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Responses of LAI to rainfall explain 
contrasting sensitivities to carbon 
uptake between forest and non-
forest ecosystems in Australia
Longhui Li1, Ying-Ping Wang   2,3, Jason Beringer4, Hao Shi1, James Cleverly   1, Lei Cheng   5, 
Derek Eamus   1, Alfredo Huete1, Lindsay Hutley   6, Xingjie Lu2,3, Shilong Piao7, Lu Zhang   5, 
Yongqiang Zhang   5 & Qiang Yu1,8

Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the 
increasing trend and interannual variation of land carbon uptake over the last three decades, yet 
the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems 
in Australia, we found the the correlation between gross primary production (GPP) and ecosystem 
respiration (Re) was significant for non-forest ecosystems, but was not for forests. In non-forest 
ecosystems, both GPP and Re increased with rainfall, and, consequently net ecosystem production 
(NEP) increased with rainfall. In forest ecosystems, GPP and Re were insensitive to rainfall. Furthermore 
sensitivity of GPP to rainfall was dominated by the rainfall-driven variation of LAI rather GPP per unit 
LAI in non-forest ecosystems, which was not correctly reproduced by current land models, indicating 
that the mechanisms underlying the response of LAI to rainfall should be targeted for future model 
development.

Recent studies have demonstrated that both the trend and inter-annual variation (IAV) of terrestrial carbon 
uptake over the past three decades were dominated by global non-forest (not covered with forest) ecosystems, 
and that Australian non-forest ecosystems (Types I and II as shown in Fig. 1 include grassland, savanna, woody 
savanna, shrubland and cropland) accounted for 57% of global terrestrial carbon uptake during the very wet year 
of 2010/20111,2. These results are supported by remote sensing based estimates of vegetation biomass change over 
this period (estimated to be 0.05 Pg C year−1) in semi-arid savannas and shrublands of Australia and southern 
Africa3. Compared with temperate and tropical forest ecosystems in the world, these non-forest ecosystem gen-
erally are much less productive, and their significant contributions to both the trend and IAV of global terrestrial 
carbon uptake were unexpected. The underlying mechanisms driving this large contribution are not well resolved.

Net ecosystem production (NEP) is a small difference between two large fluxes, namely gross primary produc-
tion (GPP) and ecosystem respiration (Re). Identifying the main drivers of these component carbon fluxes (GPP 
and Re) is critical for understanding the global carbon cycle, predicting future trajectories for atmospheric CO2 
concentration and therefore climate change. At an inter-annual scale, variation of NEP substantially depends on 
the variability of climatic drivers and the different responses of GPP and Re to those drivers4. GPP was found to 
be more sensitive to drought events than Re

5. Globally, annual rainfall and mean annual temperature drive much 
of the inter-annual variability in GPP and Re

6–8, particularly for non-forest ecosystems. For example decrease 
in rainfall after 2011 resulted in the the savanna ecosystems in central Australia switching from a strong sink to 
a weak source of C9. Furthermore, previous studies found that the net ecosystem carbon balance of Australian 
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non-forest ecosystems was principally driven by year-to-year fluctuations in rainfall via changes in both ecosys-
tem GPP and Re

10–12.
Australia is the driest permanently inhabited continent on Earth, and is dominated by non-forest ecosys-

tems. To identify the key mechanisms controlling the IAV of NEP for Australian terrestrial ecosystems, we ana-
lyzed carbon fluxes from 23 Australian eddy flux sites, which together covered all major Australian ecosystem 
types13. This study will identify the key mechanisms causing interannual variability in terrestrial ecosystem C 
balances of Australian forest and non-forest ecosystems, and assess whether those mechansims are correctly 
represented by some of the most advanced global land models. To achieve the second aim, we also compared the 
observed variances of log-transformed GPP, LAI, GPP/LAI and the covairnace between log-transformed LAI 
and GPP/LAI with the simulations from four process-based ecosystem models from the TRENDY (Trends in net 
land-atmosphere carbon exchange) compendium14.

