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ABSTRACT

Gene targeting can be achieved with lentiviral vectors
delivering donor sequences along with a nuclease
that creates a locus-specific double-strand break
(DSB). Therapeutic applications of this system would
require an appropriate control of the amount of
endonuclease delivered to the target cells, and po-
tentially toxic sustained expression must be avoided.
Here, we show that the nuclease can be transferred
into cells as a protein associated with a lentiviral
vector particle. I-SceI, a prototypic meganuclease
from yeast, was incorporated into the virions as
a fusion with Vpr, an HIV accessory protein.
Integration-deficient lentiviral vectors containing
the donor sequences and the I-SceI fusion protein
were tested in reporter cells in which targeting
events were scored by the repair of a puromycin
resistance gene. Molecular analysis of the targeted
locus indicated a 2-fold higher frequency of the ex-
pected recombination event when the nuclease was
delivered as a protein rather than encoded by a
separate vector. In both systems, a proportion of
clones displayed multiple integrated copies of the
donor sequences, either as tandems at the targeted
locus or at unrelated loci. These integration patterns
were dependent upon the mode of meganuclease
delivery, suggesting distinct recombination
processes.

INTRODUCTION

The toxic effects of uncontrolled transgene insertions in
the genome have been documented in clinical trials where
patients had been treated with retroviral or lentiviral
vectors. A transcriptional activation of neighbouring genes
by regulatory elements contained in the vector genomes

was observed in patients with X-linked severe combined
immunodeficiency, chronic granulomatous disease and
sickle cell anaemia (1–4). In another situation, a transcrip-
tional shut off of the transgene was induced by chromatin
remodelling at the site of insertion, leading to cessation of
the therapeutic effect (5). These adverse events may be
avoided with a gene transfer technology able to target
the chromosomal insertion of therapeutic sequences.

Efforts to target the insertion of retroviral and lentiviral
vectors have first focused on modifications of the integrase
that result in its catalytic inactivation or on the design of
chimeras with a swapped DNA-binding domain. The first
approach is used in integration-deficient lentiviral vectors
(IDLVs) which can mediate stable gene transfer in a
number of cellular targets but are eliminated from actively
replicating cells (6–8). A limitation of these vectors is the
low levels of transgene expression, compared to the inte-
grative vectors (9). The DNA-binding activity of the
integrase can be modified by swapping DNA-binding
domains or by using tethering domains linked to LEDGF,
a cellular integrase binding protein (10–14). These appro-
aches either result in severely reduced titres or require en-
gineering of the target cell, making them unfit for clinical
applications at the present stage.

Viral vectors have been designed to carry DNA recom-
bination substrates in which sequences identical to a
targeted locus in the genome allow for a precise genetic
modification by homologous recombination. The effi-
ciency of this process is considerably enhanced when a
site-specific endonuclease creates a DNA double-strand
break (DSB) close to the region of homology. Such tar-
geting endonucleases can now be engineered for virtually
any genomic locus, using either the zinc finger technology
or by engineering naturally occurring meganucleases
(15–17). Several studies have reported high levels of
homologous recombination in a variety of cell lines and
primary cell cultures, following treatment with IDLV or
adeno-associated viral vectors that encode a site-specific
endonuclease and a recombination substrate (18–22).
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The frequencies of gene targeting are usually in the
0.1–10% range depending on the vector architecture, the
readout, the targeted locus and the host cell (23).

This could be relevant in certain clinical situations, but
the vector system still needs to be improved. First,
multiple vectors are required to ferry the different compo-
nents of the recombination system into the cell. Second,
the nuclease coding sequences are expressed for several
days, a situation that would not be optimal in a clinical
setting due to the background off-target generation of
DNA DSBs (24,25). Nuclease toxicity can be reduced by
the addition of drug-responsive destabilization domains
(25). Here, we have developed a simplified lentiviral
system in which a single non-integrating lentiviral vector
is used to introduce a repair template and a meganuclease
into the cell. The latter is packaged into the lentiviral
particle as a protein fused to Vpr, an HIV-1 accessory
protein. Following transfer into the cell cytoplasm, the nu-
clease retains its activity and readily accesses the nucleus
where it recognizes and cleaves its target sequence, even-
tually leading to high rates of homologous recombination
at the targeted locus.

