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Abstract

Background: The ErbB receptor tyrosine kinases are major contributors to malignant transformation. These receptors are
frequently overexpressed in a variety of human carcinomas. The role of the ErbB receptors and their ligands in carcinomas
and the mechanism by which their overexpression leads to cancer development is still unclear. Ligand binding to specific
ErbB receptor is followed by receptor dimerization, phosphorylation and recruitment of SH2 containing cytoplasmic
proteins, which initiate the cascade of signaling events. Nevertheless, increasing data suggest that there are non-
phosphorylated receptor–substrate interactions that may affect ErbB-mediated responses.

Methodology/Principal Findings: In the present study, using GST-ErbB4 fusion protein pull down assay and mass
spectroscopic analysis, we have found the ErbB receptors interact with nucleolin via their cytoplasmic tail. Nucleolin is a
ubiquitous, nonhistone, nucleolar, multifunctional phosphoprotein that is also overexpressed in cancer cells. Our results
demonstrate that overexpression of ErbB1 and nucleolin may lead to receptor dimerization, phosphorylation and to
anchorage independent growth.

Conclusions/Significance: The oncogenic potential of ErbB depends on receptor levels and activation. Our results suggest
that nucleolin may affect ErbB dimerization and activation leading to enhanced cell growth.
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Introduction

The ErbB subfamily of receptor tyrosine kinase contains four

members: the epidermal growth factor (EGF) receptor (also called

ErbB-1) [1], Neu/HER-2/ErbB-2 [2–4], HER-3/ErbB-3 [5,6]

and HER-4/ErbB-4 [7]. These tyrosine kinase receptors possess a

large glycosylated extracellular domain to which the ligand binds,

a single hydrophobic transmembrane region and a cytoplasmic

domain, which carry the tyrosine kinase activity and regulatory

phosphorylation sites [8]. The ErbB receptors are expressed in

various tissues of epithelial, mesenchymal and neuronal origin.

Under normal physiological conditions, activation of the ErbB

receptors is controlled by the spatial and temporal expression of

their ligands, which are members of the EGF family of growth

factors [9]. Ligand binding to ErbB receptors induces the

formation of receptor homo- and heterodimers and activation of

the intrinsic kinase domain, resulting in phosphorylation on

specific tyrosine residues within the cytoplasmic tail. These

phosphorylated residues serve as docking sites for a range of

proteins, the recruitment of which leads to the activation of

intracellular signaling pathways [10].

Protein-protein interactions between domains and specific

peptide motifs are key principle of signaling events. Sequence

containing phosphotyrosine interacts with cognate SH2 or PTB

domains [11]. In addition, increasing data suggest that there are

non-phosphorylated receptor–substrate interactions. For instance,

eps8, a 92 kDa SH3 domain containing protein, has been

identified as a substrate for the EGFR based on its association

with the EGFR juxtamembrane domain after EGF stimulation

[12]. Furthermore, the association of a nuclear localizing zinc-

finger protein, ZPR1, with the cytoplasmic tyrosine kinase domain

of the EGFR, is decreased by EGF stimulation [13]. Another

example for receptor–substrate interaction was demonstrated for

Ebp1 association with the juxtamembrane domain of ErbB-3 in a

tyrosine kinase-independent manner. Ebp1 dissociates from ErbB-

3 after NRG activation and translocates to the nucleus [14]. It was

also demonstrated that Erbin PDZ domain binds to the c-terminal

end of ErbB2 receptor and regulates its activity [15]. Moreover, it

was also demonstrated that ErbB4 binds PDZ domain-containing

proteins that affect ErbB4 localization and signaling [16]. Using a

glutathione-S-transferase (GST) fusion protein with ErbB4 cyto-

plasmic tail and pull down assay we identified nucleolin as a new

protein that interacts with ErbB proteins.

