and to ensure a sufficiently long observation time, the current, measured FER(SNR)
values are compared with eight reference values of FER−DBPSKcc. The eight values in the
FER−DBPSKcc array are centrally distributed after they are updated. The data obtained
during the measurements are used to update the already existing values—they are cumu-
lated. This way, the FER(SNR) values are more accurate, because we have more statistical
material. There is uncertainty about the use of FER vs. SNR charts in both measuring and
quality forecasting. The nature of the noise is the source of the uncertainty. The noise level
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is determined over time, so it is only an average level of it. FER vs. SNR charts for the
same kind of modulation can differ if the noise level changes rapidly. This phenomenon
is especially noticeable when the power line supplies gas-discharge lamps [19]. After the
process of data validation, it is distributed to PRIME analyzers. The processes of data
acquisition and distribution are realized during the report creation process, when the
analyzer is connected to the internet. The data that are presented in Figures 1 and 2 come
from the central base, which was updated on 29 November 2020. The FER−DBPSKcc
array is used in the self-evaluation process during the measurement; additionally, the
array E−DBPSKcc and A−DBPSKcc matrices are used. The process of self-evaluation is to
ensure the reliability of the measurement and is realized using the following formula:

δ =
1
8

7

∑
i=0

|FER[i]− e[i][0]
a[i][0] |

FER[i]
, (6)

where: i is an SNR index in matrices and array, FER represents FER−DBPSKcc array, e
represents E−DBPSKcc matrix, and a represents A−DBPSKcc matrix.

The above Formula (6) is nothing but a mean value of the absolute error. The evalua-
tion process starts if all eight values A−DBPSKcc[•][0] are different from zero. Typically,
the duration of a pending state is a few minutes. After this time, the calculation of δ value
can be done. If δ < 1, the pass/fail FER assessment may start. As an example, in Figure 5,
the process of the δ value determination is shown over time.

Figure 5. Exemplary process of δ value determination.

It can be observed from Figure 5 that the duration of the pending state is 7 min. This
is typical, because every 15 min [20] (or sometimes 30 min) [21], the reading process of all
SMs in the last mile network starts, which causes the communication traffic increase.

The duration of the pending state will be shorter if the SMs are read more frequently,
which is likely to happen in the near future. It is shown in [22] that frequent readings allow
describing household consumption profile features with greater accuracy. The need for
more frequent readings can also be caused by the development of distributed generation
and energy storage systems. The advantages of the frequent PV household profile readings
are shown in [23].

5. Discussion

The proposed unified FER assessment method allows for the realization that most
expert systems are easier, because there is only one value for consideration. The deployment
of this method in the pass/fail testing mode allows unskilled staff to make measurements
in an LV network (obviously without neglecting any of the safety requirements). Several
minutes of testing of the last mile network is becoming more popular, because of the so-
called “unintentional attacks”. The most common source of these attacks is the incompatible
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or damaged load connection to the mains. The second type source of an “unintentional
attack” could be the high-capacity load.

The FER values that depend on the value of the capacitance of the capacitor connected
to the power line are presented in Table 2.

Table 2. FER vs. the capacitance located near the measuring point.

Capacitance 0.5 µF 0.9 µF 1.4 µF 1.9 µF 2.6 µF 2.8 µF 3.3 µF 3.8 µF 4.2 µF 4.8 µF

FER 0 0 0.05 0.13 0.37 0.56 0.81 0.94 1 1

The data presented in Table 2 are the results of laboratory tests. The schema of the
electrical circuit used for the tests is shown in Figure 6.

Figure 6. Schema of the circuit used for FER vs. capacitance characteristic obtaining.

We used a line impedance stabilization network produced by Rohde and Schwarz
to separate our circuit from the mains noises and its impedance. PRIME modems were
used for the traffic generation and PRIME analyzer was used to measure the FER. In
our experiment, we used a 10 mm2 copper solid conductor cable as a power line. The
distance of 15 m between the modems was too small to affect the transmission quality,
while the distance of 20 m between the second modem and the capacitor is the typical
average distance between the SM and the power consumer’s load. The distance between
the measuring point and the capacity influences the measurement result—the longer the
distance, the smaller the FER. This feature allows locating a household with a capacitive
receiver (the source of an “unintentional attack”). The presence of the capacity causes the
signal transmitted by the modem to be attenuated, which reduces the SNR value. The
reduction in the SNR value may also be caused by noise, which also increases the FER
value. To determine whether the source of transmission errors is capacitance or noise, the
presented PRIME analyzer analysis a shape of the PRIME frame preamble. The PRIME
frame preamble is the linear chirp signal. The preamble duration is 2048 µs, the start
frequency is 41,992 Hz, and the final frequency 88,867 Hz, so the level of the preamble
signal weakens over time, which is when the capacitance is the source of error rather than
noise. Preamble analysis is performed by specialized personnel only if the pass/fail test
result is a fail.

The proposed method allows localizing the source of these “attacks”; moreover,
further analysis makes it possible to determine if the source has a capacitive or disturbing
character. The analysis of the SNR values, together with the signal levels of receiving
frames, are useful during the determination of the fault source character. The proposed
self-evaluation method ensures the measurement reliability and makes the pass/fail verdict
not hasty. It should also be mentioned that there are some areas of implementation where
the proposed method is practically inefficient. These areas are small, last mile networks.
Small networks are the networks with a few SMs located in close proximity to TC. In such
networks, it is impossible to receive frames with all eight possible SNRs, which cause the
self-evaluation process to stay in the pending state. This disadvantage is not particularly
bothersome, because in small networks, faults are rare. Sporadic dysfunctions of small last
mile networks (which do not allow reading of SMs) have no particular effect on the quality
of the statistical material, which is used by the distributed system operators to electrical
power consumption forecasting [24].
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Abbreviations
The following abbreviations are used in this manuscript:

FER
frame error ratio: the number of frame errors
divided by the total number of transferred frames

SM smart metering
PLC power line communication
PRIME PoweRline Intelligent Metering Evolution
DPSK differential phase shift keying
DQPSK differential quaternary phase shift keying
D8PSK differential 8 phase shift keying
CENELEC European Committee for Electrotechnical Standardization
ITU-T Telecommunication Standardization Sector
SNR signal-to-noise ratio
FEC forward error correction
CRC cyclic redundancy check
PPDU PHY protocol data unit
SDL sequence diagram language
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