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Abstract 

Background: Non-invasive imaging is of interest for tracking the progression of atherosclerosis in the carotid bifurca-
tion, and segmenting this region into its constituent branch arteries is necessary for analyses. The purpose of this 
study was to validate and demonstrate a method for segmenting the carotid bifurcation into the common, internal, 
and external carotid arteries (CCA, ICA, ECA) in contrast-enhanced MR angiography (CE-MRA) data.

Methods: A segmentation pipeline utilizing a convolutional neural network (DeepMedic) was tailored and trained 
for multi-class segmentation of the carotid arteries in CE-MRA data from the Swedish CardioPulmonsary bioImage 
Study (SCAPIS). Segmentation quality was quantitatively assessed using the Dice similarity coefficient (DSC), Matthews 
Correlation Coefficient (MCC),  F2,  F0.5, and True Positive Ratio (TPR). Segmentations were also assessed qualitatively, by 
three observers using visual inspection. Finally, geometric descriptions of the carotid bifurcations were generated for 
each subject to demonstrate the utility of the proposed segmentation method.

Results: Branch-level segmentations scored DSC = 0.80 ± 0.13, MCC = 0.80 ± 0.12,  F2 = 0.82 ± 0.14,  F0.5 = 0.78 ± 0.13, 
and TPR = 0.84 ± 0.16, on average in a testing cohort of 46 carotid bifurcations. Qualitatively, 61% of segmentations 
were judged to be usable for analyses without adjustments in a cohort of 336 carotid bifurcations without ground-
truth. Carotid artery geometry showed wide variation within the whole cohort, with CCA diameter 8.6 ± 1.1 mm, ICA 
7.5 ± 1.4 mm, ECA 5.7 ± 1.0 mm and bifurcation angle 41 ± 21°.

Conclusion: The proposed segmentation method automatically generates branch-level segmentations of the 
carotid arteries that are suitable for use in further analyses and help enable large-cohort investigations.
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Background
Stroke is one of the leading causes of death and disability 
in the western world and is often secondary to the rup-
ture of atherosclerotic plaques in the carotid bifurcation. 
Atherosclerosis develops asymptomatically until a poten-
tially catastrophic event occurs. As a result, non-invasive 
imaging is of interest for tracking the progression of ath-
erosclerosis in the carotid arteries and has the potential 
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to be used for risk stratification or treatment decisions 
[1].

In this realm, magnetic resonance imaging (MRI) 
presents several opportunities. MRI can be used for 
generating geometric [2, 3], hemodynamic [4], and com-
positional information from the carotid arteries [5–8]. 
However, to extract this information, the vessels must 
be identified and delineated from the images. When per-
formed manually, this is a difficult and time-consuming 
process and the amount of time required increases with 
further localization, for example, when segmenting each 
arterial branch, i.e. internal (ICA), external (ECA), and 
common carotid arteries (CCA). Examining large cohorts 
would not be feasible without a significant decrease 
in user input or complete automation of these tasks. In 
addition, inter- and intra-observer variability decreases 
the consistency of segmentations and suggests an area 
where automated approaches could improve on current 
practice [9].

Medical image segmentation has been performed using 
multiple techniques, including intensity-based strate-
gies, active contours, atlases, and methods using machine 
learning. With respect to segmentation of the carotid 
bifurcation using MRI data, level-set methods [10], 
deformable tube models [11], region growing [12], and 
supervised classifiers [12, 13] have demonstrated suc-
cess. However, semi- or fully-automated multi-class seg-
mentation of the carotid bifurcation into its constituent 
branches remains a difficult task. This is likely because 
there is no single clear image feature (e.g. intensity gradi-
ent) that can be used to define the branching point, which 
prevents the use of methods such as region growing that 
rely on such image features and suggests methods that 
incorporate larger numbers of image features are neces-
sary. The limited ability to semi- or fully-automatically 
segment the carotid bifurcation hinders the development 
of automated methods for detecting stenoses, measuring 
carotid geometry, measuring hemodynamics, and meas-
uring the composition of the vessel wall or plaques [14]. 
Automatic and accurate segmentations could be used 
to accelerate these applications and enable large cohort 
analyses with minimal user interaction.

