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Introduction
Survival rates of cancer patients dramatically improve when diagnosed in early stages as 
tumors may not have spread yet. However, detection rates in early stages are inconsist-
ent across cancers. As an example, ~ 63% of breast cancer cases are diagnosed in stage 
1 while only ~ 17% lung cancer cases are diagnosed in the same stage (https://​seer.​can-
cer.​gov/​csr/​1975_​2017/). This is owing, in part, to the fact that diagnostic development 
has historically focused on detecting individual cancers. Many cancers are detected only 
when the symptoms appear, which most often occur in later stages. The development 
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of pan-cancer diagnostics would enable detection of more cancer types, including rare 
cancers that are not typically the focus of individual biomarker research, thus dramati-
cally improving the prognosis and survival of cancer patients. Such a tool would allow 
clinicians to diagnose more patients earlier and guide more informed treatment deci-
sions. Additionally, successful application of such a tool to pre-symptomatic patients 
would necessitate further efforts to locate the tumor to a specific body site with greater 
resolution. Here, we present a unified cancer diagnostic capable of both, robust cancer 
diagnosis and tissue of origin detection, for 33 different cancers.

Approximately 60% of genes in humans are found in genomic regions dense with CpG 
dinucleotides called CpG islands which may be methylated [1]. The degree of methyla-
tion influences expression of downstream genomic regions. Tissue specific patterns of 
methylation arise through development and limit the possible changes to the cell state 
during development or carcinogenesis [2, 3]. Methylation has been shown to be signifi-
cantly altered in many cancers making it promising as a pan-cancer biomarker, and fur-
thermore, as patterns of alteration vary by cancer types or subtypes, methylation is being 
exploited to distinguish different cancer types or subtypes [4–9]. Methylation data have 
previously been used to successfully develop classifiers for individual cancer types and 
cancers derived from tissues with common developmental lineages [10–22].

The high dimensional, real value data obtained from high-throughput methylation 
arrays, such as those archived in The Cancer Genome Atlas (TCGA; https://​www.​can-
cer.​gov/​tcga), are well suited for use with machine learning classifiers, including neural 
network. Detection of tissues of origin of cancers can be cast as a supervised task within 
the realm of machine learning. Supervised methods may artificially separate samples 
based only on pre-defined classes; however, unsupervised methods may generate a latent 
space which can be leveraged for many downstream tasks while retaining the underlying 
structure of the data. Among neural network architectures, unsupervised methods have 
seen growing use in biological data analysis, particularly for dimensionality reduction 
with high degrees of success [23–27].

Briefly, a class of unsupervised methods attempts to regenerate realistic samples from 
some low dimensional representation [28, 29]. Variational autoencoders (VAEs) [28], an 
unsupervised method, have been used as a basis for downstream regression or classifica-
tion in a host of applications, including methylation or transcriptional data analysis. This 
has been done by passing the latent mapping of a sample to a classifier such as a support 
vector machine [27]. However, this does not allow for features in the latent space to be 
modified to improve the classification task. The unsupervised and supervised tasks may 
be used to constrain each other, resulting in an unsupervised latent space that retains the 
natural distribution of the data but is optimized for the classification task.

Here we propose a model where both the generative (unsupervised) and the classi-
fication (supervised) trainings take place at the same time. This hybrid generator/clas-
sifier architecture enables learning of discriminative features intrinsic to input data in 
tandem with producing a robust classifier. Tuned for and trained on cancer tissues of 
origin and normal/non-cancerous tissues, our proposed neural network, CancerNet, is 
currently capable of detecting 33 different cancers. CancerNet was assessed on multiple 
independent datasets including samples that were not used in training, and metastatic 
and early cancer samples.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga


Page 3 of 17Gore and Azad ﻿BMC Bioinformatics          (2022) 23:229 	

Materials and methods
Methylation data

Illumina 450  K methylation array data were downloaded from The Cancer Genome 
Atlas (TCGA) GDC portal for all cancer types. Metastatic and recurrent samples 
were removed. This resulted in total 13,325 samples. Each sample was labeled by its 
tissue of origin and TCGA cancer type designation. Rather than creating a distinct 
class for each normal tissue, all samples that were from non-cancerous tissues were 
included in the normal class. This was done due to the extremely low numbers of nor-
mal samples available for some tissue types. Additional validation sample sets were 
downloaded from NCBI GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Details of spe-
cific GEO datasets used are provided in Additional file 1: Table S1.