Nucleolin is an abundantly expressed acidic phosphoprotein of

exponentially growing cells. It is involved in the control of

transcription of ribosomal RNA (rRNA) genes by RNA polymer-

ase I, in ribosome maturation and assembly, and in nucleocyto-

plasmic transportation of ribosomal components [17]. Nucleolin is

a ubiquitous, nonhistone nucleolar phosphoprotein, present in

abundance at the dense fibrillar and granular regions of nucleolus

[18,19]. Intact nucleolin is the major species and represents 5% of

nucleolar protein in dividing cells. In nondividing cells, degraded
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forms of various molecular size are predominantly expressed due

to autodegradation [20]. The protein would therefore appear to be

involved in fundamental aspects of transcriptional regulation, cell

proliferation, and growth. Recently it was demonstrated that

nucleolin, is a multifunctional shuttling protein present in nucleus,

cytoplasm, and on the surface of some types of cells [17]. In the

present study we demonstrate that ErbB proteins and nucleolin

interact. This interaction leads to receptor dimerization and

activation as well as to colonies growth on soft agar. We therefore

suggest that the cross talk between nucleolin and ErbB proteins

may be related to tumor growth.

Results

ErbB receptors interact with nucleolin
To identify new ErbB4 interacting proteins we used a pull down

assay. A chimeric fusion protein of GST and ErbB4 cytoplasmic tail

(GST-ErbB4) was constructed and used as a bait to pull down ErbB4

binding proteins. Affinity chromatography of PC12 cell extracts on a

GST-ErbB4 affinity matrix revealed a major ErbB4-binding band at

a molecular mass of 110 kD (Figure 1A). Mass spectrometry analysis

indicated that the 110-kD band is nucleolin. The identification of the

110-kD protein as nucleolin was confirmed by immunoblotting.

First, cell extracts were prepared from COS7 cells transfected with

the expression vector encoding Myc-Nucleolin. Lysates were mixed

with the GST-ErbB4 beads or with GST beads as a control. A

monoclonal anti-Myc antibody, revealed a major 110-kD band in

the GST-ErbB4-bound material (Figure 1B). This band was not

present in eluates from the control GST matrix. Second, the

interaction was assayed on endogenous nucleolin in cell extracts

prepared from DU145 prostate cancer cells. As shown in Figure 1C,

GST-ErbB4 but not GST pulled down endogenous nucleolin. To

further substantiate the results we also performed co-immunopre-

cipitation experiments. Myc-tagged nucleolin was coexpressed with

ErbB4 expression vector. Cell extracts were precipitated with anti-

Myc monoclonal antibodies and blotted with anti-ErbB4 polyclonal

antibodies (Figure 2A). As shown, nucleolin co-immunoprecipitated

ErbB4 protein. As a control we used Myc-TGFbIIR, which did not

precipitated ErbB4. Taken together, these results show that the

cytoplasmic tail of ErbB4 can specifically interact with nucleolin.

Four structurally and functionally distinct ErbB4 isoforms been

identified. One pair of isoforms differs within their extracellular

juxtamembrane domains (JMa and JMb). These juxtamembrane

ErbB4 isoforms are either susceptible or resistant to proteolytic

processing that release a soluble receptor ectodomain. Another pair

of ErbB4 isoforms differs within their cytoplasmic tails (JM-cyt1 or

JM-cyt2) [21]. Since four ErbB4 isoforms exist, we next examined

whether nucleolin can interact with the different ErbB4 isoforms.

COS7 cells were co-transfected with expression vectors of Myc-GFP-

Nucleolin and either ErbB4-JMa-cyt1, ErbB4-JMa-cyt2, ErbB4-

JMb-cyt1 or ErbB4-JMb-cyt2. As shown in Figure 2B, all ErbB4

isoforms precipitated with nucleolin.

To determine whether nucleolin interacts with other ErbB

receptors family members we expressed each of the ErbB proteins

with or without Myc-tagged Nucleolin in COS7 cells. Lysates of

transfected cells were fractionated into supernatant and pellet and

immunoprecipitated with an anti-Myc antibody and immuno-

blotted with individual specific antibodies against ErbB1, ErbB2,

ErbB3, and ErbB4. Figure 3A demonstrates that the four ErbB

receptors were detected in immunoprecipitates from the pellet

(insoluble fraction) of cells co-expressing nucleolin and the

receptors, suggesting that all ErbB receptors associate with

nucleolin. Moreover, nuclei fractionation of transfected cells

reveals that ErbB1, either in the presence or in the absence of

nucleolin, is not detected in the nucleus (Figure 3B), indicating that

ErbB1/nucleolin interaction occurs mainly in the cell membrane.

