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Cell Cycle Model System for 
Advancing Cancer Biomarker 
Research
Iulia M. Lazar   1,2, Ina Hoeschele3, Juliana de Morais1 & Milagros J. Tenga1

Progress in understanding the complexity of a devastating disease such as cancer has underscored 
the need for developing comprehensive panels of molecular markers for early disease detection and 
precision medicine applications. The present study was conducted to assess whether a cohesive 
biological context can be assigned to protein markers derived from public data mining, and whether 
mass spectrometry can be utilized to screen for the co-expression of functionally related biomarkers 
to be recommended for further exploration in clinical context. Cell cycle arrest/release experiments 
of MCF7/SKBR3 breast cancer and MCF10 non-tumorigenic cells were used as a surrogate to support 
the production of proteins relevant to aberrant cell proliferation. Information downloaded from the 
scientific public domain was queried with bioinformatics tools to generate an initial list of 1038 cancer-
associated proteins. Mass spectrometric analysis of cell extracts identified 352 proteins that could be 
matched to the public list. Differential expression, enrichment, and protein-protein interaction analysis 
of the proteomic data revealed several functionally-related clusters of relevance to cancer. The results 
demonstrate that public data derived from independent experiments can be used to inform biological 
research and support the development of molecular assays for probing the characteristics of a disease.

The discovery of biomarker panels of high sensitivity and specificity is pursued at every level of diagnostics, 
from preliminary screening for the presence or risk of a disease, to staging, response to treatment, progression 
or relapse. Biomarker potential has been associated not only with the biological presence of various biochem-
ical components (nucleic acids, proteins, carbohydrates, lipids or small molecules), but also with their cellular 
location and change in expression level or chemical modifications (mutation, epigenetic or PTMs)1–6. Despite 
all efforts, however, no biomarker profiling effort has led yet to a satisfactory panel that enables sensitive and 
specific detection of relevant molecular markers in specific tissues or body fluids. On the other hand, the advance 
of high-throughput sequencing and mass spectrometry (MS) technologies resulted in the generation of mas-
sive amounts of data that can provide researchers with previously inaccessible insights into the functionality 
of a biological system7. Disease-relevant information emerging from comprehensive datasets stemming from 
whole-genome expression, transcriptome, proteome or other omics profiles is produced at ever increasing rates 
and compiled in data repositories. For example, one of the first gene panels derived from microarray experiments 
is the 70 gene signature (70-GS), so-called MammaPrintTM assay, that was developed for breast cancer diagnostics 
and prognostics intended for individualized treatment of estrogen receptor (ER)+/−, lymph-node (−) patients8. 
An expression pattern of 534 “intrinsic” genes was used for breast cancer classification9, and additional prognostic 
profiles such as the 76-gene assay Rotterdam Signature, the 21-gene recurrence score Oncotype Dx®, the PAM50 
Risk of Recurrence score, the EndoPredict®, and the Breast Cancer Index, were developed10,11. Nonetheless, the 
cost of generating large biological datasets that would enable the development of such biomarker panels and 
translating the findings into medical practice is not trivial. Such challenges suggest that discovery efforts should 
be revisited to better capitalize not just on novel technological advancements, but also on the availability of the 
vast amount of already existing data.

Our work on proteomic profiling the G1 cell cycle stage of MCF7 breast cancer cells has led to the conclusion 
that biomarker proteins are not isolated players in the disease but rather part of highly interconnected functional 
networks12,13. Three broad protein-protein interaction (PPI) networks were recognized: signaling, DNA damage 
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repair, and metabolism/oxidative stress. Capitalizing on information extracted from the scientific literature and 
public databases, the focus of this work was to investigate whether: (a) functionally-related gene or protein cate-
gories can be extracted from the totality of markers catalogued in various data repositories; (b) cell cycle exper-
iments and MS can enable protein-level detection of such categories in multiple cell lines and cell states; (c) PPI 
networks can expose new relationships between the marker proteins; and (d) protein clusters of relevance show 
propensity for detection in tissues or blood to support the development of minimally invasive diagnostic assays.