Data preparation

We relied on the CpG density clustering approach implemented in CancerLocator to 
process the methylation data before inputting to CancerNet [16]. CpGs that were not 
assigned to CpG islands were removed. The remaining methylation data were scanned 
for Illumina 450 K probes that map to within 100 bp of each other, which were then 
concatenated. These clusters were then filtered to eliminate those with 3 CpGs or less 
[16]. The beta values for the resulting clusters were then averaged. This resulted in 
24,565 clusters that map to CpG islands. These average beta values were used as input 
to CancerNet. The dataset was then randomly split into training/test/validation sets 
with 80% in training set and 10% each in the test and validation sets. We ensured that 
the training set did not include more than one sample per patient by removing one of 
any matched pairs present in the dataset and replacing it with a random sample from 
the same class.

Performance assessment

Held-out test data from TCGA and GEO datasets were used to assess CancerNet’s 
performance measured in terms of recall, precision, and F-measure. For a specific 
class (e.g. a cancer tissue of origin or normal), recall defines the fraction of samples 
belonging to this class that are correctly identified by a classification method. Preci-
sion is the fraction of predictions for this class that are correct, and F-measure is the 
harmonic mean of recall and precision. Unless otherwise noted, the F-measure pre-
sented in this work is weighted F-measure due to large class imbalance among tumor 
classes. Weighted F-measure is the weighted average of F-measure values with weight 
proportional to the number of true instances for each class. The F-measure function 
in the scikit learn python library (https://​scikit-​learn.​org/​stable/​index.​html) was used 
to calculate this.

Neural network

The CancerNet program was written in Python using the keras package (version 
2.0.8) [30] with a tensorflow (version 1.12.0) [31] backbone. The neural network 
architecture of CancerNet consists of an encoder, decoder and classifier (Fig. 1). The 
encoder has an input layer of 24,565 nodes, which is fully connected to a dense layer 

https://www.ncbi.nlm.nih.gov/geo/
https://scikit-learn.org/stable/index.html
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of 1,000 nodes that uses a relu nonlinearity and two dense activation free layers that 
are passed to a probabilistic layer, also called the latent layer, characteristic of a VAE 
architecture with 100 nodes. The decoder has a single dense layer of 1000 nodes that 
uses a relu activation and is fully connected to an output layer of 24,565 nodes that 
uses a sigmoid activation. The classifier takes the latent layer as an input to a dense 
100 node layer that uses a relu activation and is fully connected to the classifier out-
put layer that has 34 nodes and uses a softmax activation (Fig.  1). CancerNet was 
trained using the Adam optimizer with a learning rate of 0.001. All layers were ran-
domly initialized and then trained until convergence. Early stopping was used to limit 
training time and prevent overfitting and was limited to 50 epochs without validation 
accuracy improvement. The final loss of the network was the sum of the VAE loss and 
the categorical cross-entropy loss, which are applied to the generative output and the 
classification output respectively.

VAE loss is composed of two terms. The first term quantifies the divergence between 
the output of the generator and the input to the model using categorical cross-entropy. 
The second term is used to enforce gaussian distributions in the latent layer by calculat-
ing the Kullbeck–Leibler divergence of the encoders’ distribution and a standard normal. 
The VAE loss beta term can be used to create a disentangled VAE. When beta is greater 
than one, features are forced to disentangle and become easier to interpret. Beta is set to 
1 in CancerNet.

