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Borrelia burgdorferi sensu lato species complex is capable of establishing persistent 
infections in a wide variety of species, particularly rodents. Infection is asymptomatic or 
mild in most reservoir host species, indicating successful co-evolution of the pathogen 
with its natural hosts. However, infected humans and other incidental hosts can develop 
Lyme disease, a serious inflammatory syndrome characterized by tissue inflammation 
of joints, heart, muscles, skin, and CNS. Although B. burgdorferi infection induces 
both innate and adaptive immune responses, they are ultimately ineffective in clearing 
the infection from reservoir hosts, leading to bacterial persistence. Here, we review 
some mechanisms by which B. burgdorferi evades the immune system of the rodent 
host, focusing in particular on the effects of innate immune mechanisms and recent 
findings suggesting that T-dependent B cell responses are subverted during infection. 
A better understanding of the mechanisms causing persistence in rodents may help to 
increase our understanding of the pathogenesis of Lyme disease and ultimately aid in 
the development of therapies that support effective clearance of the bacterial infection 
by the host’s immune system.

Keywords: immune evasion, immune exhaustion, germinal center, complement inhibition, persistent infection, 
lyme disease

iNTRODUCTiON

Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that infects a wide 
variety of mammals, birds, and reptiles. It includes, most notably, Borrelia burgdorferi sensu 
stricto (Borrelia burgdorferi), Borrelia afzelii, and Borrelia garinii (1), the three most prevalent 
causative agents of Lyme disease in humans (2). According to CDC reports, Lyme disease caused 
by B. burgdorferi is currently the most common vector-borne disease in the United States (3). 
In Europe, infections with B. afzelii and B. garinii are more prevalent than those with B. burgdor-
feri. In Asia, of the three primary disease-causing species, only B. afzelii and B. garinii are present 
(4). Other Borrelia species, including Borrelia bavariensis and Borrelia spielmanii, can also cause 
infection and disease in humans (5). Thus, B. burgdorferi sensu lato infections are an important 
global public health concern.

The bacteria are transmitted between hosts by ticks of the genus Ixodes. B. burgdorferi infection  
is therefore only common in areas where these vector species thrive. Deer mice (Peromyscus  
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leucopus) are often considered the major reservoir host in the 
United States (6). In mice, spirochetes form persistent, non-
resolving infections (7). However, these infections do not cause 
noticeable manifestations of disease in P. leucopus or certain 
common laboratory strains of mice [Mus musculus] (8–10). This 
suggests that B. burgdorferi has developed immune evasion strat-
egies that allow it to persist in the face of a mammalian immune 
system. Such mechanisms may be the products of co-evolution 
with reservoir hosts, minimizing host disease manifestations 
while maximizing bacterial growth and transmission.

Laboratory mouse studies have been used to better understand 
B. burgdorferi pathogenesis in humans (11), just as they have for 
many other disease processes. They also provide an opportunity 
for better understanding the amplification and spread of B. burg-
dorferi in wild rodents, which in turn affects the infection risk 
of humans in endemic areas. Furthermore, B. burgdorferi in the 
mouse is an excellent model system for better understanding the 
mechanisms by which certain pathogens can achieve persistence 
in immunocompetent hosts (12, 13). Here, we summarize known 
mechanisms by which B. burgdorferi circumvents innate and 
adaptive immune responses to establish lifelong persistence in 
the mouse host. We examine interference with both the innate 
and adaptive immune systems. We emphasize bacterial persis-
tence over disease and tissue pathology, because persistence of B. 
burgdorferi in wild rodents is a prerequisite for human infections.

eviDeNCe FOR CO-evOLUTiON OF 
B. burgdorferi wiTH veRTeBRATe HOSTS 
AND vARiATiON iN HOST ReSPONSeS

A reservoir host is one in which a particular pathogen can 
survive with minimal affect to that host. The pathogen can 
subsequently be transmitted to other species that may experi-
ence ill effects. Incidental, or “dead-end,” hosts do not facilitate 
transmission of the pathogen to another host, but often experi-
ence manifestations of disease. This is the case for B. burgdorferi, 
where the reservoir hosts, including wild rodents [Peromyscus 
spp. (14, 15)] and passerine birds [canary finches (16)], are 
largely asymptomatically infected, whereas incidental hosts 
like humans can sometimes suffer a severe array of diseases, 
including arthritis, carditis, and skin and neurological disease 
manifestations (11, 17).