Results
Detectability of cancer-associated proteins in cell lines.  To maximize protein coverage and the iden-
tification of proteins with biomarker utility, proteome profiles of representative breast cancer [MCF7/ER+ and 
SKBR3/HER2+] and non-tumorigenic (MCF10A) cell lines were generated for different stages of the cell cycle by 
nano-liquid chromatography (LC)-MS. The cells were cultured in optimized growth medium, arrested in G1 by 
serum deprivation, released in S in the presence of growth factors and/or hormones, and separated into enriched 
nuclear (N) and cytoplasmic (C) fractions. The corresponding cell states were termed G1N, G1C, SN and SC (12 
cell states for 3 cell lines). Proteomic analysis of three biological replicates of each of these cell states led to the 
identification of 906–1462 proteins matched by ~3050–4670 spectral counts per cell state, with an intra-state 
coefficient of variation (CV) of 1–12%. The FDR for peptide identifications was <3% (Fig. 1). Cancer-relevant 
literature1–6 and the UniProt Homo sapiens database14, encompassing 20,198 reviewed unique protein sequences, 
were mined with bioinformatics tools enabled by the DAVID resource (Database for Annotation, Visualization 
and Integrated Discovery)15,16 to identify the proteins associated with cancer development. The search resulted in 
the compilation of a list of 1038 proteins from the entire human proteome, of which, 352 were identifiable in the 
cell cycle experiments. From here on, we will refer to these proteins as cancer markers. A number of 62–116 puta-
tive markers were identified per cell state, representing 6.0–9.4% of the total protein IDs (Fig. 1). Supplemental 
Table S1 provides the list of 1038 proteins, as well as the 352 proteins identified in the cell cycle experiments with 
their corresponding UniProt IDs, total spectral counts accumulated from all cell states, mean spectral counts cal-
culated from three biological replicates, and the associated CVs. The overlap between the identifiable proteins in 
the G1N/G1C/SN/SC cell cycle states is shown in Fig. 2. While a large proportion of proteins (~33%) were iden-
tifiable only in a single cell state (Fig. 3a), detectability in multiple states improved with the number of spectral 
counts per protein (Fig. 3b), indicating that the somewhat low level of overlap (25–38%) in the Venn diagrams 
from Fig. 2 was rather due to less than optimal detectability of low abundance proteins than differences in expres-
sion. The analysis of similar cell fractions on more sensitive MS platforms is expected to increase not only the 
number of protein IDs, but also the overlap and reproducibility of their identification.

Up/down-regulated protein panels.  To explore the space of proteins that could potentially reveal differ-
ences between cancerous and non-cancerous cell states, the MCF7 and SKBR3 cells were compared to MCF10 in 
their respective cell cycle stages and cellular fractions. The differences were assessed based on MS spectral count 
data, and the results were compiled in two panels, displaying up- or down-regulation, respectively. In total, 8 com-
parisons of cancerous to non-cancerous cell states were made, the conditions for inclusion being: (i) the proteins 
had to be identifiable in at least two of any 12 cell states; (ii) the fold-change (FC) in spectral counts of the MCF7 
or SKBR3 to MCF10 comparisons had to be approximately larger than two [more precisely, log2(FC) >0.95 or 
log2(FC) <(−0.95)]; and (iii) the individual p-values associated with a change had to be <0.2 for at least one out 
of the 8 comparisons. A few comments must be made in regard to this selection process. First, due to poor repro-
ducibility in the detection of low-abundance proteins, we opted for a relaxed p-value for protein inclusion in the 
two panels to better capture the trends of the global cellular processes that may change in response to a perturba-
tion. Second, the goal was not to produce differential expression lists characteristic to our particular arrest/release 
experiments, controlled at a certain significance level. The protein list under discussion was pre-selected based on 

Figure 1.  Bar graph displaying the % cancer-associated proteins identified in each cell state of MCF7, MCF10 
and SKBR3 cells. The protein ID counts represent the number of proteins identified in five combined technical 
replicates of each cell state. Biological replicates are numbered as 1, 2 and 3.
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independent criteria (in this case by data mining), and comparisons were performed to assess whether any of the 
proteins could qualify as promising targets for cell cycle experiments due to potential changes in expression level. 
Therefore, correction for multiple testing was not performed, and the p-values should be viewed solely as a cut-off 
filter for eliminating proteins with irreproducible detection, and not be expected to control the overall false pos-
itive rate. The log2 values of the fold-change with the associated statistical parameters are listed in Supplemental 
Table S1. Based on the above selection criteria, a total of 177 proteins (83% with p ≤ 0.05, 4.5% with 0.05 <p ≤ 0.1, 
and 12.5% with 0.1 <p ≤ 0.2) identified by ≥4 spectral counts qualified for inclusion in the two panels, of which 
112 were associated with up- and 86 with down-regulated states, respectively. Supplemental Table S2 encompasses 
the two panels, cells comprising zeros corresponding to proteins that were not detected in that given cell state. The 
column on the far right represents the sum of all spectral counts that matched a particular protein ID. Figure 4a 
and b depict the heat maps of the 112 and 86 proteins. The columns were arranged in order of cell cycle stage 

Figure 2.  Venn diagrams displaying the overlap in cancer marker protein identifications in different cell states 
(G1N, G1C, SN, and SC) between MCF7, MCF10 and SKBR3 cells. The diagrams were built from combined 
marker identifications in three biological replicates. The total number of markers per cell state is provided in 
parenthesis. (a) G1N: unique markers 180; (b) G1C: unique markers 205; (c) SN: unique markers 197; (d) SC: 
unique markers 198.

