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ABSTRACT
Formyl peptide receptor-1 (FPR1) is a pathogen recognition receptor involved in the detection of bacteria, 
in the control of inflammation, as well as in cancer immunosurveillance. A single nucleotide polymorph-
ism in FPR1, rs867228, provokes a loss-of-function phenotype. In a bioinformatic study performed on The 
Cancer Genome Atlas (TCGA), we observed that homo-or heterozygosity for rs867228 in FPR1 (which 
affects approximately one-third of the population across continents) accelerates age at diagnosis of 
specific carcinomas including luminal B breast cancer by 4.9 years. To validate this finding, we genotyped 
215 patients with metastatic luminal B mammary carcinomas from the SNPs To Risk of Metastasis (SToRM) 
cohort. The first diagnosis of luminal B breast cancer occurred at an age of 49.2 years for individuals 
bearing the dysfunctional TT or TG alleles (n = 73) and 55.5 years for patients the functional GG alleles (n =  
141), meaning that rs867228 accelerated the age of diagnosis by 6.3 years (p=0.0077, Mann & Whitney). 
These results confirm our original observation in an independent validation cohort. We speculate that it 
may be useful to include the detection of rs867228 in breast cancer screening campaigns for selectively 
increasing the frequency and stringency of examinations starting at a relatively young age.
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Introduction

Epidemiological studies suggest that over the past few decades 
some cancer type tend to manifest relatively early, posing a new 
challenge for disease detection and management.1 Back in 2015 
we published a study in which we screened single nucleotide 
polymorphisms (SNPs) in immune-relevant genes for their 
impact on breast cancer prognosis, finding rs867228 in FPR1, 
the gene coding for formyl peptide receptor-1, to be associated 
with poor responses to anthracycline-based adjuvant che-
motherapy in two distinct cohorts of patients.2–4 This finding 
was later confirmed for locally advanced rectal cancer, in which 
rs867228 was associated with poor responses to neoadjuvant 
chemoradiotherapy.5,6

The knockout of the human FPR1 orthologue in mice, Fpr1, 
revealed a major defect in chemotherapy-induced immunosur-
veillance, meaning that mice lacking one or two alleles of Fpr1 
were unable to control tumor growth upon chemotherapy with 
anthracyclines (such as mitoxantrone) alone or combination 
with cyclophosphamide.3,7 Exhaustive phenotyping of the 
tumor microenvironment, responding to chemotherapy in 
the context of Fpr1-proficient or -deficient immune systems, 
revealed that FPR1 is required for the function of dendritic 
cells (DCs), allowing them to approach dying cancer cells that 
release the FPR1 ligand annexin A1 (ANXA1) and then to 

engage in the cross-presentation of tumor-associated 
antigens.3,8 In vitro experiments on peripheral blood mono-
nuclear cells from human volunteers bearing rs867228 con-
firmed a similar loss-of-function phenotype in both 
heterozygosity and (more so) in homozygosity.3,9 Murine 
adoptive transfer experiments corroborated that the cell type 
critical for FPR1-dependent immunosurveillance are indeed 
DCs, likely of the conventional cDC1 phenotype.8 Altogether, 
these experiments established that FPR1 plays a cardinal role in 
the perception of immunogenic cell death, as it occurs in the 
context of anticancer chemotherapies.10,11

In an additional twist, we observed that, in a murine 
model of hormone-induced breast oncogenesis (which is 
based on the implantation of capsules releasing the proges-
terone analogue medroxyprogesterone acetate, MPA, plus six 
oral gavages with the DNA-damaging agent 7,12- 
dimethylbenz[a]anthracene, DMBA), the knockout of Fpr1 
accelerated oncogenesis.8 These results suggest a pivotal 
function for FPR1 in breast cancer immunosurveillance, 
which has a major impact on the age at which the disease 
manifests, as well as on prognosis.12,13 Indeed, individuals 
heterozygous or homozygous for rs867228 developed breast 
cancer earlier than patients lacking rs867228, as determined 
by a bioinformatic analysis of TCGA.8 Thus, individuals with 
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any kind of breast cancer (irrespective of the molecular 
subtype) bearing rs867228 in hetero- or homozygosity were 
diagnosed at 57.5 years old, whereas patients lacking 
rs867228 were at 55.7 years old (difference: 2.0 years, p =  
0.028). Subgroup analysis revealed an even stronger effect 
for patients bearing luminal B breast cancers, in which 
rs867228 in hetero- or homozygosity was associated with 
diagnosis at 55.2 years, i.e., 7.7 years earlier (p = 0.0086) 
than in patients lacking rs867228, in which luminal 
B breast cancer was diagnosed at 62.9 years.8,14

Based on these observations, we decided to examine the 
impact of rs867228 on age at diagnosis of luminal B breast 
cancer patients in an independent French cohort. Here, we 
report the validation of our initial observation, confirming 
that rs867228 has a real impact on the development of luminal 
B breast cancer.