Recently, deep learning and convolutional neural net-
works (CNNs) have emerged as useful methods for 
medical image segmentation and processing [15, 16]. 
For example, DeepMedic is an 11-layer deep CNN origi-
nally built with a dual-pathway architecture for brain 
lesion segmentation [17]. The DeepMedic framework is 
also capable of multi-class segmentation in 3D [17]. In 
this work, the DeepMedic framework was selected for 
use and tailored for a novel application; namely, multi-
class segmentation of the carotid bifurcation. Therefore, 
the primary aim of this work is to develop and validate 

a method for the automated, multi-class segmentation of 
the carotid bifurcation using a CNN.

As the carotid arteries are a common site for athero-
sclerosis, many investigations have sought to examine 
underlying factors that predispose this region to athero-
sclerotic development. One factor thought to have sig-
nificant effect is the vessel’s geometry, as it is believed 
to shape the hemodynamics of the vessel, and therefore 
the atherosclerotic development [18–20]. The geometry 
of the carotid bifurcation could therefore be seen as a 
patient-specific risk marker. As a result, several geo-
metric descriptors of the carotid bifurcation have been 
proposed, including: branch diameters and the ratios 
between them, the bifurcation angle, and the vessel tor-
tuosity [21]. Therefore, a secondary aim of this study is to 
demonstrate the utility of the multi-class segmentations 
by quantifying carotid bifurcation geometry in a large 
cohort of subjects with asymptomatic atherosclerosis.

Methods
Data
3D Contrast-enhanced MR angiography (CE-MRA) data 
for 268 subjects was acquired, though 74 subjects were 
excluded from further analysis based on a visual quality-
assessment of the CE-MRA volume. Suboptimal timing 
of the CE-MRA imaging relative to the arrival of the con-
trast bolus was the primary cause for exclusion. There-
fore, 194 subjects with bilateral imaging were included, 
i.e. 388 carotid bifurcations. Subjects were between 50 
and 64  years of age and had at least one asymptomatic 
carotid plaque of at least 2.7  mm, measured by ultra-
sound. Subjects were recruited as part of the Swed-
ish CArdioPulmonary bioImage Study (SCAPIS) [22]. 
Research was performed in accordance with the Declara-
tion of Helsinki, this study received ethical approval, and 
all participants gave written, informed consent.

Imaging was performed using a 3  T Philips Ingenia 
scanner (Philips Healthcare, Best, the Netherlands) 
equipped with an 8-channel dedicated carotid coil 
(Shanghai Chenguang Medical Technologies, Shang-
hai, China). CE-MRA data was acquired post-injec-
tion of a gadolinium-based contrast agent (Gadovist, 
Bayer Schering Pharma AG) to generate bright-blood 
images for automated segmentations of the vessel 
lumen. A typical CE-MRA image is depicted in Fig.  1. 
Scan parameters included: a coronal slab with 3D 
field-of-view = 200 × 200 × 50  mm3 and matrix size 
512 × 512 × 100, set to cover the carotid arteries from 
the clavicle to the circle of Willis, flip angle 27°, echo 
time 1.8  ms, repetition time 4.9  ms, parallel imaging 
(SENSE) factor 2, and a reconstructed spatial resolution 
of 0.48 × 0.48 × 0.50  mm3 [14, 22].
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Segmentation
The original DeepMedic network (version 0.7.0) and the 
tailored network were both implemented in Python 3.6.2 
using Tensorflow v1.9.0, and MATLAB 2018a was used 
for post-processing.

Preprocessing
Datasets were pre-processed to have a zero mean and 
unit variance. Images were subsequently divided in the 
sagittal plane and processed one side at a time, to sim-
plify the segmentation task from 6 classes to 3.

Network architecture and modifications from the original 
implementation
The proposed network is a modification of the original 
DeepMedic network as proposed by Kamnitsas et al. [17]. 
DeepMedic was originally proposed as a dual-pathway, 
11-layer deep, 3D CNN for brain lesion segmentation. 
An overview of our modified network is seen in Fig.  2, 
and a full listing of modified parameters is available in 
Additional file: 1.