Results
Contrasting sensitivities of non-forest and forest ecosystems to rainfall.  We first calculated the 
anomalies of annual flux variables (ΔGPP, ΔRe and ΔNEP) by subtracting each annual mean value from the 
multi-annual mean of each ecosystem type (non-forest or forest ecosystem, see Table 1). The range of ΔGPP 
and ΔRe anomalies of the non-forest ecosystems were 2.22 and 1.47 times larger than their respective values 
of forest ecosystems (Fig. 2a). This was despite the fact that the range in precipitation anomalies for non-for-
est (−800~1400 mm) was smaller thant that for forest (−1200~4000 mm). The linear correlation between ΔRe 
and ΔGPP anomalies was significant for the non-forest ecosystems (ΔRe = 0.76ΔGPP, r2 = 0.93, P < 0.001), but 
not significant (we took P < 0.05 as significant) for the forest ecosystems (ΔRe = 0.2ΔGPP, r2 = 0.004, P = 0.29, 
Fig. 2a). ΔNEP were significantly and positively correlated with ΔGPP for both non-forest (ΔNEP = 0.24ΔGPP, 
r2 = 0.55, P < 0.001) and forest (ΔNEP = 0.8ΔGPP, r2 = 0.36, P < 0.001) ecosystems (Fig. 2b). ΔNEP was sig-
nificantly and positively correlated with ΔRe for non-forest ecosystems (ΔNEP = 0.22ΔRe, r2 = 0.29, P < 0.001) 
but negatively correlated with ΔRe for forest ecosystems (ΔNEP = −0.82ΔRe, r2 = 0.42, P < 0.001) (Fig. 2c). 
Therefore GPP and Re are positively correlated, and they together affect the internnual variation of NEP in 
non-forest ecosystems. However GPP and Re are not significantly correlated, and they affect NEP independently 
in forest ecosystems (Fig. 2).

The different correlations among the component carbon fluxes between non-forest and forest ecosystems are 
important for identifying the different key driver of interannual variations of NEP. Among all climatic variables 
in Australia, coefficient of variation of annual rainfall is greatest. Both ΔGPP and ΔRe were positively and sig-
nificantly correlated with Δrainfall (r2 = 0.58, P < 0.001 for ΔGPP and r2 = 0.60, P < 0.001 for ΔRe, Fig. 3a) in 
non-forest ecosystems but not significantly in forest ecosystems. Sensitivity of GPP to rainfall anomalies (slope 
of linear regression equal to 0.96 gC m−2 mm−1 H2O) for the non-forest ecosystems was larger than that for Re 
(0.78 gC m−2 mm−1H2O), although the difference was not statistically different (P = 0.09).

Because of the systematically greater sensitivity of ΔGPP to rainfall than ΔRe to rainall and high correla-
tion between ΔGPP and ΔRe for non-forest ecosystem, ΔRe/ΔGPP is relatively conservative (0.79 ± 0.54), and 
ΔNEP is also found to increase significantly with an increase in rainfall for non-forest ecosystems (see Fig. 3a). 
Therefore the non-forest ecosystems are stronger carbon sink (more positive NEP) when annual rainfall is above 
the multi-year mean, (see Fig. 3a). For forest ecosystems, we found no significant correlation between ΔGPP, or 

Figure 1.  Distribution and definition of climate (Köppen-Geiger) and biome (IGBP land cover) space across 
Australia (total area = 7.56 × 106 km2). Type I is non-forest and semi-arid ecosystems (77.6% of total area). 
Type II is non-forest and not semi-arid (18.8%). Type III is forested ecosystems and not semi-arid (3.5%). 
Combination of Type I and II is defined as non-forest ecosystems in our study. Solid points are locations of the 
23 flux sites across Australia. Map was drawn using R version 3.2.4 (http://www.R-project.org/).

http://www.R-project.org/
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ΔRe or ΔNEP with rainfall (ΔGPP = −0.05ΔRainfall, r2 = 0.04, P = 0.13 and ΔRe = 0.05ΔRainfall, r2 = 0.03, 
P = 0.16, see Fig. 3b), and the ratio of ΔRe/ΔGPP is quite variable (−0.34 ± 1.89), therefore NEP (carbon sink or 
source) was independent of inter-annual variation in rainfall.