Materials and methods

Patients and study design

SToRM (NCT01460186) is a prospective clinical observational 
cohort of 1483 metastatic breast cancer patients from multiple 
hospitals in France. This study’s inclusion criteria were: 
women/men aged 18 years or older, with a histologically diag-
nosed breast cancer that was diagnosed as metastatic for less 
than one year, and with an immunohistological classification of 
the primary tumor (based on estrogen receptor (ER), proges-
terone receptor (PR) and HER2). The threshold for ER and PR 
positivity was ≥10% staining (locally assessed in each 
hospital).14,15 Exclusion criteria were the simultaneous exis-
tence of another cancer, or the presence of another cancer 
diagnosed within the previous 5 years, as well the inability to 
undergo medical fellow-up.

The study was conducted in accordance with the 
International Conference on Harmonization Good Clinical 
Practice standards and the Declaration of Helsinki. Patients 
provided written informed consent; the study was approved by 
the relevant institutional review board (South-East IV Patient 
Protection Committee, 26 October 2011, No.: 11/089).

Genotyping

A genome wide association study was carried out in patients 
with sufficient DNA, using Illumina humaCore Exome Chip 
set. This chip set is composed of over 250,000 variants designed 
to capture common variation across the genome, as well as 
over 200,000 variants focused on coding regions. Patients are 
followed prospectively with respect to their metastatic diagno-
sis through direct contact with their oncology time. The quality 
of the genotyping data was controlled with PLINK software: 
SNPs and individuals with high levels of missingness (>2%) 
were deleted. Samples with sex discrepancy, unusual hetero-
zygosity rate (>3sd from the mean), parent-offspring relations 
were removed. SNPs that are not in Hardy–Weinberg equili-
brium (p < 1e-10) have also been removed. Missing genotypes 
were then imputed against the 1000 genome dataset using 
shapeit2 and minimac4 software.

Statistical analyses

The SToRM database was analyzed for the FPR1 SNP rs867228 
(chr19:52249211T>G). We performed Mann & Whitney tests 
for each SNP group, for time at diagnosis, at metastasis and at 
death as well as overall and progression-free survival.

Results

To validate our initial observation obtained in TCGA, we took 
advantage of the StoRM cohort, which is a French multicentric, 
prospective cohort study of metastatic breast cancer patients, 
for which the inclusion criteria were: women/men aged 18  
years or older, with a histologically diagnosed breast cancer 
that was metastatic for less than one year, and with an immu-
nohistological classification of the primary tumor (based on 
estrogen receptor (ER), progesterone receptor (PR) and 
HER2). Patients were recruited between March 2011 and 
May 2014.15,16 Demographics and clinical characteristics of 
the complete study population are presented in Table S1.

Note that the type of breast cancer, the stage at diagnosis as 
well as the treatment modalities were equally distributed 
among different genotypes, as indicated by the absence of 
statistically significant alterations calculated with Fischer’s 
exact test.