In our implementation of DeepMedic for multi-class 
segmentation of the carotid bifurcation, changes include 
the addition of another down-sampled pathway; an 
altered shape and increased size of kernels and input seg-
ments; a decrease in the number of feature maps in the 
deeper layers (layers 3–8); and, an increased number of 
neurons in the two fully-connected layers.

The additional sub-sampled pathway was added to 
expand on the spatial awareness idea discussed by Kam-
nitsas et  al. [17]. By utilizing a full-resolution pathway, 
and pathways with sub-sampling factors of 3 and 5, the 
proposed network has an increased capability of captur-
ing spatial context at multiple scales in the image volume 
and generating features that use this information [15]. 

This modification introduces additional computational 
cost compared to the original implementation.

The proposed network increases the receptive field 
by increasing the kernel size throughout the network. 
Moreover, while kernels in the original implementation 
are cubical, the proposed network uses kernels with a 
rectangular prism shape which is more representative of 
the non-cubic image volume, but also the tubular vessels 
that are the segmentation targets. These anisotropic and 
larger kernels may help the network learn more image 
features oriented to the shape of the carotid arteries. The 
increased kernel sizes also increase the computational 
cost compared to the original implementation.

Training
Network training was performed on a workstation with 
a 3.6  GHz, 6-core processor with 64  GB RAM, and an 
NVIDIA Quadro 2000 GPU. The network was trained 
in 34 h using 20 epochs, with 52 bifurcations as training 
data and ten as validation. Table 1 shows an overview of 
data usage in this study. The ground-truth data used for 
training and testing was generated manually using ITK-
SNAP [23] by two observers (M.Z., 5 years of experience 
in vascular MRI, E.G. 5  years of experience in vascular 
MRI) and had 3 non-background classes per side: the 
CCA, ECA, and ICA. Manual segmentation was per-
formed by first manually labelling all voxels in the CCA, 
ECA, and ICA within a predefined distance from the flow 
divider (approximately 2.5  cm). Manual segmentations 
were post-processed to ensure no disjoint-regions or 
holes were present in the masks. Subsequently a centre-
line skeleton of this volume was created and the observer 
identified the centre of the carotid bifurcation (i.e. branch 
point), as well as the proximal CCA, and distal ECA and 
ICA points on the centrelines. Subsequently, the carotid 

Fig. 1 Typical CE-MRA images. The maximum intensity projection in the coronal plane is shown (right), with corresponding axial images (left) 
depicting the carotid arteries at the level of the CCA (bottom), bulb (middle), and after the bifurcation (top)
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Fig. 2 Architecture of proposed network. A complete listing of modified parameters is available in Additional Information 1
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bulb was divided based on this branch point and branch 
lengths were standardized to 2 cm.

The Fβ measure was used as the cost function, with 
β = 2 , to weigh the importance of specificity larger than 
sensitivity. The Fβ measure is defined as:

Post‑processing
The raw output of the proposed network was post-pro-
cessed to remove any disjoint regions and increase the 
consistency of the class separation between the CCA, 
ICA, and ECA in the carotid bulb. Connected compo-
nent analyses were used to identify any regions that were 
not connected to the largest component for their respec-
tive class. These regions were subsequently removed if 
they were not connected to another non-background 
class or merged with the connected non-background 
class. Additionally, morphological operations were used 
to increase the consistency of the class separation. Mor-
phological opening and closing, using 2 × 2 × 2 kernels, 
were used to create a more uniform boundary between 
classes by smoothing the edges in the carotid bulb. Seg-
mentations were standardized by cropping data outside a 
radius of 2 cm from the centre of the bifurcation.