Cross-entropy is applied to the classifier output to estimate a loss based on the dif-
ference between the classifier output and the class labels. This is distinct from the 
cross-entropy for quantifying the VAE loss based on the difference between the genera-
tive output and the sample itself. Weights of 0.01 and 1 are applied to the VAE loss and 
classifier loss, respectively. The generator and classification losses together enforce the 
latent space representation of samples to preserve information about samples’ natural 

Fig. 1  The CancerNet architecture. Methylation data are input to the encoder. The encoder is composed 
of two dense feedforward layers using the Relu activation function. Output of the encoder is passed to the 
probabilistic layer, which passes its output to the classifier and generator/decoder. The classifier is two dense 
feedforward layers, the first with the ReLu activation function and the second with the softmax activation 
function. The decoder is two dense feedforward layers, the first using the Relu activation and the second 
using the sigmoid activation
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distribution while also creating an easily classifiable distribution of samples. In doing so 
the latent space acts as a prior in the classifier.

Prevention of leakage

Leakage is a phenomenon in machine learning where information about the task is inad-
vertently added to the data on which the task is being performed [32]. This can lead to 
very brittle models or even completely useless models when used outside the test and 
training data. Tasks such as normalizing datasets prior to splitting into training/testing/
validation sets can introduce information present in the test and validation sets into the 
trained model, thus artificially inflating the performance of the model in validation and 
test phases [32]. The beta values of the Illumina 450 k array were normalized on a sam-
ple by sample basis and bounded in the range [0, 1], preventing information from cross-
ing among samples. For CpG feature assignment and a list of samples used in test, train 
and validation sets please see Additional File 2. The validation set is then used as a sanity 
check to confirm the model performance on unseen data. We also demonstrate further 
that the model is robust by using independent datasets retrieved from GEO.

CancerNet software

CancerNet is an open source software. CancerNet and associated datasets have been 
made available at the Open Science Framework (OSF) site: https://​osf.​io/​j6gcv/?​view_​
only=​d18c6​831b9​e2400​2937a​b1028​fc0d4​18.

Results
Model performance

CancerNet’s parameters were learnt from training data obtained from The Cancer 
Genome Atlas (TCGA) for 33 different cancers and a normal class. The cancers inves-
tigated were Adrenocortical carcinoma (ACC), Bladder urothelial carcinoma (BLCA), 
Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervi-
cal adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma 
(COAD), Lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), Esophageal car-
cinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck squamous cell car-
cinoma (HNSC), Kidney chromophobe (KICH), Kidney renal clear cell carcinoma 
(KIRC), Kidney renal papillary cell carcinoma (KIRP), Acute myeloid leukemia (LAML), 
Brain lower grade glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung adeno-
carcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO), 
Ovarian serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheo-
chromocytoma and paraganglioma (PCPG), Prostate adenocarcinoma (PRAD), Rectum 
adenocarcinoma (READ), Sarcoma (SARC), Skin cutaneous melanoma (SKCM), Stom-
ach adenocarcinoma (STAD), Testicular germ cell tumors (TGCT), Thyroid carcinoma 
(THCA), Thymoma (THYM), Uterine corpus endometrial carcinoma (UCEC), Uterine 
carcinosarcoma (UCS), Uveal melanoma (UVM).

The overall performance of CancerNet, as quantified through F-measure (see Meth-
ods), is ~ 99.6% (Table 1). Many of the misclassifications occurred among cancers from 
the same or similar organs and tissue classes that share developmental lineages (Fig. 2, 
Additional file  1: Fig. S1–S28). Where this did not hold true, we found a pattern of 

https://osf.io/j6gcv/?view_only=d18c6831b9e24002937ab1028fc0d418
https://osf.io/j6gcv/?view_only=d18c6831b9e24002937ab1028fc0d418
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Table 1  CancerNet’s performance in detecting the tissue of origin of 33 cancers

A normal class (NORM) is also included. The performance was assessed using the accuracy metrics precision, recall and 
F1-measure