The response of canopy LAI to rainfall anomalies.  Because of the high and positive correlation 
between GPP and Re, and GPP and NEP for the non-forest ecystems, we consider that Re is largely limited by 
carbon substrate and that NEP is largely driven by the variation of GPP for non-forest ecosystems. To analyse 
the variation of GPP for both non-forest and forest ecosystems, we further decompose GPP into GPP per unit 
LAI and LAI to determine which component, GPP/LAI or LAI dominates the variation of GPP. For non-forest 
ecosystems by normalizing each variable within its range. That method was previously used to study NEP anoma-
lies1. We found that GPP/LAI and LAI was not significantly correlated (r2 = 0.009, P = 0.18), and variation of GPP 
was largely related to both LAI (with a slope of 0.88, r2 = 0.75, P < 0.001) and GPP/LAI (with a slope of 0.86 and 
r2 = 0.33, P < 0.001, see Table 2). In contrast, neither GPP/LAI nor LAI per se were significantly correlated with 
GPP anomalies (r2 = 0, P = 0.27 for GPP/LAI and r2 = 0, P = 0.33 for LAI, r2 = 0.78, P < 0.001 for GPP/LAI and 
LAI, see Table 2), as a result of the significant and negative correlation between GPP/LAI and LAI (with a slope of 
−0.84 and r2 = 0.78, P < 0.001, see Table 2) for forest ecosystems. Furthermore, rainfall anomalies explained 49% 
of LAI anomalies for non-forest ecosystems (P < 0.001, see Table 2). Because the sensitivity of LAI to rainfall was 
large and significant for non-forest ecosystems (slope = 0.84, P < 0.001) but not significant in forest ecosystems 
(slope = 0.09, P = 0.53), we conclude that the main mechanism controlling inter-annual variations of GPP in 
non-forest ecosystems is the rainfall driven large variation in canopy LAI and to less extent in GPP/LAI.

Comparing the observed and simulated mechanisms by the TRENDY models.  To quantify the 
contributions of GPP/LAI and LAI to the variance of GPP, we used the log-tranformation, ie log(GPP) = log(GPP/
LAI) + log(LAI). Therefore var(log(GPP)) can be further decomposed into the contributions by the variations of 
log(GPP/LAI) and log(LAI) and their covariance using the observations from 23 flux towers in Australia or the 
four TRENDY14 model simulations for both non-forest and forest ecosystems in Australia.

Site Lon (°) Lat (°) Tmean range (°C) Prcp range (mm) LAI (m2 m−2) IGBP type Ecosystem type OP