Figure 3.  Charts displaying the detectability of cancer marker proteins in any number “x” of cell states. (a) 
Number of cancer marker proteins that could be identified in “x” cell states. (b) Detectability of cancer marker 
proteins in “x” cell states as a function of the log-transformed number of matching spectral counts (x = 1–12 cell 
states corresponding to the G1/S cell cycle stages and nuclear/cytoplasmic fractions generated from the MCF7, 
MCF10 and SKBR3 cells).
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and compartment (G1N7, SN7, G1N3, SN3, G1C7, SC7, G1C3, SC3), and the proteins were sorted based on the 
values in the first column that represent the log2 ratios of the G1N/MCF7 vs. MCF10 comparison, from high to 
low. While some proteins (21 in number) displayed both up- and down-regulation in different cell states, clear 
trends were observable in both nuclear and cytoplasmic fractions, extreme changes being characteristic rather 
to the nuclear fractions. We found that for our cell cycle experiments, by sorting the data based on changes in 
a cell state of reference (in this case the G1 nuclear fraction of MCF7 vs. MCF10), the biological processes that 
were affected by the perturbations associated with arrest/release lined up naturally in an easy to interpret manner. 
Having the nuclear fractions separated from the cytoplasmic ones helped not only increasing the protein coverage 
but also localizing the sources of the change. The results were validated with endogenous β-actin and β-tubulin, 
and spiked bovine standards (hemoglobin, α- and β-casein). In addition, two protein barcodes developed in our 
laboratory for the validation of spectral count data for nuclear (11 proteins) and cytoplasmic (62 proteins) cell 
fractions generated in cell cycle experiments17 were tested. All endogenous, spike and nuclear barcode proteins 
displayed <2-fold change in spectral counts. A few cytoplasmic barcode proteins showed a slightly higher than 
2-fold change, but only in a few cell fractions. This was, however, an expected outcome, as the barcode was devel-
oped from MCF7 and MCF10 datasets only.

Annotation, enrichment and analysis of protein-protein interactions.  To place the experimental 
findings in biological context, the protein sets identified in the cell cycle studies were annotated and assessed 
for enrichment in GO (gene ontology) categories18. Supplemental Table S3 comprises the results for the lists of 
352, 112-up and 86-down regulated proteins for the following categories: biological process, molecular function, 
cellular compartment, Kegg pathways, associated diseases and presence in tissues. Only the records for which the 
FDRs were <6% are listed. Relevant biological processes for the list of 352 and differentially expressed proteins 
are presented as bar graphs in Figs 5 and 6 as a function of fold-enrichment, or, shown categorized in a pie chart. 
Specific protein associations with various cell cycle stages and up/down-regulated biological categories were cap-
tured in Circos plots19 (Fig. 7 and Supplemental Table S4), and PPIs were visualized with STRING (Search Tool 
for the Retrieval of Interacting Genes20) (Fig. 8). PPIs specific to cell lines, cell-cycle stage, and differential expres-
sion are provided in Supplemental Fig. S1.

Diagnostics/propensity for detection in tissues and blood.  To further assess whether the analysis of 
cell lines can lead to the identification of protein panels with diagnostic potential, the cellular location and prior 
identification of these proteins in tissues was explored. Supplemental Table S3 provides a list of enriched GO 
categories in terms of cellular location and tissue associations for the list of 352 proteins. Figure 9 captures the 
categories with larger than 2-fold enrichment, as well as the overlaps between proteins associated with the plasma 
membrane/cell surface, the ones identified in blood or plasma, and the proteins pertaining to the extracellular 
space and a rather new source of biomarkers, i.e., exosomes.

Figure 4.  Heat maps of cancer marker proteins that changed spectral counts in the cell cycle arrest/release 
experiments. (a) Up-regulated panel of 112 proteins (red); (b) Down-regulated panel of 86 proteins (blue). 
Protein descriptors are provided in columns to the left (UniProt IDs and name), and total number of spectral 
counts to the right, of each heat map. Major biological processes affected by a change are indicated in the upper 
and lower levels of each panel.
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Discussion
In recent studies, we identified three major functional categories of cancer markers in the G1 stage of the MCF7 
breast cancer cell cycle, i.e., signaling, DNA repair, and oxidative stress12,13. In the present work, we expanded our 
analysis to multiple cell lines, and refined the categories based on results obtained by mining the literature and the 
Homo sapiens protein database, effort that resulted in the identification of 1038 proteins associated with the devel-
opment of cancer. We reasoned that a large list, in excess of 1000 proteins, generated by world-wide independent 
research experiments would be able to reveal a comprehensive view of the altered protein landscape characteristic 
to cancerous cell states. From this list, 352 proteins were identifiable in G1-arrest/S-release cell cycle experiments 
of MCF7/ER+, SKBR3/HER2+ and MCF10 non-tumorigenic cells. The list of 352 proteins proved to be a fair 
representation of the compiled list of 1038 in terms of GO categories of biological processes, pathways, and cellu-
lar location. Therefore, we suggest that cell cycle experiments conducted with relevant cell lines, under appropri-
ate biological perturbations, could be used as a model system for simultaneously assessing the behavior of a large 
set of proteins with biomarker potential and for advancing hypotheses that can inform future clinical research.