ACC—Adrenocortical carcinoma, BLCA—Bladder urothelial carcinoma, BRCA—Breast invasive carcinoma, CESC—Cervical 
squamous cell carcinoma and endocervical adenocarcinoma, CHOL—Cholangiocarcinoma, COAD—Colon adenocarcinoma, 
DLBC—Lymphoid neoplasm diffuse large B-cell lymphoma, ESCA—Esophageal carcinoma, GBM—Glioblastoma 
multiforme, HNSC—Head and neck squamous cell carcinoma, KICH—Kidney chromophobe, KIRC—Kidney renal clear cell 
carcinoma, KIRP—Kidney renal papillary cell carcinoma, LAML—Acute myeloid leukemia, LGG—Brain lower grade glioma, 
LIHC—Liver hepatocellular carcinoma, LUAD—Lung adenocarcinoma, LUSC—Lung squamous cell carcinoma, MESO—
Mesothelioma, OV—Ovarian serous cystadenocarcinoma, PAAD—Pancreatic adenocarcinoma, PCPG—Pheochromocytoma 
and paraganglioma, PRAD—Prostate adenocarcinoma, READ—Rectum adenocarcinoma, SARC—Sarcoma, SKCM—Skin 
cutaneous melanoma, STAD—Stomach adenocarcinoma, TGCT—Testicular germ cell tumors, THCA—Thyroid carcinoma, 
THYM—Thymoma, UCEC—Uterine corpus endometrial carcinoma, UCS—Uterine carcinosarcoma, UVM—Uveal melanoma, 
NORM—Normal (non-cancer)

Class Precision Recall F1

ACC​ 0.99925 0.999249 0.999227

BLCA 0.998525 0.998498 0.998507

BRCA​ 0.998498 0.998498 0.998498

CESC 0.997868 0.997748 0.997784

CHOL 0.998248 0.997748 0.997973

COAD 0.98915 0.989489 0.989229

DLBC 0.998949 0.998874 0.998903

ESCA 0.989043 0.988739 0.988885

GBM 0.991661 0.991742 0.991697

HNSC 0.991985 0.992117 0.99203

KICH 0.999625 0.999625 0.999618

KIRC 0.997748 0.997748 0.997748

KIRP 0.997793 0.997748 0.997765

LAML 0.999625 0.999625 0.999621

LGG 0.991407 0.991366 0.991386

LIHC 0.997935 0.997748 0.997795

LUAD 0.997125 0.996997 0.997033

LUSC 0.994668 0.994745 0.994648

MESO 0.998875 0.998874 0.998829

OV 0.997384 0.997372 0.997377

PAAD 0.997312 0.997372 0.997321

PCPG 0.999635 0.999625 0.999627

PRAD 0.996604 0.996622 0.996567

READ 0.993231 0.99024 0.991447

SARC​ 0.998109 0.998123 0.998115

SKCM 0.99817 0.998123 0.998138

STAD 0.993135 0.993243 0.993174

TGCT​ 1 1 1

THCA 0.99852 0.998498 0.998506

THYM 0.997281 0.997372 0.997296

UCEC 0.993519 0.993619 0.99353

UCS 0.996655 0.996246 0.996433

UVM 0.999625 0.999625 0.999619

NORM 0.987758 0.987613 0.987665
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misclassification among adenocarcinomas and squamous carcinomas (Fig. 3, Additional 
file 1: Fig. S1–S28). Examination of the latent space (Fig. 4), along with misclassification 
rates, shows that misclassifications occurred among closely neighboring classes (Fig. 2) 
or for individual samples of a class that are singletons and very far from the rest of the 
class (Fig. 4, Additional file 1: Fig. S29–S63).

Latent space evaluation

We confirmed that the latent space of CancerNet maintains the natural distribution of 
the sample data by comparing it to the latent space generated through a multi-omic clus-
tering algorithm in a flagship paper from TCGA consortium [17]. The latent space of 
CancerNet shows high concordance with the latent space of TCGA data presented in 
Hoadley et al. study [17] (Fig. 4). Similar to this study, we observed clustering of the sam-
ples by tissue of origin and position in a specific organ in the CancerNet’s latent space 
(Fig. 4). Similar distributions of various subtypes of cancers were also observed. These 
observations suggest that CancerNet’s latent space maintains the natural distribution 
of the sample data. Note that Hoadley et  al. used a highly curated set of methylation 
sites, devoid of any tissue specific promoter sites and chosen based on hypomethyla-
tion status, in order to perform unsupervised clustering of methylation data samples to 
establish that cancer type specific signatures are present in the tumor samples [17]. In 
contrast, CancerNet obtains similar results but with far less preprocessing of the data 
and in a manner that facilitates integration with other data types such as those used in 
the Hoadley et al. study (e.g. mRNA, aneuploidy, miRNA, and RPPA) by way of a latent 
space that is vector encoded.