As outlined earlier, Borrelia species require both an inverte-
brate vector (ticks of the Ixodes genus) and a vertebrate host to 
complete their life cycle (11). Many ecological and evolutionary 
factors affect prevalence, persistence, and disease development by 
Borrelia infections in both vector and host. These factors include 
population dynamics, dispersal/migration, and evolution of all 
three players, as well as environmental landscape and climate 
(4). Further complicating the situation is the fact that both spiro-
chetes (B. burgdorferi sensu lato) and the vectors (Ixodes ricinus 
species complex) are part of large species complexes, which have 
their own unique evolutionary patterns (4). Therefore, individual 
effects on Borrelia persistence can be difficult to untangle.

The existence of co-evolution with reservoir, but not inci-
dental hosts like humans, remains to be rigorously tested with 

population genomics approaches (18). However, current evidence 
supports this hypothesis. For example, differential resistance to 
complement, an important and evolutionary conserved innate 
immune defense mechanism, has been suggested to drive host 
specializations of various Borrelia species to mammals, birds, and 
reptiles (19). In addition, there is evidence that selection acts on 
B. burgdorferi, within the reservoir host, to generate sequence 
diversity and polymorphisms relevant to virulence (20).

Co-evolution of host and pathogen must achieve a balance 
between the induction of immune mechanisms that reduce patho-
gen burden and pathogen-induced diseases, without clearing the 
infection. How this is achieved is incompletely understood. The 
continued presence of the pathogen in its host should provide 
ongoing triggers for both innate and adaptive immune response 
induction. Current research suggests that the immune system has 
important immune checkpoints that regulate immune responses, 
leading to a state of “immune exhaustion” during chronic infec-
tions. The process of immune exhaustion was first identified 
in chronic LCMV infection (21), leading to the discovery of 
distinct functions manifested in distinct transcriptional profiles 
of “exhausted T cells” in both mice and humans in response to a 
variety of chronic infections (22–25). The state of immune exhaus-
tion goes beyond suppression of the T cell compartment alone, 
encompassing alterations in both innate and adaptive immune 
responses [reviewed in Ref. (26)]. While immune exhaustion 
has not been studied in the context of persistent infection with 
B. burgdorferi, it is conceivable that this process is also involved 
in the establishment of Borrelia persistence in its natural reser-
voir host. Indeed, mounting evidence suggest that the adaptive 
immune response is suppressed during B. burgdorferi infection.

eviDeNCe OF B. burgdorferi 
PeRSiSTeNCe

Persistent infection of reservoir hosts increases the odds that 
B. burgdorferi will be passed on to new hosts. It is challenging 
to distinguish between high prevalence of reinfection and/or 
true persistence occurring in the natural habitat of a reservoir 
host, such as the white-footed mouse P. leucopus (14, 15, 27). 
Experimental infections of P. leucopus have confirmed, however, 
that persistence of B. burgdorferi can occur, at least in laboratory 
settings (20). Experimental evidence also shows that B. burgdor-
feri persists in various laboratory mouse strains, either with or 
without disease manifestations, depending on the strain used (7, 
8). Persistence after experimental infection was also observed 
in chipmunks (28), dogs (29), canaries (16), and non-human 
primates (30, 31). Figure  1 summarizes mechanisms that can 
support Borrelia persistence.

iNTeRFeReNCe OF B. burgdorferi wiTH 
THe iNNATe iMMUNe SYSTeM

Ticks provide the first defenses for B. burgdorferi against the 
innate immune system of the mammalian host. B. burgdorferi 
is transmitted from the tick to the mammalian host within 
<16–72 h after onset of tick feeding (32), where it encounters 
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FigURe 1 | An overview diagram of factors contributing to persistence of Borrelia burgdorferi in rodent hosts. Shown are eight bacterial characteristics 
and mechanisms that B. burgdorferi may use to establish persistence in the rodent host: Spirochete shape (38, 123), antigenic variation and changes in gene 
expression (77, 83, 89), plasminogen binding and destruction of the extracellular matrix (52), interference with the adaptive immune response (69, 74, 75),  
host–pathogen co-evolution (20, 124), tick salivary protein-mediated immunosuppression (34), adhesins allowing entrance into the vasculature and tissues (49, 50), 
and interference with complement via CRASPs, and BBK32 (45, 60, 62, 64).
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host defenses present in the skin. Tick salivary proteins play 
a role in suppressing the host immune system as long as the 
tick vector is attached. This includes the inhibition of vigorous 
activation of skin-resident macrophages and dendritic cells, 
including the suppression of cytokine and chemokine produc-
tion, and inhibition of granulocyte recruitment to the site of the 
tick bite [reviewed in Ref. (33, 34)]. Multiple tick salivary pro-
teins are known to interfere with the activation of the alternative 
complement pathway, potentially further supporting pathogen 
transmission [reviewed in Ref. (33)]. Mast cells also appear to 
be direct targets of salivary protein-mediated immune sup-
pression (35). Inhibition of mast cells was facilitated through 
secretion of the salivary protein sialostatin L, which was shown 
to inhibit the induction of IL-9 production in the skin. IL-9 is 
known as an important regulator of pathogen-induced immune 
responses (35–37).