Adelaide River 131.18 −13.08 26.7–26.9 1778–1935 1.04 SAV Non-forest 2007–2008

Alice Springs 133.25 −22.28 21.7–24.3 143–415 0.30 WSA Non-forest 2011–2013

Calperum 140.59 −34.00 17.3–18.8 211–511 0.44 OSH Non-forest 2010–2016

Cow Bay 145.45 −16.10 23.5–24.5 2494–5566 4.18 EBF Forest 2009–2015

Cumberland 150.72 −33.62 18.0–18.8 733–977 1.36 WSA Non-forest 2013–2016

Daly Pasture 131.32 −14.06 24.4–26.0 1002–1704 1.50 GRA Non-forest 2008–2012

Daly Uncleared 131.39 −14.16 25.7–27.6 759–1602 1.21 SAV Non-forest 2007–2016

Dry River 132.37 −15.26 25.1–28.2 694–1449 1.16 SAV Non-forest 2008–2012

Gingin 115.71 −31.38 17.3–20.0 525–667 0.89 WSA Non-forest 2011–2015

GWW 120.65 −30.19 18.7–20.1 208–379 0.38 WSA Non-forest 2013–2016

RDMF 132.48 −14.56 26.5–26.5 791–791 1.04 CRO Non-forest 2012–2012

Riggs Creek 145.58 −36.65 15.0–16.1 92–552 1.26 GRA Non-forest 2011–2014

Robson Creek 145.63 −17.12 19.1–19.7 2346–2387 4.53 EBF Forest 2014–2015

Howard Springs 131.15 −12.50 25.7–28.3 813–2286 1.53 WSA Non-forest 2001–2016

Samford 152.88 −27.39 18.9–19.7 672–1908 1.96 GRA Non-forest 2010–2015

Sturt Plains 133.35 −17.15 24.2–27.8 404–992 0.49 GRA Non-forest 2008–2016

Ti Tree 133.64 −22.29 23.0–23.7 366–674 0.32 WSA Non-forest 2013–2016

Tumbarumba 148.15 −35.66 7.4–10.6 424–1502 4.17 EBF Forest 2001–2015

Wallaby Creek 145.19 −37.43 10.3–11.3 531–2384 3.80 EBF Forest 2006–2011

Warra 146.65 −43.10 10.0–10.2 1047–1291 1.74 EBF Forest 2014–2015

Whroo 145.03 −36.67 15.4–16.1 912–491 0.94 WSA Non-forest 2012–2016

Wombat 144.09 −37.42 11.0–12.0 694–1242 4.00 EBF Forest 2010–2015

Yanco 146.29 −34.99 16.4–17.9 343–1119 0.64 CRO Non-forest 2013–2016

Table 1.  Information about 23 eddy flux tower sites from OzFlux network (http://www.ozflux.org.au, see 
Beringer et al.13). IGBP biome types savanna (SAV), woody savanna (WSA), shrubland (OSH), grassland 
(GRA), evergreen broadleaf forest (EBF) and crop land (CRO). Ecosystem types defined in this study are 
non-forest or forest ecosystems (see Fig. 1). Ranges of mean annual surface air temperature (Tmean in °C) and 
annual precipitation (Prcp in mm year−1) over the respective observation period (OP). Summary information 
about 23 eddy flux tower sites from the OzFlux network (http://www.ozflux.org.au, see Beringer et al.13). IGBP 
biome types savanna (SAV), woody savanna (WSA), shrubland (OSH), grassland (GRA), evergreen broadleaf 
forest (EBF) and crop land (CRO). Ecosystem types defined in this study are non-forest or forested ecosystems 
(see Fig. 1). Ranges of mean annual surface air temperature (Tmean in °C) and annual precipitation (Prcp in mm 
year−1) over the respective observation period (OP). LAI is annual mean leaf area index derived from MODIS.
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On average the TRENDY models failed to reproduce the dominant role of LAI in controlling GPP IAV for 
non-forest ecosystems (Fig. 4a) and overestimated the variances of log(LAI), log(GPP/LAI) and their covariance 
for forest ecosystems by more than 100% (Fig. 4b). Furthermore, the observed covariance between log(LAI) and 
log(GPP/LAI) was positive, and only contributed about 15% of the variance of log(GPP) in non-forest ecosys-
tems, whereas the covariance of the modelled (log(GPP/LAI) and log(LAI) is negative and nearly as large as the 
total variance of log(GPP) and log(LAI) for the non-forest ecosystems (Fig. 4a). As a result, the variance of the 

Figure 2.  The relationships between annual anomalies of carbon flux anomalies from from the mean of all 
sites for each ecosystem type in Australia. (a) The correlation between gross primary production (GPP) and 
ecosystem respiration (Re). (b) The correlation between net ecosystem production (NEP) and GPP. (c) The 
correlation between NEP and Re. Anomalies were calculated as the annual fluxes minus the mean value of 
annual fluxes at all sites for each ecosystem type. Red and green solid circles denoted the flux anomalies for non-
forest and forest ecosystems, respectively. The solid lines (red for non-forest and green for forest) are the best-
fitted linear regression equations with the shaded area for 95% confidence intervals.
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modelled log(GPP) is only 9% of the variance of the observed log(GPP). The contribution of the covariance of 
the observed log(GPP/LAI) and log(LAI) to the variance of the observed log(GPP) is different, i.e. negative for 
non-forest ecosystems and positive for forest ecosystems. This observed difference between non-forest and forest 
ecosystem was not correctly simulated by the TRENDY models. (see Fig. 4).