Renal cancer samples (KIRC, KICH, and KIRP) were apportioned into 3 clusters in the 
latent space (Fig. 4), very similar to those described in Hoadley et al. study [17]. The larg-
est cluster consists of two distinct sub-clusters connected by a streak (Fig. 5A); while one 
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Fig. 2  Misclassification rates for 4 cancer types selected to illustrate trends observed in CancerNet. A COAD 
misclassifies primarily to READ with fewer misclassifications in ESCA and STAD. B ESCA misclassifies to HNSC, 
LUSC and STAD. Lung misclassifications occur often among some sample types. C OV samples misclassify as 
the two uterine cancer types considered in CancerNet: UCEC and UCS. D LIHC misclassifies as CHOL, MESO, 
SKCM and NORM. Refer to Abbreviations for cancer types indicated
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sub-cluster is primarily composed of clear cell renal cell carcinoma (ccRCC) samples, 
the other is populated with papillary renal clear cell type1 (PRCC T1) samples with type 
2 (PRCC T2) connecting these two (Fig. 5A). The remaining clusters are primarily com-
posed of ccRCC and chromophobe renal cell carcinoma (chRCC) samples, respectively 
(Fig. 5A); chRCC is a rare subtype of renal cell carcinoma (RCC) found in only 5% of all 
renal cancer patients with a distinct etiology [33]. The presence of this RCC subtype as 
a distinct cluster in the latent space is encouraging as it could indicate the presence of 
detectable and therapeutically important features in the network. Among renal cancers, 
a distinct separation of samples by gender was also observed in the latent space (Fig. 5B).

Gastrointestinal adenocarcinoma samples also arrange in a similar way as in the 
latent space of Hoadley et  al. study [17]. Esophageal samples are split among the 
larger gastrointestinal cluster and a cluster of HNSC in the latent space (Fig.  4). 
Gastrointestinal adenocarcinomas show strong organ site signatures (Fig.  6A) and 
are best explained by hypomethylation status (Fig.  6B). Groupings correspond 
to CpG island methylator phenotype (CIMP) status as described by Ang et  al. 

Fig. 3  Confusion matrix of TCGA primary tumor classification. Primary tumors across 33 TCGA cancer types 
were classified. The correct class is shown by the Y-axis and the predicted class is shown by the X-axis (refer to 
Abbreviations for different cancers indicated on the X-axis; normal is abbreviated NORM)
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Fig. 4  Visualization of test samples in the latent space. T-SNE was used to reduce the latent space dimension 
from 100 to 2. Samples originating from the same tissue form cluster(s) and are close to sample groups of 
similar tissues. For abbreviations, refer to the full abbreviation list. Normal samples are abbreviated NORM and 
are displayed in gray

Fig. 5  Renal subtype latent space distribution. A Samples representing different renal subtypes, as 
determined by the TCGA analysis of renal cancers, are mapped onto the latent space. Clear separation of 
subtypes PRCC T1 and T2 and ChRCC indicates that the neural network has learned features for discriminating 
between these renal subtypes. B Separation of renal samples in the latent space by gender