Geometric analysis
Geometric analysis was performed using in-house soft-
ware, developed in MATLAB. Several geometric descrip-
tors were automatically computed to demonstrate the 
utility of the multi-class segmentations of the carotid 
bifurcation (Fig. 3):

• The mean diameter for each branch of the carotid 
bifurcation. The mean diameter was estimated by 
first calculating the diameter using planes normal to 
the centreline vector at each voxel along the centre-
line. For each of these planes, the diameter was cal-
culated by assuming circularity and measuring the 
planar area within the segmentation.

Fβ = (1+ β2)
(specificity ∗ sensitivity)

(β2 ∗ specificity+ sensitivity)
[24]

• The ratio between respective downstream and 
upstream branch diameters (e.g. ICA/CCA).

• The bifurcation angle, which was calculated using 
vectors aligned with the centrelines of the ICA and 
ECA. Both vectors originated at the centreline-point 
nearest to the bifurcation on each branch and inter-
sect with the midpoint of the centreline on their 
respective branches. Centrelines were smoothed.

Evaluation
Segmentations generated by the proposed modification 
of the DeepMedic network were examined both quan-
titatively and qualitatively. Quantitatively, multi-class 
data for 46 bifurcations was compared against manu-
ally generated ground-truth (GT) data using the follow-
ing metrics: Dice similarity coefficient (DSC), Matthews 

Table 1 Total number of carotid bifurcations in each dataset, organized by activity

* Validation dataset re-used in evaluation phase

DeepMedic—training 
phase

DeepMedic—evaluation 
phase

52 Training 336 Qualitative (observer scored)

10 Validation* 46 Quantitative (segmentation and geometric metrics)

DeepMedic—utility demonstration—cohort geometric analysis

388 Quantification of diameter, diameter ratio, bifurcation angle

Fig. 3 Schematic of the Carotid Artery Bifurcation. Green lines 
depict boundaries between vessel branches. Red solid lines depict 
centrelines through vessels. Black dotted lines depict straight-line 
paths between the start- and end-points of each vessel branch. Blue 
vectors mark the bifurcation angle ( θ)
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Correlation Coefficient (MCC) [25],  F2,  F0.5, and true 
positive ratio (TPR) (Table  1). Two-sample t-tests were 
used to determine whether or not there were differ-
ences in segmentation performance between branches, 
and between branch-specific and bifurcation segmenta-
tions using a Bonferroni adjusted significance level (α) 
of 0.0025 (0.05/20). A listing of statistical tests included 
for this Bonferroni correction factor is included in Addi-
tional file  1: Table  S1. The difference in performance 
between the original implementation of DeepMedic and 
the proposed implementation, as well as the impact of 
the post-processing stage, were examined in a subset of 
20 bifurcations using the DSC.

In addition, for all subjects outside the DeepMedic 
training cohort (i.e.  168 subjects, 336 bifurcations, 
Table 1), segmentations were examined qualitatively and 
the quality was assessed visually (MZ, 5 years of experi-
ence in vascular MRI). Qualitative scores were assigned 
per bifurcation using the following 0–4 scale, based on 
the amount of adjustments needed before the masks 
could be used for future analyses: 0—failed segmentation 
of vessel or one or more incorrect branch classifications; 
1—major adjustments (i.e. 10 min) required; 2—substan-
tial adjustments (i.e. 5  min) required; 3—minor adjust-
ments (i.e. 2  min) required; and 4—no adjustments 
required. In addition, 25% of the cohort of carotid bifur-
cations available for qualitative assessment were ran-
domly selected and evaluated by two additional observers 
(FV, and PD, 5 and 10 + years’ experience cardiac and 
vascular MRI, respectively). Fleiss Kappa (κ) was used to 
evaluate the agreement between the observers [26, 27].

Geometric descriptors of the carotid arteries generated 
using the GT segmentations and automatically gener-
ated segmentations were compared in the quantitative 
evaluation cohort of 46 bifurcations (Table 1). Two-sam-
ple t-tests were used to determine whether or not there 
were differences between branches using a Bonferroni-
adjusted significance level (α) of 0.0083 (0.05/6). A listing 
of statistical tests included for this Bonferroni correction 
factor is included in Additional file  1: Table  S1. Auto-
matically generated segmentations were used to generate 
cohort-wide (n = 388 bifurcations, Table  1) descriptive 

statistics for carotid geometry, and this data is presented 
as mean ± standard deviation. The coefficient of variation 
was also used to describe the variation of a given descrip-
tor within the cohort and was calculated as (standard 
deviation/mean).