MATERIALS AND METHODS

CHOn10 reporter cell line

The p10 target locus was constructed by: (i) inserting
132 bp downstream of the ATG of the puromycin resist-
ance gene a 55-bp fragment containing the I-SceI recogni-
tion sequence and (ii) placing the defective puromycin
resistance gene under the control of the promoter region
from the human translation elongation factor 1 a subunit
(EF1a) gene including exon1, intron 1 and a part of exon 2
(EIE) and c) adding in the 30 position an IRES-green
fluorescent protein (GFP) cassette and a neomycin resist-
ance cassette. The construct was transfected into CHO-K1
cells. Single copy integrants were characterized by Southern
blot analysis of G418-resistant clones. CHOp10 cells
(GFP+/Puro�) were maintained in F12-K medium supple-
mented with G418 as described (26).

Vector design

The repair matrix (RMA) contains the EIE sequences
from the human EF1-a gene followed by a functional
puromycin resistance gene and 153 bp from the EMCV
IRES (Figure 1A), corresponding to 1.15 kb of 50 and
0.6 kb of 30 homology around the I-SceI site at the p10
locus. The pHAGE.cppt.RMA.wpre plasmid was gene-
rated by introducing the RMA into a promoter-less
pHAGE.cppt.wpre lentiviral construct (27), in reverse
orientation in order to avoid splicing out of the EF1a
intron from the lentiviral genomic RNA. The
pHAGE.cppt.CMV.I-SceI.wpre plasmid was generated
by introducing the 714 bp I-SceI coding sequence from
pCLS0197 (28) into the pHAGE.cppt.CMV.wpre
lentiviral construct.

All I-SceI-Vpr expression constructs were obtained by
replacing I-SceI in pCLS0197 by fusion-polymerase chain
reaction (PCR) assembled fragments containing an HA
tagged I-SceI fused in frame to an HIV-1 gag-derived

protease cleavage site (Pr7.1 or Pr24.2) followed by Vpr.
Fusion-PCR amplification products for ISVP7.1 or
ISVP24.2 (pCMV-I-SceI-Ha-Pr7.1-Vpr or pCMV-I-SceI-
Ha-Pr24.2-Vpr, respectively) were obtained in three steps:
(i) PCR amplification of I-SceI from pCLS0197 [Fw-50AA
AGAACGTGTTAACCACCT, Rev-50CCGAAACTTTC
CTGAAATACCCATACGACGTCCCA]; (ii) PCR amp-
lification of Ha-Pr7.1(or Pr24.2)-Vpr fragment using
pCMV-Ha-Pr7.1-Vpr or pCMV-Ha-Pr24.2-Vpr (29) as
templates [Fw-50TACCCATACGACGTCCCAGA, Rev-
50ATTACTCGAGCTAGGATCTACTGGCTCCATTT
C]; and (iii) fusion PCR using the PCR products obtained
in steps i and ii [Fw-50AAAGAACGTGTTAACCACCT,
Rev- 50ATTACTCGAGCTAGGATCTACTGGCTCCA
TTTC].
For the IS�VP7.1 fusion (pCMV-I-SceI-Ha-Pr7.1-

�Vpr14-88), the I-SceI fragment was amplified from
pCLS0197 [Fw-50TACCCATACGACGTCCCAGA,
Rev-50 TCCATTCATTGTGTGGCTTGCCCAGGAAG
TTGG] and the truncated Vpr (�Vpr14-88) was amplified
with [Fw-50CCACACAATGAATGGACACTA, Rev-50AT
TACTCGAGTTATCTCCTCTGTTGAGTAACGCCTA]
using ISVP7.1 as a template. The IS expression construct
was obtained by replacing the I-SceI-Ha-Pr7.1-Vpr
fragment from ISVP7.1 by a PCR-amplified fragment
containing HA tagged I-SceI. VP construct is described
in ref. 29.