Figure 5.  Bar graphs displaying the enriched GO biological processes associated with the cancer marker 
proteins. (a) Full list of 352 cancer markers identified in cell cycle experiments; (b) List of 112 up-regulated 
proteins; and (c) List of 86 down-regulated proteins. Only categories with >2-fold enrichment and FDR <6% 
are shown. Labels on the right of each bar indicate the number of proteins that matched that particular enriched 
category. Enrichment status was assessed with DAVID tools.

Figure 6.  Pie chart summarizing the most relevant biological processes associated with the cancer marker 
proteins, grouped in seven major categories: signaling, DNA repair, redox processes, metabolism, proliferation/
apoptosis, immune response, and adhesion/migration.
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We evaluated the ability to detect the presence and change in expression of protein markers of interest in the 
context of their biological relevance to cancer. Each cell state (G1N, G1C, SN and SC) enabled the identification 
of a substantial number of markers (Fig. 1). While differences between cell lines could not be assessed solely 
based on protein IDs, due to the variability introduced by the low abundance proteins (Figs 2 and 3), 29 out of 
352 proteins were found to be common to all cell lines and cell states. Moreover, as noted in the Circos plot from 
Fig. 7a, the distribution of high and low-abundance markers throughout various cell lines and cell cycle stages was 
rather uniform, with the cytoplasmic fractions comprising a somewhat larger number of marker proteins than 

Figure 7.  Circos plots displaying protein associations with cell cycle and up/down-regulated biological 
processes. (a) Protein associations with cell cycle stages and cell fractions; to avoid overcrowding, only the top 
100 most abundant proteins are listed (out of 352), and line width is reflective of the spectral counts per protein; 
(b) Protein associations of up-regulated proteins with the major biological categories; (c) Protein associations of 
down-regulated proteins with the major biological categories. The protein IDs are listed in all plots in decreasing 
order of protein hits per category, counterclockwise.

Figure 8.  STRING PPI networks of major biological categories. The total number of proteins included in each 
network is shown, and the major protein interaction hubs are color-coded in each figure.
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the nuclear ones. Most proteins were associated with multiple cell fractions and cell cycle stages. The majority 
of top-enriched biological processes that emerged from the list (Fig. 5a) could be grouped into a few relevant 
categories, representative of a molecular-to-cellular trail of cancer progression: signaling, DNA damage repair, 
oxidative stress and metabolism, (+/−) regulation of cell proliferation and apoptosis, immune response, and 
adhesion/migration/differentiation (Fig. 6). Disease mutation proteins were abundant in the list (107 out of 352), 
and included components of all major biological categories. Specialized processes were generally represented by a 
smaller number of proteins with more pronounced enrichment (>10–25-fold), while broader and more inclusive 
categories were represented by a larger number of proteins with a smaller fold-enrichment (<10-fold). In the 
followings, we will focus the discussion on the most distinct trends that evolved from analyzing the data.

Figure 6 encompasses the most relevant biological processes, represented by the cell cycle markers, grouped in 
7 major categories. Several proteins were common to multiple processes within the same category. Cellular sign-
aling was represented by pathways that drive proliferation in ER+ and ERBB2+ cancer cells (e.g., MAPK, EGFR/
ERBB2 and estrogen signaling), and additional downstream pathways involved in proliferation, apoptosis and 
survival. Components of the PI3K-PKB-FOXO signaling axis, with roles in aging and lifespan, were present, as 
well21. Pathways such as p53, PDGF, interferon-ɣ, Toll-like and JAK-STAT further correlated the above pathways 
to DNA damage repair, angiogenesis, migration and immune response. Survival pathways such as HIF-1, acti-
vated by cancer cells in response to hypoxic stress, had components that have been recognized recently as novel 
targets for cancer therapies22. Multiple constituents of the signaling cluster, in particular the cell surface receptors, 
the kinases and the activators of immune response, are well-known proto-oncogenes that present special interest 
as cancer biomarkers or drug targets.

The DNA damage repair category encompassed the entire range or repair mechanisms23, as well as chroma-
tin maintenance, response to radiation and cell aging. Dysfunctional DNA damage repair pathways that lead to 
the accumulation of mutations and genomic instability have been the target of many drug discovery and devel-
opment efforts24,25. Multiple damage repair proteins overlapped the categories of cell cycle/proliferation and 
apoptosis, which, in turn, contained both positive and negative regulators. Positive regulation of apoptosis cor-
related with negative regulation of cell proliferation through proteins such as programmed cell death (PDCD5), 
BCL-2 homologous antagonist killer, and NOTCH1-a receptor for membrane bound ligands that is implicated 
in cell-fate determination through processes that relate not just to cell proliferation and apoptosis but also dif-
ferentiation, migration and angiogenesis. Alternatively, negative regulation of apoptosis correlated to prolifera-
tion in general, or to positive regulation of proliferation. This was supported by a large number of proteins with 
complex roles in chaperoning, histone assembly, centrosome duplication and regulation of tumor suppressor 
p53 (NPM), sensors of DNA damage repair via non-homologous end joining (NHEJ) and double strand break 
(DSB) mechanisms (PRKDC and MRE11A), cell-cell adhesion and differentiation (EPCAM), transcription of 
RNA polymerase II-dependent genes (MED1), innate immune response (MIF), and signaling via the epidermal 