We plotted the age of diagnosis for each of the genotypes. 
For the entire breast cancer cohort, irrespective of the mole-
cular subtype, we found a non-significant trend (p = 0.09, 
Mann & Whitney test) in favor of an early diagnosis for 
patients bearing at least one of the two loss-of-function alleles 
(TT or TG, n = 192) of rs867228 (52.85[42.45–62.5]) as com-
pared to individuals bearing two functional alleles (GG, n =  
338) of rs867228 (55.25 [46.825–63.3]) (Table 1, Figure S1a). 
Subsequent subgroup analyses (Table 1 , Figures 1 and S1a-d) 
revealed statistically significant (p < 0.05) effects for the 
rs867228 genotype only for luminal B-like hormone receptor- 
positive (i.e., ER+, PR+, HER2- breast cancers (Figure 1a). 
When applying a dominant model, the first diagnosis of lumi-
nal B HER2- breast cancer occurred at an average age of 49.2  
years for patients bearing the dysfunctional TT or TG alleles (n  
= 73) and at 55.6 years for individuals bearing the functional 
GG allele (n = 142). Thus, for this patient subgroup rs867228 
present in hetero- or homozygosity accelerated the age of 
diagnosis by 6.3 years (p = 0.0067). In contrast, no significant 
differences were found for age at diagnosis among the geno-
types within luminal B HER2+ (Figure 1c), luminal A-like 
cancers (Figure 1b), HER2+ cancers (Figure S1c) or triple- 
negative breast cancers (Figure S1d). Hence, early diagnosis 
induced by the presence of at least one loss-of-function allele 
(TT or TG) of FPR1 rs867228 appears to be a specific feature of 
luminal B breast cancer. Indeed, the aggregate of luminal 
B breast cancers (irrespective of HER2 status) exhibited 
a significantly (p = 0.036) earlier diagnosis for patients bearing 
at least one of the two loss-of-function alleles (TT or TG, n =  
93) of rs867228 (51.1 [41.4–61]) as compared to individuals 
bearing two functional alleles (GG, n = 183) of rs867228 (55.3 
[46.65–63.4]) (Figure 1a).

Additionally, hetero- or homozygosity significantly antici-
pated the age at metastasis by 6.35 years (p = 0.038) and age at 
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Table 1. Correlation between FPR1 rs867228 mutational status and age at diagnosis in StoRM patients. Significant p-values are indicated in italic. P-values lower than 0.01 are 
highlighted using a color graded score, ranging from pale orange to orange. Abbreviations: HER2, human epidermal growth factor receptor 2 and IQR, interquartile range.

a

b

c

Figure 1. Correlation between FPR1 polymorphism and age at diagnosis in luminal B breast cancer subcategories. Age at diagnosis according to FPR1 genotype for 
luminal B (A), luminal B HER2- (B) and luminal B HER2+ (C) patients.
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Figure 2. Impact of FPR1 polymorphism for luminal B HER2 -breast cancer patients. Age at metastasis (a) and death (b) according to FPR1 genotype are depicted for 
luminal B HER2- breast cancer patients. (c) Individual trajectories from diagnosis to metastases and death.
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death by 5.25 years (p = 0.041) of luminal B HER2-breast 
patients (Figure 2).

Of note, there was no difference in the time to progression 
free survival or overall survival for any of the rs867228 geno-
types among any of the breast cancer subtypes (Figure S2 and 
S3). Hence, rs867228 influences age of diagnosis but has no 
significant impact on subsequent disease outcomes.

Discussion

The present paper provides an independent validation for the 
observation that luminal B breast cancer manifests earlier in 
individuals bearing rs867228 in homo-or heterozygosity (T/T 
or T/G) as opposed to patients lacking rs867228 (G/G). In our 
original report based on the TCGA, the diagnosis-accelerating 
effect of rs867228 was estimated as 4.9 years.8,14 In the valida-
tion cohort reported here, this effect was estimated to be 6.3  
years (49.2 [41.2–60.7] for T/T and T/G vs 55.6 [47.475–63.3] 
for G/G), which is in the same range, hence confirming our 
initial observation.

At the theoretical level, the question arises why a SNP like 
rs867228 that apparently accelerates cancer diagnosis would be 
that frequent among humans. Obviously, there is no genetic 
selection against cancer development as cancer usually man-
ifests at a post-reproductive age.17 Why would a loss-of- 
function SNP affecting FPR1 be useful in the context of 
other, nonmalignant challenges? To respond to this question, 
it may be useful to remember that, at the population level, 
immune diversity constitutes a benefit. For instance, it has 
been amply documented that the diversity of major histocom-
patibility complexes (MHC), confers an advantage to at least 
some individuals in mounting protective immune responses 
against infectious pathogens.18 Similarly, it may be an advan-
tage to conserve loss-of-function variations of pattern recogni-
tion receptors in the population.19 Of course, loss of FPR1 
confers susceptibility to infectious diseases caused by Listeria 
monocytogenes,20 Staphylococcus aureus,21 Streptococcus pneu-
moniae 22 and Escherichia coli.23 However, FPR1 is also the 
receptor for the causative agent of plague, Yersinia pestis, 
suggesting that its absence may confer protection against spe-
cific types of communicable disease.24 Moreover, FPR1 is 
involved in the modulation of inflammatory response that 
can be advantageous or deleterious.25 Thus, Fpr1−/− mice are 
susceptible to sterile skin wounds26 and lipopolysaccharide- 
induced liver damage.27 In sharp contrast, knockout of Fpr1 
causes resistance to aerosolized lipopolysaccharide,28 cigarette 
smoke-induced airway inflammation and emphysema,29,30 