Lentiviral vector production and analysis

HEK293T cells were plated at 2.5� 106 cells/15-cm Petri
dishes in Dulbecco’s Modified Eagle’s Medium with
Glutamax and 4.5 g/l glucose (Gibco-Invitrogen, Cergy
Pontoise, France) supplemented with 10% fetal bovine
serum (FBS) and antibiotics. Cells were transfected with
Calcium phosphate precipitates after 72 h. Packaging
plasmids, pHDMg-D64L, p-Rev and p-Tat and the trans-
fer vector plasmid were co-transfected with a molar ratio
of 1.9/1/4.6/25. For the production of lentiviral particles
containing Vpr fusions, the corresponding construct
was added at a molar ratio of 17.5. Culture media was
harvested after 48 and 72 h, passed through a 0.45-mm
filter (Millipore), and ultracentrifuged at 100 000g for
2 h. Pellets were re-suspended in phosphate-buffered
saline–bovine serum albumin (PBS–BSA) 1% and stored
at �80�C. The amount of p24Gag was measured using
the QuickTiterTM lentivirus Titer Kit (Euromedex,
Souffelweyersheim, France). Lentiviral particle (LP) titre
was calculated following the manufacturer recommenda-
tion of 1 ng p24=1.25� 107 LPs. Yield ranged from 1 to
25 mg/ml p24 corresponding to 1.25� 1010 to 0.3� 1012

LPs/ml. For western blot analysis lentiviral particles
were lysed in 2� Laemmli buffer (Sigma-Aldrich, Saint
Quentin Fallavier, France), denatured at 95�C for 5min,
separated on 10–12% sodium dodecyl sulphate– poly-
acrylamide gel electrophoresis (SDS–PAGE) gels, trans-
ferred to Hybond-CExtra membrane (GE Healthcare
Europe GmBH, Saclay, France) and probed with anti-
bodies against the Ha tag (Roche Diagnostics), p24
(Euromedex, Souffelweyersheim, France) and VSV-G
(Sigma-Aldrich, Saint Quentin Fallavier, France).
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Homologous recombination assay

CHOp10 cells were plated at 105 cells/well in six-well
plates. The following day, cells were co-infected with the
indicated doses of vectors, all added together, in the presence
of 10 mg/ml polybrene (Euromedex, Souffelweyersheim,
France). After 72 h cells were plated at 30% conflu-
ence and 12 h later the medium was supplemented with
10 mg/ml puromycin (Invitrogen, Cergy Pontoise,
France). During 15 days, puromycin-containing media
was removed and replaced every other day. PuroR+

clones were counted, randomly isolated and grown for
further analysis. The gene targeting frequency was
calculated as the ratio of PuroR+ clones after the 15-day
selection over the number of cells at the time of selection
(Supplementary Table S1).

DNA analysis in targeted clones

Genomic DNA was isolated with Genomic DNA
Purification Kit (Fermentas, St Remy les Chevreuses,
France) and 200 ng were used to detect homologous re-
combination by PCR (2� PCR MasterMix, Promega,
Charbonnieres Les Bains, France) with the following
primers: Fw1-50CCGCCACCATGACCGAGTACAA,
Fw2-50ACGAAGTTATGGTCACCGAG and Rev-50CT
CGTAGAAGGGGAGGTTGCG. The following condi-
tions for amplification were used: 94�C for 5min, then
25 cycles at 94�C for 1min, 62�C for 1min and 72�C for
1min, followed by extension at 72�C for 5min. Clones
were further analysed by Southern blot. Fifteen micro-
grams of genomic DNA were digested with the indicated
enzymes overnight. Digested DNA was separated on 1%