Figure 9.  Detection propensity for the list of 352 cancer marker proteins. (a) Bar graph displaying enriched 
GO cellular compartments. Only categories with >2-fold enrichment and FDR <6% are shown. Labels on 
the right of each bar indicate the number of proteins that matched that particular category. Enrichment status 
was assessed with DAVID tools. (b) Venn diagram displaying the overlap between cancer marker proteins 
associated with the plasma membrane/cell surface, the exosome/extracellular space, and the proteins that have 
been previously identified in blood or plasma. (c) Biological processes and pathways represented by exosome 
proteins.
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growth factor receptor (EGFR). Additional proteins involved in negative regulation of apoptosis, such as STAT3 
that mediates cellular responses to growth factors and interleukins, and the tumor suppressor phosphatase PTEN 
that antagonizes the PI3K-AKT/PKB signaling pathway and cell survival, had roles in both positive and negative 
regulation of proliferation. Angiogenic pathways, as a whole, did not qualify for the list of enriched biological cat-
egories, but relevant proteins were present and common to pathways related to proliferation, invasion/migration 
and immune response.

Redox processes emerged as a particularly relevant sub-category of metabolism. Oxidative stress was inter-
twined with glutathione metabolism, aging and NO biosynthesis, and included a range of protein functional 
categories involved in antioxidant defense, cellular detoxification and apoptotic signaling (e.g., reductases, trans-
ferases, peroxidases, and antioxidants)26–31. Deregulation of NO production and transport has been associated 
with endothelial dysfunction and angiogenesis-related disorders32. Processes related to iron metabolism and 
homeostasis in cancer have been implicated in the production of reactive oxygen species (ROS), cell respiration 
and detoxification, as well as cell cycle, growth and proliferation33. Among many biosynthetic metabolic path-
ways, one carbon metabolism, a pathway that lies at the basis of DNA/RNA synthesis and DNA methylation 
processes, has emerged in recent years as an important area of study, mainly due to implications in diseases such 
as cancer, aging, loss of cognitive function, stroke and cardiovascular diseases34. Xenobiotic and response to drug 
processes represented another category of interest, especially if assessed in the context of future personalized 
medicine applications35,36.

Cancer immunotherapy is not a new concept, however, it is only recently that antibody and cell-based ther-
apies have been effectively implemented. Both innate and adaptive immune responses, involving the activation 
of effector molecules, pathways and cells, have been shown to co-operate in killing the cancer cells37,38. The pro-
teins that could be mapped to the immune response category were part of various defense, stress and inflamma-
tory response mechanisms, antigen presentation, and cytokine and chemokine production. Notably, overlaps 
with multiple signaling pathways (e.g., MAPK, Toll-like, JAK-STAT, NF-Kβ, metabolic ROS regulation) were 
observable.

Proteins associated with the level of cancer cell differentiation, cell adhesion, motility and migration have been 
recognized to have diagnostic value due to their relevance to metastatic processes39,40. Epithelial to mesenchymal 
transition (EMT) followed by loss of adhesion proteins (e.g., cadherins), degradation of the extracellular matrix 
(ECM) by matrix metalloproteinases (MMPs), cathepsins and the urokinase-type plasminogen activator (uPA) 
system, as well as co-option of factors from the tumor microenvironment to support metastasis (e.g., cytokines 
TGF-β and SDF1), are all processes that provide cancer cells with the ability to invade blood vessels and migrate 
to distant sites in the body. Existing data underscore the complexity of the metastatic process and the divergent 
evolution of cancer cells at the metastatic site, pinpointing that successful therapies will need to target not just the 
cancer cells alone, but also the tumor microenvironment.

Global PPI networks indicated a high level of interconnectivity within and between the selected protein cat-
egories, the three major groups (signaling, DNA damage repair, and oxidative stress/metabolism) being abun-
dantly present in all cell lines (Supplemental Fig. S1a–c). These groups were also identifiable in all four cell cycle 
stages (Supplemental Fig. S1d–g), with DNA damage repair and signaling being dominant in the nuclear cell 
fractions (Supplemental Fig. S1d and f). Refined networks, based on enriched biological processes, revealed inti-
mate interactions that superimposed the selected category with a number of other categories, suggesting that a 
meaningful evaluation of such processes should not be performed in isolation (Fig. 8). Essentially, all marker cat-
egories were present at some extent in all interaction networks, with regulatory signaling transcending all clusters. 
From the total of 352 proteins, 244 were part of the networks shown in Fig. 8, shared proteins between multiple 
networks being associated with regulation of signal transduction, apoptotic processes, response to stress and 
immune response. The composition, structure and dynamics of PPI networks have been shown to be perturbed in 
diseased biological states, and, therefore, such networks have been recognized as valuable tools for exploring the 
molecular foundations of disease41,42. Moreover, targeting PPI networks instead of single proteins has emerged as 
a new therapeutic paradigm for systemic diseases such as cancer.