In addition, using SKBR3 breast cancer cells that express high

levels of ErbB2 receptors we demonstrated that endogenous

Figure 1. Nucleolin binds the cytoplasmic tail of ErbB4. (A) SDS-PAGE of Coomassie blue–stained proteins isolated from PC12 cell extracts,
loaded on GST-ErbB4 agarose affinity matrix or control GST agarose matrix. The arrow indicates a specific 110-kD band, which was identified as
nucleolin by mass spectroscopy. (B) COS7 cells were transiently transfected with expression vector of Myc-Nucleolin. Cell lysates were incubated with
immobilized GST-ErbB4 or GST. Proteins retained on the beads were resolved by SDS-PAGE and then processed for Western blot using anti-Myc
antibodies. (C) Cell lysates prepared from Du145 cells were incubated with immobilized GST-ErbB4 or GST. Eluates from GST-ErbB4 and GST control
affinity matrices were resolved by SDS-PAGE and then processed for Western blot using a monoclonal mouse anti-nucleolin antibody.
doi:10.1371/journal.pone.0002310.g001
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nucleolin precipitated endogenous ErbB2 and vice versa

(Figure 3C), indicating, that the interaction may occur also in

cells endogenously expressing these proteins.

Nucleolin induces ErbB receptor phosphorylation
To determine whether nucleolin affects ErbB tyrosine phosphor-

ylation we coexpressed ErbB proteins and nucleolin in COS-7 cells.

Surprisingly, when nucleolin was coexpressed with ErbB1 it induced

receptor phosphorylation even in the absence of the ligand, EGF.

This was evident using anti-phosphorylated EGFR antibodies that

recognize phosphorylated tyrosine 1068 of the EGFR (Figure 4A).

Similarly, coexpression of nucleolin and ErbB2 resulted in ErbB2

phosphorylation as detected using anti-phosphorylated ErbB2

antibodies that recognize phosphorylated tyrosine 1248 on ErbB2

(Figure 4A). To further evaluate the effect of nucleolin on ErbB

phosphorylation, lysates of transfected cells were immunoprecipitat-

ed with anti-phosphotyrosine antibody and immunoblotted with

individual specific antibodies against ErbB receptors. As control for

receptor phosphorylation, cells were stimulated with EGF (100 ng/

ml) or NRG (100 ng/ml) as indicated. The results demonstrate that

nucleolin induces receptor phosphorylation of all ErbB receptors

even the ErbB3 that has no kinase activity (Figure 4B). These results

suggest that nucleolin ErbB interaction may have functional role, as

it affects receptor phosphorylation.

Nucleolin enhances ErbB1 receptor dimerization
To address the possibility that nucleolin induces the competence

of ErbB receptor dimerization and trans-auto-phosphorylation, we

examined the effect of nucleolin on receptor dimerization. Using

covalent crosslinking experiment we demonstrated that nucleolin

induced ErbB1 dimerization in a ligand independent manner

(Figure 5). A similar phenomenon was observed when addressing

EGF-induced homodimerization of ErbB-1 as a control. These

observations may suggest that the receptor phosphorylation

induced by nucleolin may result due to nucleolin-mediated

receptor dimerization.

Nucleolin overexpression reduces receptor
disappearance and induces anchorage-independent
growth in ErbB1 overexpressing Rat-1 cells