Figure 1. Targeting the p10 locus with lentiviral vectors. (A) (Top) Lentiviral vectors encoding the I-SceI meganuclease (LV-I-SceI) or a p10
recombination template (LV-RMA). The RMA contains donor sequences homologous to exon1–intron1–exon2 (EIE) sequences of the
Elongation factor 1-a (EF1a) gene, the puromycin resistance gene (Puro) and part of the internal ribosomal entry site (IRES) from EMCV.
LTR, long terminal repeat; wpre, woodchuck hepatitis virus post-transcription regulatory element; rre, rev responsive element; cppt, central
polypurine tract. (Middle) Organization of the p10 locus, including the promoter and EIE sequences from the EF1a gene driving a defective
Puromycin resistance gene followed by an IRES–GFP cassette. The Puro marker is interrupted by 55 bp containing the I-SceI recognition
sequence. (Bottom) Structure of the p10 locus after homologous recombination with the RMA. (B) 105 CHOp10 cells were treated with the indicated
doses of IDLVs (0.08–0.4 pg HIV-1 p24 Gag/cell). Seventy-two hours after transduction, cells were treated with puromycin during 15 days. The
histogram shows the number of PuroR+ clones obtained. The data are representative for three independent experiments for black bars, and two
independent experiments for striped bars. (C) Genomic DNAs from the randomly isolated and amplified PuroR+ clones were digested with XmnI
and I-SceI and analysed by Southern blot with a 32P-labelled EIE probe [underlined by hatched line in (A)]. Fragment sizes are: Mock, 1 kb; type I,
targeted clones, 1.8 kb; type II, targeted clones with head to tail concatemers (HTC) of the LV-RMA, 3 kb. (D) Genomic DNAs from the same
PuroR+ clones were digested with AgeI and XbaI and analysed by Southern blot with the same 32P-labelled EIE probe. Fragment sizes for: mock,
3.4 kb; type I, targeted clones, 3.4 kb; type II, targeted clones with head to tail concatemers (HTC) of the LV-RMA, 8–22 kb depending on the
size of the tandem repeat. The calculated size for the concatemers are 7.979 kb (n=2, lanes 8–10); 12.486 kb (n=3, lane 6); 22.302 kb (n=5, lanes 7,
9 and 10). Variations in band sizes (i.e. between lanes 8 and 9) probably reflect the presence of 1 or 2 LTR (calculated difference of 401 bp). The p10
locus, type I and II structures are further detailed in Figure 6A–C.
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agarose gel, blotted to Hybond-N+nylon membrane (GE
Healthcare Europe GmBH, Saclay, France) and hybrid-
ized with a 32P-radiolabelled probe prepared from a
883-bp XmnI–EcoRI fragment from the EIE sequence,
using Random Primers DNA Labelling System
(Invitrogen, Cergy Pontoise, France). After washing (2�
SSC/0.1% SDS, room temperature; 0.2� SSC/0.1% SDS,
room temperature; 0.1� SSC/0.1% SDS, 42�C and 65�C,
2� SSC, room temperature) membranes were placed
3 days at �80�C for autoradiography.

RESULTS

I-SceI- mediated chromosomal targeting by IDLV delivery

The efficiency of I-SceI-mediated homologous recombin-
ation by lentiviral delivery was evaluated in a reporter cell
line in which a single chromosomal copy of an inactivated
puromycin resistance gene has been introduced. The puro-
mycin resistance gene is interrupted by a 55-bp insert con-
taining a recognition site for I-SceI (see ‘Material and
Methods’ section). Transfection of plasmids encoding
I-SceI and a repair matrix (RMA) containing a functional
but promoter-less puromycin resistance gene results in tar-
geting events in about 0.1% of cells (26). Here CHOp10
cells were treated with a combination of IDLVs encoding
I-SceI or the RMA (Figure 1A). The cells were counted
after 72 h and placed under puromycin selection. Cell
counting revealed a dose-dependent growth inhibition sug-
gesting toxicity of lentiviral I-SceI expression (Figure 3B
and Supplementary Table S1). The number of puromycin-
resistant colonies increased in an IDVL dose-dependent
manner (Figure 1B, black bars). A gene targeting fre-
quency of 1� 10�3 was estimated by counting the number
of puromycin-resistant (PuroR+) clones. Only four
PuroR+ clones were obtained in the absence of I-SceI at
the maximal dose of IDLV-RMA (0.4 pg HIV-1 Gag p24/
cell). This suggests that the frequency of PuroR+ clones
that could have arisen from non-targeted events (or from
targeted events in the absence of meganuclease) was
1.6� 10�5 in accordance with previous reports (30). No
PuroR+ clones were obtained in the presence of IDLV-I-
SceI alone (0.4 pg HIV-1 Gag p24/cell), excluding the pos-
sibility of gene repair by I-SceI-induced non-homologous
end joining (NHEJ). When the dose of IDLV–I-SceI was
kept constant (0.16 pg HIV-1 p24/cell), while the dose of
RMA-encoding lentivirus was increased, a lower number
of PuroR+ clones was obtained for all experimental
points, indicating that the amount of I-SceI was limiting
(Figure 1B, stripped bars). I-SceI-mediated CHOp10 locus
targeting by IDLVs was confirmed by PCR (as described
in Supplementary Figure S2) and Southern blot analysis.
Genomic DNAs prepared from 36 randomly picked and
amplified PuroR+ clones were digested by two combin-
ations of enzymes in order to assess the structure of the
p10 locus (Figure 1C and D). A probe with the exon1–
intron1–exon2 (EIE) sequence of the EF1-a gene, present
on both the RMA and the targeted locus, was used.
Digestion with XmnI and I-SceI revealed a band at 1.0kb
in the control reporter cell line. This band is expected to
disappear once HR converts the I-SceI-interrupted Puro