The quantitative comparisons between the cancerous (MCF7, SKBR3) and non-cancerous (MCF10) cell lines 
were reflective of the enriched biological categories highlighted above (Fig. 5b and c). A breakdown of the data 
in heat maps, based on cell cycle stage and compartment, revealed more specifically the source of the observed 
changes (Fig. 4). The nuclear fractions showed the most extreme variations. Various components of the DNA 
repair machinery were up-regulated in both G1N and SN cancerous cell states. Mismatch repair (MMR), nucle-
otide excision repair (NER), base excision repair (BER), homologous recombination (HR) and negative regula-
tion of DNA recombination were among the top most-enriched and up-regulated biological processes (Fig. 4a/
top). Up-regulated metabolic xenobiotic/drug response proteins were present in both nuclear and cytoplasmic 
fractions, and mitochondrial-related responses to ROS/cellular detoxification and redox homeostasis showed ele-
vated expression in the cytoplasmic fractions, in particular in SKBR3 cells (Fig. 4a/bottom). However, regulation 
of oxidative stress-induced death, cellular detoxification via superoxide dismutase activity, along with glutathione 
metabolism also displayed down-regulated trends in the cytoplasmic fractions (Fig. 4b/top). Cell-cell adhesion 
and negative regulation of apoptosis were among the most down-regulated processes in both nuclear and cyto-
plasmic fractions (Fig. 4b/bottom). In addition, the NHEJ and cancer proteoglycans pathways were identified as 
down-regulated in the panel. As several proteins involved in cell-cell adhesion and cytoskeletal reorganization 
are also part of the proteoglycan family, it is worth noting that heavy glycosylation or changes in the structure of 
glycosylation may affect the detection ability of proteins and alter the interpretation of results. In such cases, the 
observed alterations are not necessarily the result of changes in expression level, but of changes in the nature, site, 
number, or structure of PTMs. Likewise, protein translocation from one cellular compartment to another can also 
affect the representation of differential expression data.
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The bearing of diverse, complex and interconnected pathways that regulate the multiple facets of the same 
biological processes cannot be overstated when one considers systemic changes in a complex environment such 
as the cell. The STRING PPI diagrams (Supplemental Fig. S1h and i) and the Circos plots from Fig. 7b and c that 
encompass the differentially expressed panels, expose the complex, multifunctional role played by most marker 
proteins. To avoid overcrowding, only the proteins that were included in the seven categories were incorpo-
rated in the Circos plots (77 and 60, respectively). The proliferation/apoptosis category was broken down in four 
sub-categories to better capture the impact of (+) and (−) regulatory components. With only 21 overlapping pro-
teins between the two panels, the independent and opposing forces that act on each category are evident. Overall, 
however, the emerging trends from Figs 6 and 7 and Supplemental Fig. S1 are indicative of faulty DNA damage 
repair mechanisms that lead to accumulation of mutations, genomic instability, and resistance to DNA-damaging 
therapies. Such altered mechanisms, backed by deregulated responses to oxidative stress, support cancer cells in 
their quest for survival43. BER and NER are particularly important for removing lesions caused by ROS and UV/
ionizing radiation, respectively, throughout all cell cycle stages, while MMR plays an important role mainly in 
S, where it corrects for base-base mismatches and small insertions and deletions. Double strand breaks are typ-
ically repaired by NHEJ in G1 and homologous recombination (HR) in S and G244. An altered, non-functional 
NHEJ repair machinery in G1 can be replaced by an alternative mechanism, microhomology mediated end join-
ing (MMEJ)45. However, this mechanism is more error-prone than NHEJ. In human cell lines, proteins such as 
DNA ligase 1/3, PARP and histone H1 have been shown to be involved in the MMEJ mechanism. A few exam-
ples of high and/or consistent up-regulation included proteins associated with DNA replication (RPA3, TOP2A, 
NUMA1, DNMT1), DNA damage repair (MSH proteins, TP53 binding proteins, LIG3), proliferation (KI67, 
PCNA, PHB), vesicle mediated sorting (VPS52), and adhesion (epithelial cell adhesion and tumor-associated cal-
cium signal transducer 1 EPCAM antigen). Prevalent up-regulation in MCF7/ER+ cells was observed for MMR 
proteins, signal-transducer GNAS, intracellular protein breakdown CTSD, and the epithelial marker cytokeratin 
19. Specific to SKBR3/HER2+ cells, on the other hand, were the receptor tyrosine kinase ERBB2, growth factor 
receptor bound protein (GRB7), breast carcinoma amplified sequence (BCAS1), S100 calcium binding protein 
P (S100P), aldehyde dehydrogenase 2 (ALDH2), and catechol-O-methyltransferase (COMT). Similarly, in the 
down-regulated panel, proteins involved in the processes of cell adhesion (CTNNB1, FSCN1), Ca and/or actin 
binding (S100A2, S100A16, caldesmon/CALD1), glutathione metabolism (glutathione S-transferase GSTP1), as 
well as the epithelial cell marker and tumor suppressor 14–3–3 sigma (SFN)-a p53-regulated inhibitor of G2/M 
progression46, displayed the largest change.