In order to further examine the effect of nucleolin on ErbB1-

mediated responses we prepared Rat-1 cells stably transfected to

express ErbB1, nucleolin or ErbB1 and nucleolin. The expression

levels of ErbB1 or nucleolin in the selected clones is shown in

Figure 6A. Next, we examined the effect of EGF on receptor levels in

the various cell lines. The Rat-1 cell lines were stimulated with EGF

(100 ng/ml) for the indicated time and cell extracts were subjected to

Immunoblot analysis. As shown in Figure 6B, EGF induced a time

dependent reduction in ErbB1 levels which was significantly lower in

cells overexpressing nucleolin. These results indicate that nucleolin

may affect receptor levels either by reducing receptor degradation or

by increasing receptor formation. In order to assess effects of ErbB1

and nucleolin on colony formation induced by EGF, Rat-1 stable

clones were plated in soft agar and maintained in culture for 14 days,

in the presence of 100 ng/ml EGF. The number and size of colonies

were then estimated from three individual clones. Results of a typical

experiment are shown in Figure 7. Rat-1 cells overexpressing either

ErbB1 or nucleolin formed relatively small colonies. However, Rat-1

Figure 2. Nucleolin binds to the four ErbB4 isoforms. (A) COS7 cells were transiently co-transfected with expression vector of ErbB4 and either Myc-
Nucleolin, or Myc-TGFbIIR. Cell lysates were subjected to immunoprecipitation with anti-Myc antibodies and immunoblotted with anti-ErbB4 antibodies,
as a control the total cell lysates were reacted with anti-ErbB4 antibodies. (B) COS7 cells were transiently co-transfected with or without expression vector
of each of the ErbB4 receptor isoforms and Myc-GFP-Nucleolin. Cell lysates were subjected to immunoprecipitation with anti-ErbB4 antibodies. The
immunoprecipitated proteins as well as total cell lysates were immunoblotted with anti-GFP antibodies or with anti Myc antibodies as indicated.
doi:10.1371/journal.pone.0002310.g002
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cells overexpressing ErbB1 and nucleolin formed relatively large

colonies in soft agar. Moreover, the number of the colonies was

significantly higher in ErbB1 and nucleolin overexpressing cells

compared to the ErbB1 or nucleolin overexpressing cells (p,0.001).

Pools of mock-transfected Rat-1 cells were plated in soft agar as a

control. The mock-transfected Rat-1 cells, even in the presence of

EGF, were unable to proliferate in the absence of adhesion, and

formed no colonies in soft agar (data not shown). These results

indicate that EGF enhanced the anchorage-independent growth of

the cells overexpressing both ErbB1 and nucleolin.

Discussion

We report that nucleolin associates with the cytoplasmic region

of all ErbB-4 receptor isoforms. Moreover, our findings demon-

strate that nucleolin associates also with the other ErbB family

members; ErbB1, ErbB2 and ErbB3. Overexpression of nucleolin

with ErbB proteins enhances dimerization and phosphorylation,

reduces ligand-induced receptor degradation, and enhances

ligand-induced anchorage independent growth. These results

indicate that nucleolin may associate with the ErbB receptors

and affect their activation even in a ligand independent manner.

Furthermore, based on the presented data we suggest that

nucleolin may modulate ErbB receptors activities.

The ErbB family of receptor tyrosine kinases consists of four

different proteins called EGFR/ErbB1/HER1, ErbB2/Neu/

HER2, ErbB3/HER3, and ErbB4/HER4 [22]. Under normal

physiological conditions, the ErbB receptors play crucial roles in

propagating signals regulating cell proliferation, differentiation,

motility, and apoptosis [23]. They are activated by ligand binding,

Figure 3. Nucleolin binds to the four ErbB receptors. (A) COS7 cells were transiently co-transfected with expression vector of each of the ErbB
receptors and Myc-Nucleolin. Cell lysates were separated into cytosolic (supernatant) and total membrane (pellet) fractions. The pellet fraction was
subjected to immunoprecipitation with anti-Myc (nucleolin) or anti-HA (control) antibodies and immunoblotted with specific ErbBs antibodies. Total
pellet and supernatant extracts are shown in the right lanes of each panel. (B) COS7 cells were transiently co-transfected with expression vector of
ErbB1 and Myc-Nucleolin. Nuclear and non-nuclear cell extracts were immunoblotted with anti-ErbB1 antibodies. As control for the fractionation
purity Blots were reacted with anti-PARP antibodies (as a nuclear marker) and anti-tubulin antibodies (as a cytosolic marker). (C) Cell lysates prepared
from SKBR3 cells were subjected to immunoprecipitation with either anti-nucleolin or anti ErbB2 antibodies and immunoblotted with either anti-
ErbB2 or anti-nucleolin antibodies as indicated, as a control total cell lysates are shown in the right lane of each panel.
doi:10.1371/journal.pone.0002310.g003
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which leads to homo- or heterodimerization followed by trans-

phosphorylation of specific tyrosine residues. These phosphorylated

tyrosines, in turn, provide recognition sites for cytoplasmic proteins,

which link ErbB receptors to downstream signaling transduction

cascades such as the MAP kinase pathway. As overexpression of

ErbB receptors is often found in several human tumors such as

breast, lung, head, and neck [24], their precise role in the cell is of

particular biological and pharmacological importance.