The morphology of spirochetes facilitates versatile motility 
that is predicted to play a role in the dissemination and persis-
tence of Leptospira, Treponema, and Borrelia genera (38, 39). 
B. burgdorferi itself also expresses known immunomodulatory 
surface proteins, which help to modulate immune responses 

of the host. These proteins, specifically lipoproteins, have 
been studied extensively, and their wide variety of functions is 
reviewed elsewhere (40). We focus here on known functions 
of some proteins that are likely to contribute to persistence of 
B. burgdorferi in the rodent host (Table 1).

One important group of such proteins is the adhesins, which 
mimic host integrins, molecules that facilitate attachment 
and migration. Thus, B.  burgdorferi seems to subvert existing 
mechanisms regulating immune cell migration for its benefit. 
Adhesins are an important category of bacterial virulence factors 
that protect bacteria from clearance by physical forces such as 
mucociliary clearance, facilitate homing to and entrance into 
host tissues that act as important pathogen niches and trigger 
signaling events in host cells (41). BBK32 is one such adhesin. 
At the initial site of infection, BBK32 was shown to create “catch 
bonds” that slow bacterial movement enough for flagella-driven 
entrance of B. burgdorferi into the vasculature (42). This helped 
to explain why bacterial loads in the blood are higher when 
BBK32 is expressed (43). Once in the blood, BBK32 seems to help 
B. burgdorferi to target joint tissues for colonization via binding 
to glycosaminoglycan (44). However, recent studies suggested 
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TABLe 1 | B. burgdorferi’s interface with mammalian hosts and its effect on Borrelia survival.

immune response modulators effects Reference

Co-evolution of B. burgdorferi and its hosts Host specialization and evolution of virulence- and infectivity-associated 
genes

(19, 20)

Tick salivary proteins Suppression of pro-inflammatory responses in the host (33, 34, 125)

Spirochete morphology and motility Increase in B. burgdorferi dissemination and persistence (38, 39)

B. burgdorferi adhesins Interactions with host tissues, contributing to dissemination and persistence (49, 50)

Host interactive proteins Binding to host enzymes, such as plasmin/plasminogen; facilitates 
extracellular matrix degradation

(50, 52)

CRASPs Decreased and inhibited complement activation (60, 62, 63)

Modulation of protein expression Adaptation to host, downregulation of immunogenic proteins, and antigenic 
variation

(79, 80)

Inappropriate macrophage activation Extracellular matrix degradation (54)

Antibodies with IgM-skewed isotype profile and of low affinity Decreased antibody response quality which may contribute to persistence (see text footnote) 
(73–75)

Loss of demarcated T and B cell zones in secondary 
lymphoid tissues and collapse of germinal centers

Reduced antibody class switch recombination and somatic affinity maturation. 
Failure to induce long-lived plasma cells and memory B cells in a timely manner

(69, 73, 74, 110)
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that BBK32 has additional, complement-inhibitory, functions 
(45). Specifically, it was found to bind to the C1 complex and 
thereby to inhibit the classical pathway of complement activation, 
i.e., antibody-mediated bacterial clearance (45).

Another adhesion protein of B. burgdorferi, p66, was shown 
to interact with ligands on the host vasculature to facilitate B. 
burgdorferi extravasation from blood vessels into tissues (46). B. 
burgdorferi also expresses two decorin-binding proteins (Dbp), 
DbpA and DbpB. Surface expression of these proteins seems to 
increase the level of tissue colonization (47). They seem to sup-
port persistence of B. burgdorferi in tissues that express high levels 
of decorin (joint tissue and skin) (48). Further details about B. 
burgdorferi-expressed adhesins have been summarized in recent 
reviews (49, 50).

Once bacteria have gained access to a specific organ or tis-
sue, they require proteases that degrade the extracellular matrix 
(ECM), enabling the bacteria to move between cells deeper into 
the tissues. This is particularly important for B. burgdorferi, which 
targets ECM-rich connective tissues (50, 51). The genome of B. 
burgdorferi does not seem to contain any known ECM-degrading 
proteases. Instead B. burgdorferi is able to bind host urokinase 
and plasminogen, a multifunctional serum protein that can 
initiate ECM and fibrinogen degradation (52). Plasminogen can 
also inhibit complement activation and promote complement 
degradation (53).