The list of 352 proteins could be associated with all major cellular compartments (Fig. 9a). Associations with 
epithelium and various cancers were common, and matches to plasma, blood, milk, placenta and fetal brain 
cortex qualified among the top categories with 2–14-fold enrichment values and FDRs <6% (Supplemental 
Table S3). A large proportion of these proteins were cell surface/plasma membrane or extracellular space-related, 
displaying thus potential as therapeutic targets or diagnostic biomarkers. Notably, in recent years, the important 
role of exosomes in cell-cell communications and waste management has been recognized, as well as the many 
new opportunities that these extracellular vesicles offer for regenerative medicine applications47. Their biochem-
ical cargo (proteins, lipids, mRNA, microRNA, non-coding RNA) has particular value to biomedical and clinical 
research, as the proteins are expected to be representative of the cellular source and status. A total of 132 proteins, 
illustrative of the biological processes that were described above, were associated with the exosome. Roughly 
~60% of these proteins were shared with the plasma membrane/cell surface category, and ~20% of each category 
was identifiable in blood or plasma (Fig. 9b and c), a provoking result that elicits encouraging prospects for the 
development of tissue imaging and minimally invasive screening assays.

Conclusions
All together, this study suggests that experimental results generated by cell cycle studies can be probed with public 
domain data to identify functionally-related protein panels with biomarker or drug target potential. Controlled 
biological interventions in cell cycle progression, followed by MS proteomic profiling and functional analysis, 
can reveal novel protein associations and evidence for previously unsuspected mechanisms that drive cancer 
cell proliferation. The use of prior knowledge can provide context and insight into data interpretation to inform 
future experimental design. The availability of protein panels reflective of the mechanistic aspects of cancer pro-
gression and metastasis will support the development of the most novel therapeutic approaches, e.g., immune 
response-based or PPI network targeted therapies. Translational efforts will benefit at all levels, from cancer 
detection and treatment, to monitoring therapeutic response and disease progression. The availability of large 
panels of putative biomarkers, as well as of the biological context in which such biomarkers manifest themselves, 
can inform the design of clinical trials, speed up and enhance the quality of the disease classification and staging 
process, refine the scope of targeted therapies, and ultimately advance the capabilities of precision medicine and 
companion diagnostics applications.

Methods
Materials.  The MCF7, SKBR3 and MCF10 cell lines, as well as Eagle’s minimum essential medium 
(EMEM), trypsin (0.25%)/EDTA (0.53 mM), and phosphate-buffered saline (PBS) were purchased from ATCC 
(Manassas, VA). Phenol-red free Dulbecco’s modified Eagle’s (DMEM)/F-12 (1:1) and horse serum (HS) were 
from Invitrogen (Carlsbad, CA), McCoy 5 A was from Life Technologies (Carlsbad, CA), and human epidermal 
growth factor (hEGF) from PeproTech (Rocky Hill, NJ). Fetal bovine serum (FBS) for MCF7 and MCF10 cultures 
was from ATCC, and for SKBR3 from Gemini Bio-Products (West Sacramento, CA). Charcoal/dextran treated 
FBS was purchased from Hyclone (Logan, UT). Other cell culture or processing reagents such as 17-β estradiol 
(E2), hydrocortisone, cholera toxin, L-glutamine, bovine insulin, protease inhibitor cocktail (P8340), Na3VO4, 
NaF, urea, dithiothreitol (DTT), acetic acid, trifluoroacetic acid (TFA), ammonium bicarbonate (NH4HCO3) 
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and all bovine protein standards (hemoglobin α/β, α-casein, β-casein), and the Cell Lytic™ NuCLEAR™ extrac-
tion kit were purchased from Sigma (St. Louis, MO). Trypsin, sequencing grade, was from Promega (Madison, 
WI). Sample cleanup SPEC-PTC18 and SPEC-PTSCX pipette tips were from Agilent. Methanol and acetonitrile, 
HPLC grade, were purchased from Fisher Scientific (Fair Lawn, NJ). Deionized water was produced in-house 
with a MilliQ Ultrapure water system (Millipore, Bedford, MA).