sequences at the locus into functional ones, and be
replaced by a band of 1.8 kb (Figure 6A and B). Cutting
outside of the targeted sequences with AgeI and XbaI
yields a 3.4-kb band, which is 55 bp shorter after HR
(not resolved in Figure 1D). As indicated in Figure 5
(left column), 22% of the clones analysed presented this
profile indicative of a simple targeting event (type I
clones). Most other clones, designated as type II, pre-
sented an additional 3.0-kb band in the XmnI–I-SceI
digest and an AgeI–XbaI band of more than 8 kb. These
profiles correspond to a repaired p10 locus also containing
tandem copies of the proviral genome (Figure 6C), as pre-
viously observed by others (19).

I-SceI protein incorporation into viral particles

The system described above requires the use of multiple
vectors, expressed for several days, which may cause
toxicity (Figure 3B, Supplementary Table S1) possibly
due to meganuclease off-target activities (24). For this
reason, we have combined lentivirus-based nucleic acid
delivery with protein transducing technology to avoid pro-
longed chromosome exposure to DSB. In this system, a
single IDLV is used to introduce the recombination
template together with the I-SceI protein. We generated
different constructs where I-SceI carried a C-terminal HA
tag and was fused in-frame to the N-terminus of the viral
accessory protein Vpr or of �Vpr, a Vpr fragment
comprising aminoacids 14–88, minimally required for
virus incorporation (31). Two different cleavage sites for
the HIV protease (p7/1 or p24/2) were introduced up-
stream of Vpr (Figure 2A), in order to generate a
Vpr-free meganuclease after processing inside the virion
(32). To characterize these fusion constructs named
ISVP7.1 (I-SceI-Ha-p7/1-Vpr), ISVP24.2 (I-SceI-Ha-p24/
2-Vpr) and IS�VP7.1 (I-SceI-Ha-p7/1-�Vpr), the corres-
ponding plasmids were transfected in HEK293-T cells.
Cell lysates were prepared after 32 h and analysed by
western blot with an antibody directed against HA. The
expected bands of 37 kDa or 33 kDa were obtained cor-
responding to ISVP7.1, ISVP24.2 or IS�VP7.1, respect-
ively (Supplementary Figure S1A). I-SceI-containing
particles were generated in the presence or the absence
of a transfer vector containing the RMA or a GFP expres-
sion cassette (data not shown), purified and analysed by
western blot (see ‘Materials and Methods’ section). High
concentrations of p24 were obtained with each construct
indicating that Vpr-based incorporation of the mega-
nuclease does not affect production and release of Gag
proteins. The western blot analysis showed that I-SceI
fusion proteins were correctly packaged into VSV-G
pseudotyped virions. Over 50% of fusion proteins were
processed by the viral protease (Figure 2B). In a control
experiment, VP or IS particles containing respectively Vpr
or I-SceI without Vpr were also produced, purified and
analysed by western blot. As expected, Vpr was readily
incorporated into the virion. A low level of virion-
associated I-SceI was found in the absence of Vpr.
To ensure that the meganuclease was localized in the

particle and not trapped on the viral membrane,
ISVP24.2-containing particles were treated with increasing
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doses of proteinase K (0.02–0.1mg/ml) and analysed by
western blot using antibodies directed against HA or
VSV-G. The VSV-G protein present at the virion surface
was readily digested while most of the I-SceI-containing
fusions were resistant to digestion (Supplementary Figure
S1B).