Results
Total analysis time, including pre-processing, segmenta-
tion using the proposed method, post-processing, and 
evaluation against ground truth was approximately four 
minutes per bifurcation. Segmentation time (i.e. infer-
ence time) was approximately 45 s per bifurcation. Man-
ual segmentation time was approximately 15–20 min per 
bifurcation.

A summary of the different quantitative metrics 
for comparison against GT is presented in Table  2. 
For a given branch (i.e. CCA, ICA, or ECA), the DSC 
was 0.80 ± 0.13, MCC = 0.80 ± 0.12,  F2 = 0.82 ± 0.14, 
 F0.5 = 0.78 ± 0.13, and TPR = 0.84 ± 0.16. Performance 
was good considering these quantitative metrics, and no 
statistically significant differences between segmenta-
tion performance between branches were found when 
comparing the CCA and ECA using the DSC, MCC, and 
 F2 metrics and the between the CCA and ICA using the 
 F2 and TPR metrics. In this cohort of 23 subjects, or 138 
branches, 5 had a DSC or MCC score of less than 0.5. 
Examining the whole-bifurcation segmentations showed 
improved results, e.g. DSC = 0.85 ± 0.07, as potential 
disagreement between the multi-class result and GT in 
the carotid bulb is not considered. No statistically sig-
nificant differences were found between whole-bifur-
cation and branch-specific segmentation quality scores 
for DSC, MCC,  F2, and  F0.5. Figure 4 depicts two repre-
sentative segmentation results from the testing cohort. A 
complete listing of results for each subject can be found 
in Additional file 1: Tables S2–S6, and a summary of the 
statistical testing is shown in Additional file 1: Table S7. 
Example segmentations with poorer performance can be 
found in Additional file 1: Figure S1.

Compared to the original implementation of Deep-
Medic, the proposed implementation that is tailored 
for segmentation of the carotid arteries displayed 

Table 2 Summary of segmentation quality metrics for testing cohort

Values are presented as mean ± SD (n = 23 subjects)

Metric Region

Left LCCA LICA LECA Right RCCA RICA RECA

DSC 0.86 ± 0.07 0.82 ± 0.10 0.78 ± 0.17 0.78 ± 0.11 0.85 ± 0.07 0.84 ± 0.06 0.80 ± 0.15 0.77 ± 0.18

MCC 0.86 ± 0.07 0.83 ± 0.09 0.79 ± 0.16 0.79 ± 0.11 0.85 ± 0.07 0.84 ± 0.05 0.81 ± 0.14 0.77 ± 0.18

F2 0.89 ± 0.09 0.85 ± 0.10 0.79 ± 0.19 0.80 ± 0.14 0.87 ± 0.09 0.87 ± 0.06 0.82 ± 0.18 0.80 ± 0.19

F0.5 0.84 ± 0.08 0.80 ± 0.12 0.78 ± 0.16 0.77 ± 0.10 0.84 ± 0.09 0.81 ± 0.08 0.80 ± 0.12 0.74 ± 0.18

TPR 0.91 ± 0.10 0.88 ± 0.12 0.80 ± 0.22 0.82 ± 0.16 0.89 ± 0.12 0.90 ± 0.08 0.83 ± 0.20 0.83 ± 0.21
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improvement, both before and after post-processing, 
considering all regions (Additional file  1: Table  S8). 
Excluding the effects of post-processing, the proposed 
implementation of DeepMedic increased the DSC metric 
by 0.13, on average. When postprocessing was used, the 
proposed implementation returns DSC scores improved 
by 0.04 on average.