Page 10 of 17Gore and Azad ﻿BMC Bioinformatics          (2022) 23:229 

[34]. Non-CIMP separates from CIMP-high (CIMP-H) and CIMP-low (CIMP-
L) (Fig.  6B). Stomach adenocarcinoma (STAD) and Esophageal carcinoma (ESCA) 
group together with CIMP-H and gastroesophogeal (GEA) CIMP-L status. Epstein-
Barr virus (EBV) positive samples form their own cluster. Similarly, molecular sub-
types follow the same pattern as in Hoadley et al. study [17] (Fig. 6B). Note that the 
latent space has been projected from 100 dimensions onto a 2-dimensional plane for 
visualization purposes (Fig. 6). To verify that distinct clusters do form by body sites 
and hypomethylation status in gastrointestinal adenocarcinomas, we trained a linear 
SVM on these classes. These models achieve high accuracy (tenfold cross-validation 
accuracy, Fig. 7), demonstrating the robust separability of the gastrointestinal ade-
nocarcinoma samples by these classes in the latent space.

Squamous cell carcinoma samples (CESC, ESCA, HNSC, and LUSC) segregate 
by human papillomavirus (HPV) status in the latent space (Fig.  8A), which is in 

A) Gastric Adenocarcinoma Body Site Latent Space Distribution B) Gastric Adenocarcinoma Hypomethylation Status

STAD & 
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Fig. 6  Gastric adenocarcinoma latent space distribution. Samples representing different gastric 
adenocarcinomas cluster in the latent space by A body site of tumor and B hypomethylation status
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Fig. 7  The tenfold cross-validation accuracy of a binary SVM with a linear kernel trained on the 
100-dimensional latent space for each body site (A) and methylation status (B) for gastric adenocarcinoma. 
The linear kernel is used to test the separability of each in the full 100-dimensional latent space. The high 
performance of these models indicates that the body sites and methylation statuses are not overlapping 
in the higher dimensional latent space even though it may appear so in lower dimension representations 
(Fig. 6)
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concordance with Campbell et al. study [35]. However, CancerNet did not show sen-
sitivity to smoking status (Fig. 8B).

Assessment on metastatic cancers, precancerous lesions, and age‑related methylation drift

When trained on a narrow range of data neural networks may catastrophically fail on 
unseen conditions; these models are said to be brittle. To assess how brittle Cancer-
Net is, we evaluated across 3 “untrained” conditions: metastatic tumors, precancerous 
lesions, and age stratified data. Our results demonstrate that CancerNet performs well 
across all stages of cancer and is robust to age related epigenetic drift.

Metastasis and precancerous lesions

Metastatic cancer is the cause of death in 66% of solid tumor cases [36]. Identification 
of a second cancer occurrence as a metastatic or second primary tumor is important to 
inform treatment. In 3–5% of all cases, cancers of unknown primaries (CUPs) are also 
found [37]; these tumors arise as the metastasis of previously undiscovered primary 
tumors and are the fourth most deadly cancer [37, 38]. Detecting the tissues of origin in 
both of these scenarios can assist in critical treatment decisions. We demonstrate that 
CancerNet is capable of robust and highly accurate metastatic tissue of origin classifica-
tion and this performance is maintained in early cancer samples as well.

To assess CancerNet’s performance on metastatic cancer datasets, we first predicted 
tissue of origin for metastatic samples available in TCGA for BRCA, CESC, COAD, 
HNSC, PAAD, PCPG, PRAD, SARC, SKCM, THCA. The tissues of origin for all these 
metastatic cancers were predicted with an overall unweighted F-measure of 91%.

TCGA data were processed by the different labs and so it is possible that uninform-
ative variance in noise could be introduced due to small but predictable variance 
in human error, reagent preparation or some other part of the sample processing 
pipeline. This is known as batch effect. Batch effect can provide a source of informa-
tion about sample classes that, if learned, could make the model brittle in real world 

A) Squamous Cell Carcinoma Latent Space Distribution: 
Clustering by HPV Status

B) Squamous Cell Carcinoma Latent Space Distribution: 
Clustering by Smoker Status

Fig. 8  Squamous cell carcinoma latent space distribution. Squamous cell carcinoma samples tend to cluster 
in the latent space by their tissues of origin and by A HPV status but not by B smoker status
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applications where the same effect is not present. We used several Gene Expression 
Omnibus (GEO) datasets to assess whether this was the case and further validate the 
model on non-TCGA derived data. These datasets also gave us the opportunity to 
test CancerNet’s performance on cancer stages that were not represented in TCGA, 
such as precancerous lesions. These, along with primary, metastatic, and recurrent 
samples, made possible the assessment of CancerNet’s performance across all stages 
of cancer for several tissue and cancer types.