Furthermore, B. burgdorferi can induce host cells such as 
macrophages to secrete matrix metalloproteases (MMPs), par-
ticularly the gelatinase MMP-9, via TLR2-mediated immune 
activation (54). MMP-9 was shown to be selectively upregulated 
in erythema migrans skin lesions during acute B. burgdorferi 
infections of humans (55) and is thought to help B. burgdorferi 
tissue dissemination by enabling the degradation of the ECM. 
However, studies by Hu and colleagues recently demonstrated 
that MMP-9 expression is not required for B. burgdorferi dis-
semination. Instead, it regulated the influx of inflammatory cells, 

and thereby Lyme arthritis, indirectly by the degradation of col-
lagen in joints (56). Plasminogen-binding proteins have not been 
shown to increase B. burgdorferi persistence per se, but they do 
facilitate the entrance of B. burgdorferi into the ECM of tissues, 
where bacteria maybe protected from innate immune response 
mechanisms such as complement-mediated degradation and/or 
neutralization by early-induced IgM antibodies.1

interference of B. burgdorferi with the 
Complement System
As mentioned earlier, inhibition of the complement system 
is an important immune evasion strategy employed by many 
pathogens, including B. burgdorferi (57–59). B. burgdorferi 
proteins that interfere with complement activation allow for 
survival and dissemination of the pathogen from the initial site 
of infection (60).

The complement system consists of an evolutionarily 
highly conserved family of proteins that are found in all body 
fluids and serve three main functions during infection: trigger 
inflammation, opsonize pathogens, and form the “membrane 
attack complex” (formation of a pore in the cell membrane that 
causes cell lysis). Classical, alternative, and lectin are the three 
distinct pathways by which complement-mediated signaling and 
bacterial killing can be initiated [described in more detail in Ref. 
(61)]. Independent of the initial trigger, all pathways lead to the 
formation of a protease, the C3 convertase, which cleaves the 
complement component C3 into its activated components C3a 
(an inflammatory mediator) and C3b (an opsonin and immune 
stimulatory protein). The complement component C3b can also 
form the C5 convertase, another protease that cleaves comple-
ment component C5 into C5a and C5b, leading to the formation 

1 Hastey CJ, Elsner RA, Olsen KJ, Tunev SS, Escobar ED, Barthold SW, et  al. 
Borrelia burgdorferi infection-induced IgM controls bacteremia but not bacterial 
dissemination or tissue burden. (submitted).
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of the bactericidal “membrane attack complex” (61). C5a, like 
C3a, is a strong inducer of inflammation. During the process of 
complement activation, another complement component, C4, 
is cleaved into C4a and C4b. The latter also acts as an opsonin. 
Because of these multiple and highly pro-inflammatory effects, 
systemic activation of complement can cause septic shock if not 
appropriately regulated. Regulators of overshooting complement 
activation include components of the complement system itself: 
the Factor H family proteins and the C4b-binding protein. These 
proteins inhibit complement activation by a variety of mecha-
nisms, including by accelerating the decay of C3 convertases, thus 
interrupting the complement activation cascade.

Borrelia burgdorferi has evolved complex mechanisms to 
evade complement-mediated killing by binding to the inhibitory 
host-regulatory factors [reviewed in Ref. (60, 62)]. B. burgdorferi 
expresses a diverse family of complement regulator-acquiring 
surface proteins, which recruit Factor H family proteins [reviewed 
in Ref. (63)]. Factor H and its relatives primarily inhibit activa-
tion of the alternative complement pathway. More recently, it 
was discovered that B. burgdorferi also binds to host C4-binding 
proteins, which primarily inhibit activation of the classical and 
lectin pathways (64). And, as outlined earlier, BBK32 seems to 
inhibit the classical pathway of complement activation via bind-
ing to the C1 complex (45). Thus, B. burgdorferi seems to target all 
three activation pathways of the complement cascade. The effects 
of complement inhibition on adaptive immune responses are 
outlined below.

iNTeRFeReNCe OF B. burgdorferi wiTH 
THe iNDUCTiON OF ADAPTive HUMORAL 
iMMUNe ReSPONSeS

High levels of B. burgdorferi antigen-specific antibodies are 
produced during infection, and they have the capacity to prevent 
reinfection with the same B. burgdorferi strains (65–67). The 
antibody response also results in reduction, but not elimina-
tion, of B. burgdorferi from tissues (68). Both T-independent 
and T-dependent antigens are targeted by the humoral immune 
response, representing a wide variety of surface proteins with dif-
ferent functions (20, 67, 69). How then does B. burgdorferi avoid 
antibody-mediated clearance?