Qualitative assessment was performed for all subjects 
outside of the training cohort (i.e. 168 subjects, 336 bifur-
cations). The median and modal score per bifurcation 
was 4. The majority of bifurcations, 61.3%, were judged 

to be suitable for further analyses without adjustment. 
Table 3 summarizes the results of qualitative assessment. 
Interobserver analysis considering 25% of the available 
bifurcations indicated that interobserver agreement was 
modest (κ = 0.11, p = 0.003), and on average bifurcations 
received a score of 3. The median and modal scores in 
this subset were 3 and 4, respectively.

Demonstrating the utility of the segmentations gener-
ated by the proposed network, geometric descriptors 
automatically derived from all segmentations are pre-
sented in Table  4. Geometric descriptors derived from 

Fig. 4 Example segmentation result for two subjects (upper and lower panels). Left panel depicts segmentation result overlaid on four axial 
CE-MRA slices, middle panel depicts the difference between GT and result, right panel depicts 3D surface visualization of result and maximum 
intensity projection of subject with axial slice locations indicated. C-CCA; I-ICA; E-ECA; P-False Positive; N-False Negative; M-class mismatch. Class 
mismatch indicates voxel was in both result and GT, but the voxel in question was assigned to a different class
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both the GT and automatically generated segmentations 
in the testing cohort showed minor differences (Table 5).

Discussion
In this work, we introduced a novel application of deep 
learning and demonstrated multi-class segmentation 
of the carotid arteries in CE-MRA into its constituent 
branches. Segmentations scored highly in both quanti-
tative and qualitative evaluations, and their utility was 
demonstrated by the automated quantification of carotid 
bifurcation geometry.

Quantitative evaluation of the proposed segmentation 
method using the DSC, MCC,  F2,  F0.5, and TPR metrics 

indicates that the method has high performance and 
low failure rates making it acceptable for further use. 
Segmentations were evaluated on both a branch-level, 
and whole-bifurcation-level in 46 bifurcations. Consid-
ering the branch-level segmentations, we found that a 
given branch segmentation (i.e. CCA, ICA, or ECA) had 
scores that were on average acceptable for further use 
(DSC, MCC,  F2, and TPR > 0.8). Moreover, performance 
was relatively stable with respect to branch. In this test-
ing cohort of 46 bifurcations, or 138 branches, only five 
had unacceptably low DSC or MCC scores (< 0.5). Three 
such branches were confined to a single subject (#6, 
Additional file  1: Tables S2–S6), and all were located in 
the ICA or ECA. The mean scores for the CCA were on 
average higher than the ICA and ECA branches, although 
these differences were not significant for all tests (Addi-
tional file 1: Table S7). This may be explained by the ICA 
and ECA being smaller and having more anatomical vari-
ation than the CCA.

The bifurcation-level segmentations on average scored 
higher than the multi-class segmentation of the bifurca-
tion into constituent branches. This is likely related to 
the carotid bulb region where the branches meet. Divid-
ing the carotid bulb into constituent branches is a diffi-
cult task for observers to perform manually as there is no 
signal intensity difference and bifurcation geometry has 
wide variation. Therefore, to create GT data, observers 
segmented the entire bifurcation region first and relied 
on the branch-point of centrelines to divide the CA. This 
may induce variation in how this region is subdivided and 
likely contributes to the lower scores. Increasing the data 
available for training the network could improve perfor-
mance in this aspect.

Visual inspection of the segmentations (Table 2) indi-
cates that the proposed segmentation method has the 
capability to dramatically reduce the time needed to 
produce high quality segmentations of the carotid bifur-
cation. In 336 bifurcations, we found that the majority 
(61.3%) did not need any adjustment before they could be 
used for analyses. A further 25.3% of bifurcations needed 
only minor adjustments that could be performed in less 
than two minutes. Inter-observer comparisons in 25% of 
the subjects available for qualitative assessment verified 
this result and therefore strengthened the notion that the 
proposed method has the ability to dramatically reduce 
the time needed to produce segmentations suitable for 
analyses, even if minor corrections may be sometimes 
necessary.