The first dataset (GEO accession: GSE58999) contained paired metastatic and 
primary tumors in breast cancer patients. CancerNet achieved an unweighted 
F-measure of 99% on this dataset. The second dataset (GEO accession: GSE113019) 
contained triplets of liver samples from each patient, namely, non-tumorous, pri-
mary tumor and recurrent samples, respectively. CancerNet achieved an unweighted 
F-measure of 100% for all primary tumors, 100% for metastatic samples, and 85% 
for the normal samples. The third dataset (GEO accession: GSE38240) contained 4 
normal samples and 8 PRAD metastatic samples; CancerNet attained unweighted 
F-measure of 88% and 93% for these classes, respectively.

The final dataset (GEO accession: GSE67116) consisted of 96 uterine samples that 
were stratified across cancer stages with precancerous endometrial hyperplasia, pri-
mary tumor and metastasis represented in addition to two cell lines. Samples were 
harvested from various tissue sites within the uterus. Because endometrial hyper-
plasia increases a patient’s risk of developing uterine cancer by 30% [39], we used 
these hyperplasia samples as putative cancer samples. We then labeled them as uter-
ine cancer and checked the CancerNet output. CancerNet achieved an unweighted 
F-measure of 85% on this dataset. On all other sites, CancerNet achieved an 
unweighted F-measure of 92%. CancerNet produced an unweighted F-measure of 
66% on hyperplasia samples, predicting them as uterine cancer in most cases. This 
indicates that CancerNet may be capable of cancer detection even when just precan-
cerous lesions are present. However, cancer progression for the hyperplasia patients 
was not documented in the database and therefore, the fidelity of these predictions 
couldn’t be unambiguously established.

To further assess the predictive capability of CancerNet on precancerous samples, 
we used a dataset derived from 55 precancerous ductal carcinoma in  situ samples 
(GEO accession: GSE66313). 40 of these samples later developed malignant forms 
of breast cancer. CancerNet identified the “future” cancer samples (40 of 55) with an 
unweighted F-measure of ~ 91% and “non-future” cancer samples (15 of 55) with an 
unweighted F-measure of ~ 66%, demonstrating that the model is capable of not only 
detecting cancer and its tissue of origin but has a reasonably high level of predictive 
capacity for pre-cancers as well without being explicitly trained to do so.

Age‑related methylation drift

Age-related CpG methylation drift is the normal global hypomethylation associated 
with aging [40]. Some cancer etiologies may be associated with age-related methylation 
drift [40, 41]. CancerNet may be classifying based on background age-related methyla-
tion drift rather than methylation changes relevant to carcinogenesis. To verify that this 
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was not the case, we used a dataset (GEO accession: GSE113904) with 232 age-stratified 
normal colon tissue samples. Samples were from individuals of age ranging from 29 to 
81 years. CancerNet classified all of these samples correctly as normal regardless of age.

Discussion
Here we developed and validated an end-to-end unified model for diagnosing multiple 
cancers. We achieved high performance, 99.6% overall accuracy (F-measure), through 
all cancer stages with robustness to possible confounding factors such as age. Previously 
published neural network classifiers performed approximately as well [18], ~ 96% overall 
accuracy (F-measure), however, they lack a latent space that can encode complex fea-
tures present in the data. Incorporation of latent space architecture lends robustness 
to our model and allows for its possible extensions beyond the initial use demonstrated 
here. In addition, the model presented by Zeng and Xu [18] considers fewer features 
and predicts fewer cancer types. While we lack the tools to fully characterize the trained 
latent space, it can serve as a foundation for future research to develop explainability 
methods and potentially for the discovery of novel combinations of features that may be 
important for cancer etiology.