B. burgdorferi-induced Humoral immunity
The strong production of B. burgdorferi antigen-specific antibod-
ies, as well as the strong increases in B. burgdorferi tissue load 
in SCID mice and B cell-deficient mice compared to wild-type 
controls (70, 71), has long been considered evidence of a robust 
and effective B cell response against B. burgdorferi infection. 
However, while the data provide clear evidence that B cells play 
an important role in the control of B. burgdorferi infection, 
this does not mean that these responses are optimally induced. 
Considering that B. burgdorferi infection results in persistent 
infections of mice despite these robust antibody responses, it 
is important to also consider the quality of the B. burgdorferi-
specific antibody response. Several factors are known to affect 
the efficacy of humoral immune responses, including the epitope 

specificity of the induced antibodies, their immunoglobulin 
isotype profile, binding avidity to their cognate antigens, and 
various posttranslational modifications that can affect their 
effector functions (6, 20).

IgM is the first antibody isotype secreted during an immune 
response. It is important in controlling bacteremia and in acti-
vating the classical complement pathway. Immunoglobulin class 
switch recombination (CSR) to IgG typically occurs soon after 
an infection, and the four subtypes of murine IgG work together 
effectively to clear most pathogens (72). However, during B. burg-
dorferi infection, serum IgM levels remain high throughout infec-
tion (see text footnote). Moreover, hybridomas generated from 
lymph nodes of mice on days 8 and 18 postinfection showed that 
nearly half of B. burgdorferi antigen-specific cells were producing 
IgM, and the ratio of IgM to IgG never significantly changed 
throughout the infection (see text footnote) (73). The strong 
and ongoing production of IgM cannot be explained entirely by 
a predominance of T-independent responses, because depletion 
of CD4 T cells decreased the number of IgM-antibody-secreting 
cells (ASCs) (74). Thus, infection with B. burgdorferi induces an 
antibody response that is characterized by the continued produc-
tion of IgM and IgG. Further studies will need to determine 
whether the strong production of IgM is evidence of a strong 
beneficial immune response or whether B. burgdorferi might be 
subverting the B cell response to generate this unusual Ig-isotype 
profile. Our studies have failed to find any beneficial effect of 
IgM on control of bacterial dissemination or B. burgdorferi tissue 
loads (see text footnote).

Given the important role of T cells in the regulation of CSR 
by B cells, the data may indicate a deficiency in T helper cell 
activation and/or functionality. In vitro data indeed provided 
some evidence that the CD4 T helper cell response induced by B. 
burgdorferi infection is distinct in function from that of CD4 T 
cells induced by immunizing mice with inactivated B. burgdorferi 
(75). T-dependent B cell responses usually also result in significant 
affinity maturation, i.e., an increase in the binding avidity of anti-
bodies to their cognate antigens over time. Measuring antibody 
avidities of serum antibodies to a representative T-dependent 
antigen on B. burgdorferi N40, arthritis-related protein (Arp), 
however, failed to provide evidence for affinity maturation in 
the serum response to B. burgdorferi (75). Instead, we found 
that the binding avidity of the serum antibodies to Arp initially 
increased for the first 6 weeks of infection, but then peaked and 
steadily decreased thereafter to levels seen at the beginning of 
the infection. The rate of drop in antibody affinity was consistent 
with the normal half-life and decays kinetics of serum antibodies 
(75), suggesting that the ASC that generated the higher-affinity 
antibodies were short-lived.

Both CSR and hyperaffinity maturation of antibodies are 
T-dependent processes that usually occur in germinal center 
(GC) reactions in secondary lymphoid tissues. As we will outline 
below in more detail, we noted a collapse of the GC responses 
that coincided with the peak and then reversal of the antibody 
avidities. The data strongly suggest that the T-dependent GC 
responses are not fully functional during B. burgdorferi infec-
tion. The fact that immunization with inactivated B. burgdorferi 
infection resulted in robust GC responses suggests that exposure 
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to live B. burgdorferi results in a subversion of the B cell response 
(73, 74). On the basis of these data, we propose that although 
present in large quantities, the B cell responses to and functional-
ity of the serum antibody response to B. burgdorferi are subop-
timal, enabling B. burgdorferi persistence, while also controlling 
B. burgdorferi tissue loads and thus overwhelming infection. 
Alterations in the B cell response quality and/or antibody 
functionality could provide a powerful immune evasion strategy 
for bacteria that are clearly susceptible to antibody-mediated 
immune clearance mechanisms (65, 66, 70, 71, 76, 77).