Targeting the n10 locus with I-SceI-containing lentiviral
particles

To evaluate the activity of the packaged meganuclease,
CHOp10 cells were treated with I-SceI-containing viral
particles carrying a puromycin repair template
(IDLV-RMA cis, 0.08 or 0.24 pg HIV-1 p24/cell).
Alternatively, the RMA was brought by a separate lenti-
virus (IDLV-RMA trans) (Figure 3A). Cell counting
before puromycin selection did not show the
dose-dependent growth inhibition observed previously
(Figure 3B; Supplementary Table S1). This was consistent
with the minute amounts of I-SceI that could be detected

in the cells after lentiviral-mediated protein transfer
(Supplementary Figure S1C). Compared to the previous
series of experiments in which I-SceI was encoded by one
of the vectors, about four times more PuroR+ clones (210
clones versus 59 clones) were obtained following treatment
with the vector in cis configuration. The efficiency was
decreased when the repair matrix was brought in trans,
suggesting that the presence of both the RMA and the
meganuclease in the same particle was facilitating recom-
bination. A lower number of clones was obtained with
IS�VP7.1-containing particles, possibly because of the
less efficient processing of this fusion by the viral protease.

Targeting of the p10 locus was confirmed on 67 of the
PuroR+clones obtained with the cis or trans IDLV-RMA
vectors which were grown and analysed by PCR

Figure 3. p10 locus targeting with I-SceI-containing lentiviral particles.
(A) 105 reporter cells were treated with IDLVs prepared in the presence
of ISVP7.1 or ISVP24.2 protein expression constructs at doses of
0.08 pg (grey bars) or 0.24 pg (black bars) HIV-1 p24 Gag/cell. The
RMA was brought either in cis or in trans. The same doses of
IDLV-I-SceI that encodes I-SceI (Figure 1A) were used in controls.
Seventy-two hours after transduction, cells were treated with puro-
mycin during 15 days and PuroR+ clones were counted. (B) Cell
growth following I-SceI delivery. CHOp10 cells were plated at 105

cell/well in six-well plates. The following day, cells were treated with
the indicated doses of IDLVs (transduction) or ISVP transducing par-
ticles (protein delivery). After 72 h, cells were counted (Supplementary
Table S1) and plated at 30% confluence for puromycin selection. Mock
(black bar), untreated cells.

Figure 2. Packaging I-SceI into lentiviral particles. (A) I-SceI was fused
to the N terminus of full-length (ISVP7.1, ISVP24.2) or truncated
(IS�VP7.1) Vpr. I-SceI was HA tagged (black box) and viral HIV-1
protease cleavage sites in Gag (p7/1 or p24/2) were introduced
upstream of Vpr (stripped box). These fused proteins were used for
I-SceI packaging with or without an RMA vector genome in the
same particle. VP and IS constructs expressing Ha tagged Vpr or
I-SceI respectively, were used as control. (B) Western blot analysis of
I-SceI-containing particles. Viral particles (45–50 ng HIV-1 p24 Gag)
were run on a 10% SDS–PAGE gel and the blot was probed with an
antibody against the HA tag or against HIV-1 Gag p24 (lower panel).
Two bands corresponding to �60% cleaved (27 kDa) and �40%
uncleaved (37 or 33 kDa) proteins were obtained for ISVP7.1 and
ISVP24.2. Note the lesser incorporation and cleavage efficiency
(�10%) for the IS�VP7.1 fusion. The expected 13-kDa band was
obtained using the VP control. The IS control lane contains a
27-kDa band indicating a background level (<10%) of I-SceI associ-
ation with the viral particles in the absence of Vpr.
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(Supplementary Figure S2) and Southern blot (Figure 4).
Three different profiles were obtained on Southern blots,
including the type I (Figure 4A, clones 1–8) and type II
(data not shown) along with a third profile (type III,
Figure 4B, clones 9–16). The proportions of perfectly
targeted clones (type I) were 48% and 33% for cis and
trans delivery, respectively, a higher level than the 22%
obtained after IDLV–I-SceI transduction (Figure 5).