Nucleolin is a major constituent of nucleoli in exponentially

growing cells [19] and functions in the organization of nucleolar

chromatin [25], packaging of pre-rRNA [26], rDNA transcription

[27], and ribosome assembly by shuttling between the nucleus and

the cytoplasm [28]. It was demonstrated that nucleolin, is a

multifunctional protein present in nucleus, cytoplasm, and on the

surface of some types of cells [17]. Although mainly characterized as

a nucleolar protein, nucleolin also functions as a cell surface receptor

where it is associated with the actin cytoskeleton and acts as a

shuttling protein between cytoplasm and nucleus [29]. Cell surface

nucleolin has been reported to bind lipoproteins, laminin, midkine,

L-selectin, lactoferrin and other growth factors [30–33]. Moreover,

nucleolin was identified as a binding partner for receptor protein

tyrosine phosphatase-sigma ectodomain in skeletal muscle [34].

Thus, the present findings of this new interaction between nucleolin

and the ErbB cell surface receptors, add another layer to the

complexity of nucleolin/ ErbB- mediated functions.

Our study demonstrates that nucleolin not only binds all ErbB

receptors family members but can also affect ErbB1, ErbB2 ErbB3

or ErbB4 phosphorylation. Among ErbB family members, ErbB1

Figure 4. Nucleolin induces ErbB phosphorylation in a ligand independent manner. (A) COS7 cells were transiently co-transfected with
expression vector of either ErbB1 or ErbB2 receptors alone or with Myc-Nucleolin. Following 30 min serum deprivation, cells were either untreated or
treated with EGF 100 ng/ml for 5 min. Cell lysates were immunoblotted with anti-phosphorylated EGFR or anti-phosphorylated ErbB2 antibodies
respectively. As control, lysates were immunoblotted with anti-EGFR or anti-ErbB2 antibodies. Note that at time 0 phosphorylated receptors are
detected in cells expressing nucleolin and EGFR or ErbB2. (B) COS7 cells were transiently co-transfected with expression vector of each of the ErbB
receptors and Myc-Nucleolin. Following 30 min serum deprivation cells were untreated or treated with either EGF 100 ng/ml or NRG 100 ng/ml for
5 min as indicated. Cell lysates were subjected to immunoprecipitation with anti-phosphotyrosine antibodies (PY20) and immunoblotted with
specific ErbB antibodies. Note that in untreated cells, phosphorylated receptor is detected in cells expressing nucleolin and ErbB receptor. The values
represent fold induction compared to the receptor levels in untreated cells (1).
doi:10.1371/journal.pone.0002310.g004

Figure 5. Nucleolin induces ErbB1 dimerization. COS7 cells were
transiently co-transfected with expression vector of ErbB1 receptors
alone or with Myc-Nucleolin. Following 30 min serum deprivation cells
were untreated or treated with EGF 100 ng/ml for 5 min. Cell lysates
were incubated with BS3 crosslinker (2 mM) for 1 h and immunoblotted
with anti-EGFR antibodies. Note that in the presence of nucleolin
receptor dimmers appears to be similar to the level of receptor dimmers
induced by EGF in the absence of nucleolin.
doi:10.1371/journal.pone.0002310.g005
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and ErbB4 are fully functional receptor tyrosine kinases, whereas

ErbB2 does not bind any known ligand and ErbB3 has no intrinsic

kinase activity, however, ErbB3 still mediate signaling by hetero-

dimerization with other receptors of the family [22]. Our results

demonstrating the ability of nucleolin to induce ErbB3 phosphor-

ylation may be a consequence of heterodimerization with endoge-

nous ErbB1 or ErbB2 expressed in COS7 cells. Thus, overexpressed

nucleolin may affect the levels of receptor activation.

Ligand-induced receptor phosphorylation depends on receptor

dimerization [10]. However, it was also demonstrated that protein

interactions may affect receptor activities. For example, Erbin

protein binds to the c-terminal end of ErbB2 receptor and

regulates its activity [15]. Nucleolin by interacting with ErbB

proteins also affect their activities. It was reasonable to assume that

nucleolin affects receptor dimerization and thus its activation.

Indeed, using crosslinking experiments we demonstrated that

nucleolin induces ErbB1 receptor dimerization in a ligand

independent manner. This observation may suggest that nucleolin

binding to the cytoplasmic tail of the receptor may affect the ability

of the receptor to dimerize.