The overall performance of CancerNet on metastatic samples exceeds that of patholo-
gists; the correct tissue was the first choice 49% of the time by pathologists [42], in con-
trast, correct tissue was the first choice 91% of the time by CancerNet when evaluated 
on TCGA metastatic cancer samples. CancerNet also substantially outperformed other 
models that perform cancer tissue of origin classification based on DNA methylation 
[15, 16] (for all 3 cancer types and a normal type investigated by CancerLocator [16] and 
12 of 14 cancer types investigated by a model based on random forests [15], Additional 
file 1: Table S2). Strong results in both the metastatic and normal categories demonstrate 
that the model has learned reliable cancer signatures and is capable of tissue of origin 
detection in cancers that have undergone metastasis. Precancerous lesion classification 
does not fall neatly under the classification task for which CancerNet was trained. Due 
to the transitional nature of precancerous lesions, they could be classified as normal tis-
sue, or predicted as cancerous, which they may become. The performance of CancerNet 
on precancerous samples is promising and is likely the result of the latent space prior for 
the classification task. If more precancerous samples for which the progression is known 
are made available, it may then be possible to add a predictive task to the model and 
train the model for that specific task. Together, the performance across the cancer spec-
trum is consistent and demonstrates the robustness of CancerNet.

Where efforts have been made to focus on cancer tissue-of-origin detection, some 
studies, surprisingly, have done so without determining whether a sample is cancerous 
or not. Without non-cancerous classes incorporated within a model framework, the 
model may actually learn tissue specific signatures due to the retention of cell specific 
methylation signatures even in carcinogenesis. This approach may thus lead to a model 
learning normal tissue signatures rather than cancer signatures. Therefore, it is pertinent 
to include normal samples to allow the model to learn to discriminate between normal 
tissue specific signatures and tumor tissue specific signatures. We, therefore, included 
normal samples in CancerNet training and classification and ensured that CancerNet’s 
performance is not an artifact of tissue specific signatures. Assessment on different 
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datasets demonstrates that CancerNet is able to robustly diagnose cancer and detect the 
cancer tissue of origin as well.

Robust tissue level classification is a huge step forward for early cancer detection. 
Indeed, many cancers have no early diagnostic whatsoever. The clinical use of such a 
model will benefit from inclusion of information about tumor evolution and tumor sub-
types. Such information would aid in treatment decisions and prognosis determination. 
It is our belief that clinical diagnostic is not the only significant use of such a model. 
Research in cancer biology may be aided by investigating the learned features in the 
model’s latent space. Such features may illuminate complex interactions between multi-
ple mutations and methylation dysregulation in a given cellular context. This could pro-
vide valuable information about new drug targets. The value of this information coming 
from a unified model cannot be understated as it provides the opportunity to find poten-
tial targets present in multiple cancers and subdivide tumors in feature space rather than 
in anatomical space allowing discernment of yet unknown aspects of the tumor micro-
environment and its effects on oncogenic pathways by way of epigenetics.

Detecting cancer in asymptomatic patients or screening population for cancers 
requires minimally invasive procedures. Current methods of screening body fluids for 
biomarkers have been proposed for use with circulating cell-free DNA, cfDNA [43–46]. 
Several studies have shown that methylation persists on the fragments of circulating 
tumor DNA (ctDNA) and is stable enough to provide cancer diagnosis and tissue of ori-
gin classification [47–51]. Several key steps must be taken to adapt CancerNet for use 
with ctDNA. Primarily the number of CpG islands present in a sample at different stages 
must be assessed. If the model relies on far more features than can feasibly be found in a 
typical sample, then the model must be adapted to that reality. Additionally, circulating 
cfDNA may come from multiple sources. Presumably the majority of DNA fragments 
could come from cells such as macrophages or other normal tissues with good access to 
the blood that are turned over at a fair rate. Filtering samples to identify the ctDNA frag-
ments of interest is a necessary preprocessing step. We expect technological advances 
in cfDNA processing will make possible non-invasive, robust early diagnosis of cancers 
and tissue of origin determination using emerging tools from the field of artificial intel-
ligence such as CancerNet.
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