Upon XmnI–I-SceI digest, all type III clones displayed
a copy of the original p10 locus (1.0 kb band, Figure 4B,
clones 9–16). While most of them only had one additional
3.0-kb band that could originate from the RMA vector
genome (Figure 6D), a minority had different profiles (e.g.
clone 9) suggestive of a heterogeneous recombination pro-
cess (Figure 4B, clone 9 and Supplementary Figure S4,
clones 22 and 23). Cutting with AgeI and XbaI resulted
in the p10 specific 3.4-kb band as well as in several
high-molecular-weight bands whose sizes are not consist-
ently multiple of the RMA provirus size, as in type II
clones. We conclude that in type III clones, the active
puromycin resistance gene was not inserted at the p10
locus. There are two possible ways of explaining their
drug resistance phenotype. First, they could arise from
integration of the provirus without recombination, for

instance, at randomly occurring DSB, followed by activa-
tion of the promoter-less resistance gene by nearby cellular
transcriptional signals. We consider this scenario unlikely
because of the high number of type III clones obtained
and of the very low background of Puro+ clones in the
absence of I-SceI (see above). A second possibility is
ectopic recombination, whereby recombination at the
p10 locus creates a puromycin resistance gene linked to
the EF1-a promoter, which subsequently integrates at
another locus (33–35). This hypothesis was supported by
further Southern blot analysis of type III clones using
probes outside of the homology region contained in the
RMA construct. This analysis suggests that the 30 end of
the p10 locus which includes IRES–GFP sequences
remains intact, while the EF1-a promoter and at least
1 kb of upstream sequences were amplified and presum-
ably moved to an ectopic locus (Figure 6D and
Supplementary Figure S3).
In a control experiment the I-SceI protein, without Vpr,

was expressed during vector production and viral particles
were analysed by western blot. A low level of I-SceI was
found to be associated to the particles in the absence of
Vpr. These low amounts of virion-associated meganu-
clease, in the absence of fusion to Vpr, resulted in only

Figure 4. Analysis of PuroR+ clones obtained by I-SceI-containing lentiviral particles. (A) Southern blot analysis of type I clones (from 1 to 8)
obtained after lentiviral particle-associated I-SceI delivery. Clones from both cis and trans experiments are shown. (Left) Genomic DNA samples
from PuroR+ clones were digested with XmnI and I-SceI and analysed with a 32P-labelled EIE probe. Fragment sizes for: mock, 1 kb; type I clones,
1.8 kb. (Right) The same genomic DNAs were digested with AgeI and XbaI and hybridized with the 32P-labelled EIE probe. Fragment sizes for:
mock and type I clones, 3.4 kb. (B) Southern blot analysis of type III clones (from 9 to 16) obtained under the same conditions. (Left) Genomic
DNAs from PuroR+ clones were digested with XmnI and I-SceI and analysed with a 32P-labelled EIE probe. Fragment sizes for: mock, 1 kb; type III
clones, 1 kb (unmodified p10 locus)+3kb (RMA vector sequences). (Right) The same genomic DNAs were digested with AgeI and XbaI and
hybridized with the 32P-labelled internal EIE probe. Fragment sizes for: mock, 3.4 kb; type III clones, 3.4 kb (unmodified p10 locus) and additional
species at 7–25 kb, corresponding to RMA sequences at an ectopic locus.
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seven type III PuroR+ clones (Supplementary Figure S4,
clones 17–23), suggesting that Vpr is not a major deter-
minant of these unconventional recombination events.

DISCUSSION

This work demonstrates the possibility of delivering
meganucleases into cells in a transient and dose-controlled
manner for the purpose of gene targeting. Gene targeting
was obtained using IDLVs encoding a repair matrix and
containing a meganuclease as a virion-associated protein.
The frequency of targeting events was comparable to the
one obtained using conventional means of introduction of
the nuclease and repair matrix by transfection (26) or
lentiviral transduction (Figure 1). Lentiviral virions can
be used to ferry heterologous proteins as fusions with
viral proteins such as Vpr, Nef, IN or Gag (36–39). The
delivery of active proteins at the time of virion entry and
trafficking into the cell has been reported (40). The tech-
nology was recently used for the administration the Cre
recombinase, showing that an active DNA-modifying
enzyme acting in the nucleus could be delivered in that
way (41). Here, we have delivered a meganuclease that cre-
ates site-specific DNA DSBs at nanomolar concentrations
(42). For a DSB to occur on the chromosome, we estimate
that a minimum of 1000 molecules of the protein per cell
are required (43). Since up to 700 Vpr molecules are
present in each virion (44), a transient peak of nanomolar
concentration of meganuclease can be achieved using
standard multiplicities of infection.
When the meganuclease was packaged into virions sep-