Similarly to ErbB proteins, nucleolin is abundant in proliferating

cancerous cells, and high levels of nucleolin expression are related to

poor clinical prognosis for certain types of cancer [35,36]. The ability

of nucleolin to affect receptor dimerization and phosphorylation in a

ligand independent manner may partially explain the constitutive

activation of ErbB proteins in specific tumors [37–39]. In our study

we demonstrated that EGF stimulation induced reduction in

receptor levels in the mock or ErbB1 expressing cells and slower

receptor disappearance in nucleolin expressing cells. In addition,

anchorage independent growth in cells expressing nucleolin and

ErbB1 was significantly higher compared to cells expressing each of

these proteins alone. These may result from extended EGFR

signaling in nucleolin expressing cells. Currently we do not know

whether the effect of nucleolin on receptor levels results from

changes in receptor internalization, degradation or synthesis.

In conclusion, our studies provide the first evidence for the

connection between nucleolin and ErbB receptors. These results

suggest that nucleolin not only interacts with ErbB proteins but

may also affect their activation. It may also provide a new insight

into the mechanism by which overexpressed ErbB receptors

mediate cell transformation in a ligand independent manner.

Nucleolin is mainly expressed in the nucleus. ErbB receptors are

mainly expressed in the cell membrane. Interestingly, nuclear

localization of EGFR was previously demonstrated and a direct

role of EGFR as transcription factor was suggested (reviewed in

[40]). Other ErbB family members were also found in the nucleus;

ErbB2/HER2 [41], ErbB4/HER4 [42] and ErbB3/HER3 [43].

Nucleolin may conceivably function as a shuttle protein directing

ErbB receptors into the nucleus. Our results indicate that the

initial interaction is in the cell membrane, however, further studies

are needed to explore the exact localization of these proteins

following ligand stimulation and the mechanism by which

nucleolin affects ErbB activation and ErbB-mediated responses.

Materials and Methods

Materials and Buffers
Human recombinant NRGb was purchased from R&D System

Inc. (Oxon, UK). EGF (human recombinant) was purchased from

Boehringer Mannheim. Polyclonal rabbit anti- ErbB1, ErbB2,

ErbB3, ErbB4 antibodies, monoclonal mouse anti-phosphotyrosine

(PY20), mouse anti-GFP (B-2) and mouse anti-nucleolin (C23) were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Polyclonal rabbit anti phosphorylated ErbB1 (Tyr1068) and

phosphorylated ErbB2 (Tyr1248) were purchased from Cell

Signaling technology. Monclonal mouse anti-PARP antibodies were

from BIOMOL International, LP. Monoclonal mouse anti c-Myc

(9E10) and monoclonal anti HA (12C5a) was donated by Dr.

Altchuler Yoram the Hebrew University, Israel. All other reagents

were from Sigma. HNTG buffer contained 20 mM HEPES

(pH 7.5), 150 mM NaCl, 0.1% Triton X-100 and 10% glycerol.

Solubilization buffer contained 50 mM HEPES (pH 7.5), 150 mM

NaCl, 1% Triton X-100, 1 mM EGTA, 1 mM EDTA, 1.5 mM

MgCl2, 10% glycerol, 2 mM sodium vanadate, 1 mM phenyl-

Figure 6. Nucleolin reduces ErbB1 disappearance. (A) Total cell lysates of Rat-1 cells stably expressing ErbB1, nucleolin or ErbB1 and nucleolin
were immonoblotted with anti-Myc to recognize Myc-Nucleolin or anti-GFP to identify GFP-ErbB1. (B) Rat-1 cells stably expressing empty vector,
ErbB1, nucleolin or ErbB1 and nucleolin were grown in 6 wells plates (106 cells/well). Cells were deprived of serum for 24 h then treated with EGF
100 ng/ml for the indicated time periods. Total cell lysates were analyzed by Western blot, using anti-ErbB1 antibodies. As control total cell lysate was
immunoblotted with anti-tubulin antibodies. Note that in the presence of nucleolin the EGFR is more stabilized following EGF stimulation.
doi:10.1371/journal.pone.0002310.g006
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methylsulfonylfluoride, 10 mg/ml aprotanin and 10 mg/ml leupep-

tin. Pull Down buffer contained 50 mM TRIS-HCl (pH 7.6),

20 mM MgCl2, 150 mM NaCl, 1 mM DTT, 2 mM sodium

vanadate, 1 mM phenylmethylsulfonylfluoride, 10 mg/ml aprotanin,

10 mg/ml leupeptin, 0.5% NP40, 5 mg/ml pepstatine and 1 mM

Benzamidine. Binding buffer contained 50 mM TRIS-HCl

(pH 7.6), 10 mM MgCl2, 100 mM NaCl, 0.5 mM DTT and

0.5 mg/ml BSA.