Discussion
Most Australian non-forest ecosystems are shrublands and savannas that together significantly contributed to the 
IAV of global land carbon uptake over the last three decades1. Recent studies demonstrated that the Australian 
non-forest ecosystems are well adapted to the climate conditions with highly variable rainfall15,16. This study has 
further demonstrated that it is the rapid response of canopy LAI, and to much less extent the response of GPP/
LAI that is the dominant the large contribution of Australian non-forest ecosystems to global land sink IAV. It can 
be very difficult to quantify the contributions of GPP/LAI and LAI to the variance of GPP if GPP/LAI and LAI are 
strongly correlated, as for the forest ecosystems in this study. For non-forest ecosystems, the correlation between 
GPP/LAI and LAI is quite weak (r2 = 0.009, p = 0.18), then decomposing GPP as the product of GPP/LAI and LAI 
allows us to identify whether GPP/LAI or LAI dominate the variation of GPP.

The dominant role of rainfall in controlling GPP of non-forest ecosystems in Australia was consistent 
with previous studies on semiarid ecosystems in Africa17–20 and South America21. Rainfall IAV in non-forest 

Figure 3.  Responses of gross primary production (GPP) or ecosystem respiration (Re) anomalies to rainfall 
anomalies for non-forest (a) and forest (b) ecosystems in Australia. Open circles and triangles represent 
GPP and Re anomalies, respectively. The dashed and dotted lines represent the best-fitted linear regressions 
between the anomalies of annual GPP or Re and rainfall anomalies, and the red or green regions represent 95% 
confidence intervals. Ecosystems tended to be source when annual rainfall was below the multi-year mean, or a 
sink otherwise. Site measured rainfall were used in the analysis.

Correlation Ecosystem type Slope r2 P value

GPP ~ LAI
Non-forest 0.88 0.75 <0.001

Forest 0.19 0 0.33

GPP ~ GPP/LAI
Non-forest 0.86 0.33 <0.001

Forest 0.22 0 0.27

GPP/LAI ~ LAI
Non-forest 0.09 0.009 0.18

Forest −0.84 0.78 <0.001

LAI ~ rainfall
Non-forest 0.84 0.49 <0.001

Forest 0.09 −0.02 0.53

GPP/LAI ~ rainfall
Non-forest 0.27 0.1 <0.001

Forest −0.14 0 0.3

Table 2.  Statistics of the best-fitted linear regression between GPP anomalies and LAI or GPP/LAI anomalies 
and between GPP/LAI and LAI anomalies, and between LAI or GPP anomalies per unit of LAI (GPP/LAI) 
and rainfall anomalies. All variables (x) were normalised using the formula (x − xn)/(xm − xn), where xm and 
xn represent the maximum and minimum values of the variable x. Statistics of the best-fitted linear regression 
between GPP anomalies and LAI or GPP/LAI anomalies, and between LAI or GPP anomalies per unit of LAI 
(GPP/LAI) and rainfall anomalies. All variables (x) were normalized using the formula (x − xn)/(xm − xn), where 
xm and xn represent the maximum and minimum values of the variable x.
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ecosystems (mostly in semi-arid or arid regions) are typically proportionally larger than those experienced in for-
est ecosystems (in wet regions)22 and we have shown that this also is true at the global scale using Tropical Rainfall 
Measuring Mission (TRMM) data for 2001–2013 (Fig. S1). Large IAV of rainfall in Australia resuls from strong 
interactions amongst El Niño–southern oscillation, the Indian Ocean dipole and the southern annular mode9,23,24, 
and will likely intensity under future warmer conditions25. Therefore the non-forest ecosystems in Australia and 
other parts of the world will likely continue playing a significant role in the global carbon cycle and interannual 
variation in the growth rate of atmospheric CO2 concentration into the future.