hydrochloric acid-induced sterile lung injury,31 bleomycin- 
induced lung fibrosis,32 primary graft dysfunction of the 
lung,33 as well as bronchiolitis obliterans syndrome developing 
after chronic lung allograft rejection.34 Beyond these protective 
effects on the lung, knockout of Fpr1 also confers resistance to 
surgically induced endometriosis,35 cuprizone-induced demye-
lination of the corpus callosum,36 dinitrobenzene sulfonic acid- 
induced colitis,37 high-fat diet induced glucose intolerance,38 

as well as age-associated cataracts.39 In some pathologies, FPR1 
plays a dual role. Indeed, traumatic brain injury is attenuated in 
Fpr1−/− mice during the acute phase (24 hours) while aggra-
vated in the long-term (4 weeks).40 In humans, elevation of 

circulating mitochondrion-derived formylated peptides corre-
lates with disease severity in intracerebral hemorrhage,41 rheu-
matoid arthritis,42 systemic sclerosis,43 autoantibody- 
associated vasculitis and large-vessel vasculitis,44 as well as in 
septic shock.45 In sum, FPR1 plays a pleiotropic disease- 
modulatory role, meaning that the presence of individuals 
lacking functional FPR1 may confer an advantage to popula-
tions challenged by environmental stressors.

In more practical terms, the question arises whether the 
luminal B breast cancer-accelerating effect of rs867228 can be 
harnessed to ameliorate current strategies for cancer preven-
tion or interception. It appears that the apparent capacity of 
rs867228 to anticipate the manifestation of luminal B breast 
cancer by 5 to 6 years in close-to one third of women might be 
taken advantage of to design specific strategies dedicated to 
women at high risk of developing this type of mammary 
carcinomas such as individuals who manifested major weight 
gain since age 18 or who developed diabetes.46,47 As polygenic 
risk scores are developing as a matter of identifying women at 
higher risk of breast cancer and proposing adapted risk-based 
strategies, the incorporation of rs867228 in individual risk 
communication could help refine the personalized, age- 
adapted screening strategy.48,49 Increasing the frequency and 
stringency of screening examinations for a high-risk popula-
tion (affected by rs867228 and diabetes or obesity) could help 
diagnose luminal B breast cancer at a relatively earlier stage for 
curative interventions with improved chances of long-term 
success.

As a limitation, this study focused exclusively on rs867228 
without including any information on pathogenic variants in 
genes that increase breast cancer risk such as BRCA1 and 
BRCA2 (and with a lower penetrance) ATM, BARD1, CHEK2, 
PALB2, RAD51C and RAD51D, that together build the Breast 
and Ovarian Analysis of Disease Incidence and Carrier 
Estimation Algorithm, BOADICEA.48,50 Future multivariate 
analyses must evaluate the interaction between rs867228 and 
BOADICEA as well as with more extended polygenic risk scores 
that are being developed based on genome-wide association 
studies.51 As a possibility, known breast cancer risk genes 
(which increase the probability of women to develop cancer 
during their lifetime) might preferentially act in a cancer cell- 
autonomous manner, for instance by debilitating DNA repair 
and cell cycle checkpoints. In contrast, immunogenetic altera-
tions exemplified by rs867228 apparently do not modulate the 
lifelong breast cancer risk, but – in speculative terms – rather 
accelerate the transition from subclinical lesions that are still 
under immunosurveillance to manifest luminal B cancers that 
have escaped from immune control, hence leading to precocious 
diagnosis of the disease. However, this hypothetical interaction 
between risk-determining genes with cell-autonomous pro- 
malignant effects and immunogenetic aberrations with merely 
disease-accelerating effects must be explored in larger retrospec-
tive and (ideally) prospective studies.

In sum, it appears that patients with luminal B breast cancer 
bearing rs867228 in heterozygosity are diagnosed with their 
disease several years earlier than women lacking rs867228. 
Future studies should evaluate how rs867228 interacts with 
other environmental and (poly)genetic risk factors for breast 
cancer development and whether knowledge on rs867228 may 
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be advantageously incorporated into early detection 
campaigns.
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