Cell lines
COS-7, SKBR3 and Rat-1 cell lines were grown in Dulbecco’s

modified Eagle’s (DMEM) supplemented with 10% fetal bovine

serum. PC12-ErbB4 cell line [44] was grown in Dulbecco’s

modified Eagle’s supplemented with 10% fetal bovine serum and

10% horse serum. DU145 cell line was grown in RPMI 1640

supplemented with 10% fetal bovine serum. For transient

expression cells were transfected using jetPEI (Poly plus transfec-

tion, USA). Cell lysates were prepared 48 h following transfection

as described. The Rat-1 fibroblast cells were used for stably

expressing the ErbB-1 receptor and nucleolin. Expression vector

pEGFP-ErbB-1 containing the coding region of ErbB-1 and

expression vector pCDNA3-Myc-Nucleolin containing the coding

region of nucleolin [45] were introduced by CaPO4 transfection

into Rat-1 cells either alone or together. The neomycin (G418)

resistant colonies were checked for ErbB-1 or nucleolin expression

and several colonies were selected for further analysis.

Figure 7. Nucleolin and ErbB1- induced anchorage-independent growth. (A) Rat-1 cells stably expressing empty vector (not shown), ErbB1,
nucleolin or ErbB1 and nucleolin were seeded in soft agar (6000 cells/well in 96 well plates) in medium containing 10% FBS, 0.3% agar, in the
presence of 100 ng/ml EGF. The extent colony formation was determined 2 weeks later. Cells were dyed with MTT and the wells were photographed
and colonies were counted. (B) Results were quantified using image analyzer program Image pro-Plus. The results are presented as total number of
colonies and size of colonies. Note that nucleolin+ErbB1 but not each protein alone induced more and larger colonies. Results are the mean6SD 6
determinations. Each experiment was repeated at least three times with 3 different clones, with similar results.
doi:10.1371/journal.pone.0002310.g007
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DNA constructs
The ErbB4 cytoplasmic tail was amplified using the following

primers: 59 TAGACCCGGGAGAAGGAAGAGCATC and 59

TCGCCCGGGTTATGACACCACAGTATTCCG. The ampli-

fied fragment was digested with XmaI and cloned into pGEX-3X

expression vector.

A C9 terminally Myc-tagged mouse nucleolin (pMT21-Myc-

Nucleolin) was generously provided by Dr. Bacharach E. (Tel-Aviv

University, Israel). Myc -Nucleolin cDNA was amplified using the

following primers: 59 CCGGAATTCGCCACCATGGTGAAG-

CTCGCG and 59 CGAACCATGATGGCTCGAATCAC. The

amplified fragment was digested with EcoRI and XbaI and cloned

into pcDNA3 expression vector. In order to generate GFP-fused

Nucleolin-Myc expression vector, the pcDNA3-Nucleolin-Myc

vector was digested with EcoRI and ApaI and cloned into

pEGFP-C2 expression vector. ErbB1-GFP (pEGFP-N2) was

generously provided by Dr. Erlich M (Tel-Aviv University, Israel).

Lysate Preparation, Cell fractionation,
Immunoprecipitation and Immunoblotting

Cells were exposed to the indicated stimuli. After treatment,

cells were solubilized in lysis buffer. Lysates were cleared by

centrifugation. For direct electrophoretic analysis, boiling gel

sample buffer was added to cell lysates. For cell fractionation two

methods were used. First, cells were homogenized, and the

supernatant (soluble proteins) and the pellet (insoluble proteins)