Modification of B. burgdorferi Outer 
Surface Protein expression
Although B. burgdorferi surface proteins have many functions in 
evading recognition by the host immune system, they are also 
antigens that trigger antibody responses. Additional immune 
evasion strategies therefore likely exist that inhibit recognition 
and antibody-mediated clearance of B. burgdorferi.

Borrelia burgdorferi is known to undergo major protein expres-
sion changes over the course of its life cycle, including expression 
of outer surface proteins. During transmission from the tick to a 
mammalian host, environmental signals trigger extensive global 
changes in gene expression (78, 79). Changes in surface protein 
expression also occur within a mammalian host during the course 
of infection. At least some proteins that trigger strong antibody 
responses are downregulated during the chronic phase of infection 
(80). One important example is OspC, a T-dependent antigen that 
is essential for initial colonization of mammalian hosts. Shortly 
after infection, this lipoprotein is no longer required, and if not 
downregulated triggers a strong and effective antibody response. 
However, expression is usually rapidly lost upon infection (81–84). 
This appears to be an effective immune evasion strategy, because 
constitutive expression of OspC prevents spirochete persistence, 
whereas bacteria that successfully downregulate OspC outcom-
pete expressors in vivo (76, 85).

Antigenic variation is a process by which a pathogen varies 
the sequence of an expressed protein to avoid the deleterious 
effects of antibodies raised against it. Antibody-target switching 
has been demonstrated as an effective immune evasion strategy 
for numerous pathogens, including the closely related relapsing 
fever pathogen Borrelia hermsii (86–88). The B. burgdorferi 
genome contains the variable surface antigen E (vlsE) locus, 
which has received much attention as a major immunodomi-
nant surface protein of B. burgdorferi that undergoes extensive 
and rapid antigenic variation in mammalian hosts [reviewed 
in Ref. (89)]. In B. burgdorferi strain B31, VlsE recombination 
seems to be critical for B. burgdorferi persistence and the ability 
of B. burgdorferi to reinfect a host following antibiotic treatment 
(77, 90–92). It is interesting to note that vlsE recombination 
also occurs in antibody-deficient SCID mice, but not in vitro, 
suggesting that host triggers other than the antibody response 
direct this process (93). While it seems that a lack of variation 
of vlsE results in the rapid clearance of B. burgdorferi, it is 
less clear whether this process alone can explain the effective 
evasion of B. burgdorferi from antibody-mediated clearance. 
Recently, mathematical models have been put forward to sug-
gest that a strongly immunodominant variable surface protein 

may prolong immune responses long enough to drive immune 
exhaustion (94), an intriguing idea that requires testing in the 
context of B. burgdorferi infection.

Finally, extensive genetic variation exists between the various 
Borrelia species and between individual bacteria (95–98). This 
allows adaptation to selective pressure from the host immune 
system, as well as to larger ecological niches, allowing strains 
to become fitter in a given geographic area (95). It also applies 
during the course of a chronic infection, as bacterial variants 
compete with each other (85, 99). Variation between strains 
is large enough in the context of the antibody response that 
different strains can infect the same mouse (100). Reinfection 
with the same strain has been tested in experimental settings 
after antibiotic treatment of mice. Studies by Piesman et al. and 
by Elsner et  al. suggested that antibody-mediated protection 
wanes over time, even to the same strain of B. burgdorferi (69, 
101). Given that long-term antibody production is usually 
induced following an infection, facilitated by the development 
of long-lived plasma cells that migrate to and then reside in 
the bone marrow (102, 103), the data further suggest that the 
antibody response to B. burgdorferi infection lacks some of 
these key components of successful humoral responses. It can 
be expected that each of the above outlined immune evasion 
mechanisms is unlikely to be solely responsible for persistence; 
instead they may act in concert. Whether these multiple appar-
ent strategies represent redundant or synergistic effects remains 
to be established.

B. burgdorferi Modulates the Adaptive 
immune Response
Modeling of population dynamics supports the establishment 
of equilibrium between B. burgdorferi and the host’s adaptive 
immune response (104). This is consistent with recent findings 
suggesting that the humoral immune response and, more specifi-
cally, the T-dependent B cell responses are a particular target of 
B. burgdorferi-induced immune suppression.

After escaping the site of infection, B. burgdorferi disseminates 
to other tissues via blood and lymph (43, 105). Mechanisms of 
entrance into the blood are better studied, but live B. burgdorferi 
is also capable of entering, persisting in, and traveling through 
the lymphatics (73, 105). Dissemination via the lymphatics has 
been described in other infections as an effective technique 
for immune evasion due to the specialized cell populations 
and altered immune milieu in these vessels compared to the 
bloodstream (106–108). Shortly after infection with cultured or 
host-adapted spirochetes (HAS), live B. burgdorferi enter lymph 
nodes draining the site of infection, resulting in massive lymph 
node enlargement (73, 109).