To demonstrate the utility of the segmentation frame-
work, we derived common geometric descriptors of 
carotid bifurcation geometry for the entire cohort. In a 
study cohort that includes both men and women between 
50 and 65  years of age with carotid atherosclerosis, the 

Table 3 Qualitative assessment of  segmentations 
for subjects outside the training cohort (n = 336)

Qualitative score Count % of Total

0—Fail 16 4.8

1—Major adjustments required 7 2.1

2—Substantial adjustments required 22 6.6

3—Minor adjustments required 85 25.3

4—No adjustments required 206 61.3

Table 4 Results of  cohort-wide geometric analyses 
(n = 388 bifurcations)

All parameters are listed as mean ± SD

Parameter Value Coefficient 
of variation

Diameter CCA [mm] 8.7 ± 1.1 0.13

Diameter ICA [mm] 7.5 ± 1.4 0.19

Diameter ECA [mm] 5.7 ± 1.0 0.17

Diameter ratio ICA/CCA [–] 0.88 ± 0.15 0.17

Diameter ratio ECA/CCA [–] 0.67 ± 0.09 0.14

Bifurcation angle [°] 49.5 ± 13.4 0.27

Table 5 Comparison of  geometric parameters 
generated from  manually and  automatically generated 
segmentations (n = 46 bifurcations)

* Statistically Significant difference (e.g. p < α = 0.0083)

Parameter Difference (Manual–
Automatic)

p‑value

Diameter CCA [mm]  − 0.69 ± 0.91* 1.8e−3

Diameter ICA [mm]  − 0.27 ± 1.30 0.852

Diameter ECA [mm]  − 0.39 ± 0.82 0.319

Diameter ratio ICA/CCA [–] 0.04 ± 0.14 0.259

Diameter ratio ECA/CCA [–] 0.05 ± 0.09 0.012

Bifurcation angle [°]  − 2.6 ± 25.5 0.506
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expected range of carotid geometry is large. For example, 
we found that the bifurcation angle had a large coefficient 
of variation (51%), though this was in line with previ-
ously reported values [20]. Previously reported values for 
CCA and ICA diameter were smaller than our findings 
[28], though that cohort was younger and measurements 
were performed by ultrasound. Comparing the geometric 
descriptors as derived from GT and automatically gen-
erated segmentations in the testing cohort showed good 
correspondence, though differences were found, particu-
larly in the diameter of the CCA. However, this differ-
ence in diameter is minor, on the order of one voxel. The 
large geometric variation of carotid bifurcation anatomy, 
as quantified here, may also indicate the need for a sub-
stantially larger training set to achieve improved segmen-
tation results. A larger training set should also include 
subjects with more severe atherosclerosis.

This study has several limitations. With limited 
amounts of multi-class GT data available for the carotid 
bifurcation, owing to the time-consuming nature of cre-
ating this data (15–20  min per bifurcation), the data 
available for training and testing was relatively small. 
Therefore, post-processing plays an important role in the 
success of the proposed segmentation pipeline and helps 
compensate for the limited amount of ground-truth data. 
With more ground-truth data used for training and test-
ing, the importance of post-processing stages may be 
reduced as the network increases in performance. That 
being said, the network performs strongly even with the 
relatively limited training set, and shows that deep learn-
ing based methods are applicable even with less-than-
ideal datasets. In addition, the difficulty of dividing the 
carotid bulb into constituent branches likely induces 
undesirable variation in the GT data. This study also lacks 
an inter- and intra-observer variability study with respect 
to the generation of ground-truth data. Finally, this study 
had limited comparisons to previously published meth-
ods, both traditional and deep learning based, as compa-
rable methods for automated multi-class segmentation 
methods for the carotid bifurcation are lacking. There-
fore, we cannot conclude that the proposed method is 
wholly superior, and alternative approaches may outper-
form the proposed method.

In conclusion, a CNN was applied to segment the 
carotid bifurcation into its constituent branches and 
facilitate future analyses. Segmentations scored well in 
both quantitative and qualitative analyses, and to demon-
strate the utility of these segmentations we automatically 
generated geometric descriptions for 388 carotid bifurca-
tions. This segmentation method demonstrated the abil-
ity to accelerate analyses by dramatically reducing the 
amount of manual labour required, enabling large cohort 
studies.
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