arate from those encoding the recombination template
(trans configuration), the number of recombination events
scored was comparable to the one obtained with an
I-SceI-encoding vector. In contrast, it was higher when
the nuclease was in the same virion as the repair se-
quences. This suggests that colocalization of the two elem-
ents of the recombination system into the pre-integration
complex is important. It could be simply due to a local
increase in the nuclease concentration and a higher rate of

DSB. It also physically brings the repair template close to
the DSB, thereby potentially helping recombination.

Our Southern blot analysis of the targeted p10 locus in
PuroR+ clones defines three types of recombination
events. Type I represents perfect gene targeting events
where a single copy of the DNA template carried by the
lentiviral genome is used for DSB repair, resulting in the
conversion of the puromycin resistance gene. Their pro-
portion is twice higher when the nuclease is packaged into
the virions. The Southern blot signature of type II clones
includes additional bands consistent with the presence
of concatemers of the vector genome (n=2, 3, 5 on
Figure 1D). These structures are a common feature of
studies using retroviral or integration deficient lentiviral
vectors for DSB-induced gene targeting (19,30). In the
absence of active integrase, circle and/or concatemer for-
mation is a default pathway for eliminating the free
DNA ends of the linear proviral genome (45). Type II
structures may arise from copying the repair template
on the concatemer, beyond the first proviral copy.
Alternatively, head-to-tail concatemers could be
produced by iterative copying of a circular, monomeric
vector genome containing the repair template (46). The
presence of concatemers represents a problem for gene
targeting because they may interrupt an otherwise
repaired gene and because they bring lentiviral sequences
with potential for transcriptional interference in the prox-
imity of the targeted locus.

Type III clones appear almost exclusively when the
meganuclease is virion-associated. I-SceI-loaded particles
bring the nuclease and the recombination template in the
nucleus at the same time, and in the same pre-integration
complex when in the cis configuration. Under these con-
ditions, DSB occurs early after transduction, when most
of the proviral genomes are still linear DNA products of
reverse transcription. In contrast, when I-SceI is encoded
by the vector, its biosynthesis requires a lag period during
which the repair template provirus dissociates from the
pre-integration complex and becomes circularized or con-
catemerized. The type III profiles are reminiscent
of ectopic recombination in which a free 30 end from the
repair template is extended by copying the homologous
chromosomal sequences (33,35). This process would
generate hybrid molecules linking the EF1-a promoter
and upstream genomic sequences to the puromycin resist-
ance gene from the vector DNA. The recombinant struc-
tures then become integrated, often in the vicinity of the
targeted locus. Early experiments using non-integrative
retroviral vectors for gene targeting had already revealed
similar ectopic recombination events (30). However, it
remains to be explained why such events would be more
frequent with the protein delivery system. One can
hypothesize that recombination events are initiated at an
earlier step when the viral DNA is still linear. However,
strand invasion of the extrachromosomal template by
DNA ends generated by I-SceI is not supposed to initiate
DNA synthesis from 30 extremities on the template. Thus,
one has to envision that invading 30 extremities can be
more efficiently formed on the linear provirus engaged
in a recombination process.

Figure 5. I-SceI-mediated gene targeting events in PuroR+ clones. The
distributions of type I–III clones among PuroR+ clones obtained after
conventional I-SceI transduction (left, n=36 clones analysed),
virion-associated protein delivery in cis (middle, n=35 clones
analysed) or virion-associated protein delivery in trans (right, n=32
clones analysed) are shown.
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In conclusion, both modes of meganuclease delivery,
either as a protein or encoded by a vector, lead to gene
targeting events, a proportion of which involves non-
homologous recombination. The frequency of bona fide
recombination event is about 2-fold higher when the
nuclease is delivered as a protein. We suggest that the ap-
proach described here is potentially safer because a single
burst of enzyme is delivered to the cell. It may also be
applied to a large number of single chain meganucleases
such as those engineered from I-CreI (47).
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