In secondary lymphoid tissues such as the lymph nodes, 
naïve T cells encounter antigens for the first time, and acti-
vated antigen-specific B cells receive the signals they need to 
proliferate. During B. burgdorferi infection, the presence of live 
spirochetes seems to interfere with these processes. Between 
days 5 and 7 postinfection of C57BL/6 mice with HAS, the 
separation of T cell zones and B cell follicles completely was 
lost within the draining lymph nodes. This degradation was 
not seen in mice that were inoculated with heat-inactivated 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Tracy and Baumgarth Immune Evasion by B. burgdorferi

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 116

spirochetes, suggesting that an active bacterial process causes 
the disruption of the normal immune response of the host (73, 
74, 110). Interestingly, similar observations have been made also 
following infections with other pathogens, including infections 
with Plasmodium and Salmonella (111, 112). While during 
Salmonella infection lymph node architecture disruption was 
dependent on TLR4-mediated signaling (112), the observed 
changes during B. burgdorferi infection were independent of 
MyD88 and TRIF signaling (110). Given the importance of T 
and B cell trafficking within the lymph nodes for initiating and 
maintaining T–B interaction and immune response regulation, 
the data suggest that multiple pathogens, including B. burgdor-
feri, may have evolved strategies to interfere with the earliest 
processes of adaptive immune induction.

Furthermore, the presence of live (but not heat-killed) B. 
burgdorferi caused a disproportionate recruitment and prolifera-
tion of naïve follicular B cells, but not CD4 T cells, to the affected 
lymph nodes. This appeared to be a separately controlled process, 
but one also mediated specifically by live bacteria. B cell recruit-
ment and/or retention required signaling through the type I 
interferon receptor by non-hematopoietic cells, likely lymph 
node stromal cell compartments (110). The resulting accumula-
tion of large numbers of B cells in the lymph nodes explains the 
lymphadenopathy that is also observed in infected humans and 
dogs (113, 114). This pattern of lymph node architecture disrup-
tion followed by influx/retention of B cells is recapitulated later in 
more distant lymph nodes as they are infiltrated by the migrating 
spirochetes (73, 110).

The data support the concept that B. burgdorferi interferes 
with the induction and maintenance of adaptive immune 
responses by altering or hijacking innate immune signaling 
pathways. What effect does this have on persistence of B. burg-
dorferi? The organized lymph node structure and the regulated 
migration of lymphocytes within secondary lymphoid tissues is 
crucial for effective interaction of T and B cells and the induc-
tion of adaptive immune effector mechanisms. Disruption of 
this structure is liable to have long-term negative consequences 
for the quality of the immune response and thus increases the 
likelihood of pathogen persistence. We outline below evidence 
to this effect.

interference of B. burgdorferi with 
gC Formation and Maintenance
Activated B cells in the draining lymph nodes proliferate rapidly 
and initially form structures called extrafollicular foci (73). In 
extrafollicular foci, B cells become plasmablasts with or without 
T cell help and produce large quantities of B. burgdorferi-specific 
antibodies rapidly. B cells in extrafollicular foci, however, do 
not undergo extensive affinity maturation, nor do they form 
memory B cells or long-lived plasma cells (115). For this, GCs 
are needed. GCs are a complex and highly organized structures 
that form within the B cell follicles of secondary lymphoid 
tissues that consist of GC B cells, CD4 T follicular helper cells 
(TFH), and follicular dendritic cells (FDCs). B cell activation and 
proliferation in GCs is facilitated by interaction with CD4 T cells 
and presentation of antigens on FDCs. High-frequency insertion 
of random mutations into the antigen-binding variable domain 

of the antibody molecule during this process, and the competi-
tion of the newly generated B cells for binding to antigen and for  
T cell-help, is thought to drive B cells with the highest affinity for 
antigen to outcompete other clones with weaker antigen bind-
ing. Although mechanisms are still unclear, GC responses lead 
to the development of two distinct cell populations: memory B 
cells, i.e., non-ASCs that circulate and can respond vigorously to 
repeat infection, and long-lived plasma cells, which continuously 
produce antibodies from their bone marrow niches and contrib-
ute to immune protection from reinfections (116–119). The GC 
environment also promotes CSR to IgG.