fractions were obtained by centrifugation (100,0006g, 30 min,

4uC) [46]. Samples of the pellet fractions were subjected to

immunoprecipitation. Second we separated nuclei from the other

cell fractions as described previously [47]. Briefly, cells were

washed twice with ice-cold phosphate-buffered saline, harvested

by scraping with a rubber policeman, and lysed in a lysis buffer

(20 mM HEPES, pH 7.0, 10 mM KCl, 2 mM MgCl2, 0.5%

Nonidet P-40, 1 mM Na3VO4, 10 mM NaF, 1 mM phenyl-

methanesulfonyl fluoride, 2 mg/ml aprotinin). After incubation on

ice for 10 min, the cells were homogenized by 20 strokes in a

tightly fitting Dounce homogenizer. The homogenate was

centrifuged at 1,5006g for 5 min to sediment the nuclei. The

supernatant was then centrifuged at a maximum speed of

16,1006g for 20 min, and the resulting supernatant formed the

non-nuclear fraction. The nuclear pellet was washed three times

with lysis buffer to remove any contamination from cytoplasmic

membranes. To extract nuclear proteins, the isolated nuclei were

resuspended in NETN buffer (150 mM NaCl, 1 mM EDTA,

20 mM Tris-Cl, pH 8.0, 0.5% Nonidet P-40, 1 mM Na3VO4,

10 mM NaF, 1 mM phenylmethanesulfonyl fluoride, and 2 mg/ml

aprotinin), and the mixture was sonicated briefly to aid nuclear

lysis. Nuclear lysates were collected after centrifugation at

16,1006g for 20 min at 4uC.

For immunoprecipitation, antibodies were first coupled to anti-

mouse IgG agarose (for monoclonal antibodies) or protein A-

sepharose (for polyclonal antibodies) for 1 h at RT. Then the

proteins in the lysate supernatant were immunoprecipitated with

aliquots of the beads-antibody complexes for 2 h at 4uC. The

immunoprecipitates were washed three times with HNTG,

resolved by SDS-polyacrylamide gel electrophoresis (PAGE)

through 7.5% gels and electrophoretically transferred to nitrocel-

lulose membrane. Membranes were blocked for 1 h in TBST

buffer (0.02 M Tris-HCl pH 7.5, 0.15 M NaCl, and 0.05%

Tween 20) containing 6% milk, blotted with 1 mg/ml primary

antibodies for 2 h, followed by 0.5 mg/ml secondary antibody

linked to horseradish peroxidase. Immunoreactive bands were

detected with the enhanced chemiluminescence reagent (Amer-

sham Corp, Buckinghamshire, UK).

Cross-linking
Cross-linking experiments were performed by addition of 2 mM

bis (sulfosuccinimidyl) suberate (BS3), to the lysis buffer for 20 min on

ice. The chemical crosslinking reaction was stopped by adding

50 mM Glycine and the samples were resolved by SDS-PAGE [48].

Soft Agar Assay
Cells were seeded at a density of 6000 cells/well in 96 well plates

in DMEM containing 10% FBS. The cells were mixed with

0.05 ml (per each well) of 0.33% noble agar, and the mixture was

poured onto a layer of 0.05 ml 1% noble agar in DMEM

containing 10% FBS. The upper layer of the agar was covered

with 0.1 ml of medium. The agar layers contained either PBS

(control) or 100 ng/ml EGF. Assays were performed in at least six

repeats. The number and sizes of the colonies were estimated on

day 14, using a binocular and a light microscope with the image

analyzer program Image pro-Plus.

GST Pull-Down Assay
To characterize proteins that interact with the cytoplasmic tail

of ErbB4, a GST-ErbB4 column was generated by absorbing

20 ml of GST-ErbB4 -producing E.coli lysate (resulting from a 1-

liter culture) to 1 ml of glutathione-Sepharose (Sigma). A similar

column was prepared from GST-producing E. coli. PC12 cell

lysate was prepared and a total of 2 mg protein was loaded on

GST or GST-ErbB4 columns (in the presence of 0.5 ml binding

buffer) for 2 h at 4uC. After the incubation the beads were washed

three times with binding buffer. The GST and GST-ErbB4 bound

proteins were eluted in boiling sample buffer and resolved by SDS-

PAGE through 7.5% gels and either electrophoretically trans-

ferred to nitrocellulose membrane, or protein bands on the gel

were visualized by Coomassie Blue staining. In the latter case,

bands uniquely bound to GST-ErbB4 were further analyzed by

Mass Spectrometry using API QSTARTM Pulsar Hybrid LC/

MS/MS System.
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