In Australian non-forest ecosystems, both GPP and Re were highly sensitive to rainfall, which drove the eco-
system towards being a carbon sink in wetter years, and conversely, a source in drier years. The non-forest eco-
systems can respond to large rainfall events during dry period by rapidly initiating leaf flush and leaf expansion 
(hence increased LAI), and increasing soil N mineralisation to supply nutrients. As result, photosynthesis (GPP) 
is enhanced. Rainfall-induced increases in canopy LAI and GPP also increase ecosystem autotrophic respiration 
(both growth and maintenance respiration). Furthermore increases in available soil moisture and soil nutrients 
arising from increased soil mineralizationstimulate heterotrophic respiration (soil microbial respiration)26. This 
interpretation is clearly supported by the strong correlation between annual Re and rainfall in the non-forest 
ecosystems (Fig. 2b), and is also consistent with observations globally10–12. A previous analysis of observations 
from 238 flux sites found that GPP was about 50% more sensitive to a drought event than Re

5, and that difference 
is larger than the observed from the non-forest systems in this study. However, if only the flux data for OSH (open 
shrubland) are used, the difference in the responses of GPP and Re to drought as estimated from the global dataset 
by Schwalm et al.5 is quite similar to our finding here. For forest ecosystems, Schwalm et al. found a very weak and 
no sensitivity of GPP or Re to drought, which is also consistent with our results (Fig. 3b).

In Australia, non-forest ecosystems encompass almost all of the mesic savanna and shrubland ecosystems, 
and these ecosystems have higher levels of available N than forest ecosystems, but only when soil is wet26. This 
rainfall-driven fluctuation in available soil N, together with increased soil moisture during wet periods, result in a 
tight coupling between GPP, Re and NEP. As a result, the NEP of the grassland component in savanna and shrub-
land ecosystems is highly dependent on rainfall9. In contrast, forest ecosystems in Australia occur in regions with 
less seasonally varying and higher rainfall and do not respond IAV of rainfall as strongly as non-forest ecosystem. 
In addition, forests have deep root systems which access deep soil moisture reserves and/or groundwater and 
hence maintain moderate LAI and GPP during relatively dry years27–29. Further, forests have multi-annual leaf 
life spans30, which might account for the lack of response to IAV in rainfall. That is why there was no significant 
correlation of rainfall with LAI, GPP nor NEP for the Australian forest ecosystems.

Canopy LAI is determined by not only climatic variables (e.g. rainfall) but alo likely the increasing atmos-
pheric CO2. FACE (Free-Air CO2 Enrichment) experiments have found that canopy LAI increased under higher 
CO2 for some forest species31. Modelling studies also concluded that increase in CO2 reduced stomatal con-
ductance and caused increase in GPP and LAI, particularly in water limited environments32. Limited by short 
time span, effects of CO2 change on canopy LAI and GPP were not considered in our analyses here, and will be 
taken into account in future studies. In addition, fire disturbance can be another important factor influencing 
Australian net ecosystem exchange and inter-annual variation at multiple scales from leaf to landscape33. While 
the significantly different responses of carbon fluxes to rainfall have been identified between forest and non-forest 
ecosystem in Australia, interaction of rainfall variation with other elements of the ecosystem (e.g. herbivory) and 
disturbance (e.g. fire) have not been explored here, and should be considered when accounting Australian terres-
trial net biome exchange and their inter-annual variation34.