Despite the early presence of B. burgdorferi in the draining 
lymph nodes, GC B cell and TFH numbers remain low for the first 
2 weeks in experimentally infected mice (74) and then become 
measurable. However, although live B. burgdorferi remained pre-
sent in the lymph node for at least 1 year after infection, and thus, 
B. burgdorferi antigens were presumably continuously available, 
the GCs collapsed around 1 month after infection, and associated 
B and T cell numbers decreased steadily over the next month (69). 
As outlined earlier, the decline in the avidity of serum antibodies 
against Arp follows the collapse of GCs (69).

Consistent with the short-lived nature of the GC responses, 
their functional ineffectiveness was demonstrated by experi-
ments showing a complete lack of memory recall responses 
to both B. burgdorferi antigens and a co-administered vaccine 
antigen for many months after infection with B. burgdorferi. 
Stable continued antibody production by long-lived ASCs in the 
bone marrow was also strongly delayed for at least 3 months after 
infection (69, 74). The delay in these important B cell response 
outcomes is especially dramatic considering a mouse’s relatively 
short life span and likely frequent exposure in the wild. Although 
mice do not clear infection with B. burgdorferi, impairing the 
memory response could be advantageous to B. burgdorferi by 
leaving the host susceptible to secondary or superinfections. 
It might also prevent a timely and strong response to antigens 
that are dynamically upregulated and downregulated by B. 
burgdorferi as the infection progresses.

By decreasing the capacity of the host to produce effective 
antibodies against B. burgdorferi, the GC collapse may help 
B.  burgdorferi evade clearance. The signals and mechanisms 
leading to the collapse, however, are unknown. One possible 
mechanism is the interference of B. burgdorferi with the com-
plement system. Continued antigen presentation is crucial for 
hyperaffinity maturation, and components of the complement 
system are known to be involved in this process. Specifically, 
activated C3 and C4 fragments bound to antigen and adhere to 
complement receptors 1 and 2 (CR1 and CR2). These receptors 
are present on the major antigen-presenting cells in the GC, 
the FDC, and on GC B cells. It was shown previously that GCs 
will form normally in mice lacking CR1 and CR2, but collapse 
prematurely, before GCs can perform their important func-
tions (120). This phenotype is strikingly similar to that seen in 
wild-type mice infected with B. burgdorferi. Interestingly, in B. 
burgdorferi-infected mice, although CR1 and CR2 are present on 
FDCs and GC B cells, C4 is not detectable (69). C4 is typically 
deposited on the surface of FDCs supporting antigen presenta-
tion. Interference with C4 deposition could inhibit antigen 
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presentation by FDCs to GC B cells and thereby lead to GC col-
lapse. B. burgdorferi interference with activation of complement 
could also have various indirect effects on GCs: changing the 
cytokine milieu, reducing antigen presentation to naïve B cells 
via CR1 on APCs outside the GC, reducing naïve B cell activa-
tion via co-stimulation with CR2, and reducing opsonization 
(and thus uptake) of antigens. Exploring the role of complement 
and complement inhibition by B. burgdorferi during infection 
are important subjects for future studies.

CONCLUSiON

The phenomena described earlier represent potential novel 
mechanism(s) for manipulation of the adaptive immune sys-
tem by a pathogen that establishes persistent infections in its 
reservoir host. Elucidation of these mechanisms has important 
translational and clinical applications. A better understand-
ing of how B. burgdorferi persists long term in rodents would 
be useful for understanding public health risks and devising 
appropriate preventative measures in endemic areas. Given 
the extensive similarities in the immune system of rodents 
and humans, it seems likely that the mechanisms of immune 
evasion and suppression outlined here may also be active in at 
least some infected humans. The induction of diseases such 
as carditis, arthritis, acrodermatitis chronica atrophicans, 
and neuroborreliosis seen in some patients with Lyme disease 
and infected companion animals, but rarely in mice, suggest 

maladaptation of B. burgdorferi to these hosts. Humans devel-
oping these inflammatory diseases to B. burgdorferi infection 
may have an immune system that is ineffectively suppressed 
by B. burgdorferi. There is good experimental evidence that a 
block of pro-inflammatory T cell responses, such as facilitated 
through blockade of IL-12, will cause reductions in arthritis 
development in C3H mice, but it also causes increases in 
Borrelia tissue loads (121, 122). Development of therapeutics 
that can shift the balance toward immune activation and 
bacterial clearance without causing inflammation-induced 
diseases might provide superior tools to the current antibiotic 
therapies.

Much remains to be elucidated about the mechanisms by which 
Borrelia evades the host response. This area of research provides 
a particularly rich ground for collaboration among evolutionary 
biologists, ecologists, microbiologists, and immunologists.
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