The four state-of-the-art process-based global land models from TRENDY did not correctly simulate the dif-
ferent responses of LAI to interannual variation of rainfall between forest and non-forest ecosystems, they were 

Figure 4.  Comparisons of the variances of log-transformed GPP, LAI, GPP/LAI and the covariance between 
the latter two between measurements (EC) and the simulations by the TRENDY models (TRENDY) for non-
forest (a) and forest ecosystems in Australia.

http://S1
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unable to predict correctly the dominated role of LAI in contronling GPP IAV for non-forest ecosystems, and 
overestimated the magnitudes of IAV of log-transformed GPP, LAI, GPP/LAI and the covariance between the 
latter two variables for Australian forest ecosystems. Importantly, the TRENDY model simulated similar covari-
ance betweeon log(LAI) and log(GPP/LAI) across both non-forest and forest ecosystems, whereas the observed 
covariance are different in sign between these two types of ecosystems (Fig. 4). This suggests that state-of-the-art 
process-based ecosystem models as currently structured, need further improvement for forest ecosystems. 
Explaining the differential responses of ecosystem production to canopy dynamics and rainfall anomalies 
amongst non-forest and forest ecosystems should be targeted as a high priority in future model improvement, 
particularly when these models are used to project the trend and IAV in terrestrial ecosystem carbon status.

Methods
Eddy covariance flux observations.  We used observations from 23 flux tower sites within the OzFlux 
network13 (http://www.ozflux.org.au). This dataset consists of 126 site-years data across most major ecosystems 
types in Australia. All flux data were gap-filled using an Artificial Neural Network (ANN) model35. An ANN 
model was also used to estimate daytime Re from night-time observations of ecosystem respiration. GPP was 
calculated as the difference between NEP and Re, but these are not independently derived. Further information 
about the 23 flux towers is provided in Table 1. Original field-based flux data were at a half-hour time-step, and 
were aggregated to annual values f all correlation analysis.

TRENDY simulations.  Four models (Table 3), with available LAI and carbon fluxes (GPP, Re and NEP) from 
the latest version of the TRENDY project14 were used in this study. The four models used were CABLE36, CLM37, 
LPJ38, and VISIT39 (Table 2). We used the S2 simulations wherever a time-invariant pre-industrial land use mask40 
was applied.

TRENDY model results were used to simulate how carbon fluxes of terrestrial ecosystems respond to changes 
in climate and atmospheric concentrations of CO2. All four models were operated at a spatial resolution of 
0.5° × 0.5°, and covered the period 1901 to 2013. To match the period of flux tower measurements, model results 
during 2001–2013 were used in this study.

Satellite datasets.  LAI data were obtained from the MOD15A2.005 product of 0.05° × 0.05° spatial resolu-
tion and monthly time resolution (http://e4ftl01.cr.usgs.gov/MOLT/MOD15A2.005/), and aggregated to yearly 
value for analysis. A 3 km by 3 km window centred on the flux tower of each site was used to approximate the 
footprints of flux towers. Missing values of LAI were filled using the singular spectrum analysis (SSA) method41.

Classification of ecosystems.  The MODIS land cover type product (http://e4ftl01.cr.usgs.gov/MOTA/ 
MCD12C1.051) at a spatial resolution of 0.05° by 0.05° in 2012 was used for classifying the 14 sites into dif-
ferent ecosystem types. First, we classified Australian ecosystems into six biomes based on the MODIS IGBP 
land cover map for 2012. These six biomes are: evergreen broadleaf (EBF), cropland (CRO), grassland (GRA), 
savanna (SAV), woody savanna (WSA) and shrubland (OSH). Then all EBF were defined as forest ecosystems 
and non-EBF biomes were defined as non-forest ecosystems. Water bodies, wetland, urban and other built-up 
areas, bare or sparsely vegetated land areas were ignored. Our defined non-forest ecosystems (Type I and II, 
Fig. 1) had an 81% overlap area with those ecosystems in arid or semi-arid climatic zones as defined using the 
Köppen-Geiger method42 (Fig. 1).

Climate data.  Monthly rainfall data at a spatial resolution of 0.05° by 0.05° were obtained from the Australian 
Bureau of Meteorology (http://www.bom.gov.au/jsp/awap/). Annual rainfall was calculated as the sum of monthly 
rainfall.
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