Cell culture.  The cells were cultured in an incubator, at 37 °C and 5% CO2, per manufacturer’s protocol. The 
cells were arrested for 48 h in serum-free medium, and released in culture medium supplemented with growth 
factors or hormones48,49 until a maximum proportion of S-fraction cells was obtained (24 h for MCF/MCF10 and 
36 h for SKBR3). The culture medium for MCF7 was EMEM with FBS (10%) and bovine insulin (10 μg/mL); for 
MCF10 was DMEM/F12 (1:1) with horse serum (5%), EGF (20 ng/mL), hydrocortisone (0.5 μg/mL), cholera 
toxin (0.1 μg/mL) and insulin (10 μg/mL); and, for SKBR3 was McCoy 5 A with FBS (10%). The arrest medium for 
MCF7 was DMEM (phenol red-free) with L-glutamine (4 mM), for MCF10 was DMEM/F12 (1:1), and for SKBR3 
was McCoy 5 A. The release medium for MCF7 was DMEM (phenol red-free) with L-glutamine (4 mM), FBS 
(10%, charcoal stripped), E2 (1 nM) and bovine insulin (1 μg/mL); for MCF10 was DMEM/F12 (1:1) with horse 
serum (10%), EGF (20 ng/mL), hydrocortisone (0.5 μg/mL), cholera toxin (0.1 μg/mL) and insulin (10 μg/mL); 
and for SKBR3 was McCoy 5 A with FBS (10%) and EGF (150 ng/mL). The cells were detached with 0.25% trypsin 
(0.25%)/EDTA (0.53 mM), harvested, and stored at −80 °C until further processing. FACS results (Beckman 
Coulter EPICS XL-MCL, Brea, CA) with propidium iodide stain included: (a) G1-arrested cells: 78–82% G1, 
9–11 S %, 5–11% G2/M (MCF7); 91–92% G1, 6% S, 4–5% G2/M (MCF10); 72–80% G1, 13–17% S, 7–14% G2/M 
(SKBR3); and (b) S-released cells: 25–35% G1, 58–62% S, 8–12% G2/M (MCF7); 52–62% G1, 30–38% S, 9–16% 
G2/M (MCF10); 45–51% G1, 30–44% S, 13–18% G2/M (SKBR3). Three biological replicates, i.e., a new cell batch 
from the frozen stock, were cultured for each experiment.

Protein extract preparation.  The cells were separated into cytoplasmic and nuclear fractions with the 
Cell Lytic™ NuCLEAR™ kit supplemented with DTT (1 mM), protease inhibitor cocktail (1% of total lysate 
volume) and phosphatase inhibitors (Na3VO4 and NaF, 1 mM each). The concentration of proteins in the cell 
extracts was determined with the Bradford assay (SmartSpec Plus spectrophotometer, Bio-Rad, Hercules, CA). 
Bovine standards were added to the protein extracts at this stage (10 µL of 5 µM standards per 500 µg extract). 
The protein extracts were denatured/reduced with urea (8 M)/DTT (4.5 mM) for 1 hour at 55–60 °C, and digested 
with trypsin at a ratio of (30–50):1 (substrate:enzyme) for 24 hours at 37 °C. Salts and detergents were removed 
with SPEC-PTC18 and SPEC-SCX cartridges. The samples were prepared for LC-MS/MS analysis at 2 μg/μL in 
CH3CN/H2O/TFA (95–98):(2–5):0.01 v/v50,51.

Protein extract analysis by LC-MS.  LC-MS/MS analysis was performed with a micro-LC 1100 system 
(Agilent Technologies, Palo Alto, CA) coupled to a linear trap quadrupole (LTQ) mass spectrometer (Thermo 
Electron Corporation, San Jose, CA) via an in-house built interface and electrospray ionization (ESI) source50. 
The LC-MS interface facilitated LC system operation at flow rates of 10 µL/min, split-flow of ~180 nL/min for 
enabling nano-LC separations, and on-column/no-split injections. The nano-separation columns were built 
in-house from fused silica capillaries (100 μm i.d. × 360 o.d. × 12 cm long) packed with 5 μm Zorbax SB-C18 
particles (Agilent). The ESI emitter, operated at 2 kV, was prepared by inserting a fused silica capillary (20 μm 
i.d. × 90 μm o.d. × 10 mm long) into the nano-separation column. The LC mobile phases were prepared from 
H2O:CH3CN:TFA mixed in a ratio of 95:5:0.01 v/v and 20:80:0.01 v/v for mobile phases A and B, respectively.

The separation gradient was 200 min long, where the concentration of eluent B was raised to 10% after sample 
loading on the separation column, and then to 35%, 45%, 60%, and 100% over 135, 50, 13, and 1 min, respec-
tively. MS/MS data acquisition was performed using a data-dependent acquisition strategy with zoom/MS2 scans 
acquired for the five most intense peaks from a preliminary MS survey scan. The data-dependent acquisition 
parameters were set for ±5 m/z zoom scan width, ±1.5 m/z exclusion mass width, dynamic exclusion at repeat 
count 1, repeat duration of 30 s, exclusion list size 200, and exclusion duration 60 s. The tandem MS collision 
induced dissociation parameters were set for normalized collision energy 35%, activation Q 0.25, activation time 
30 ms, and isolation width 3 m/z. Five technical replicates were performed for each protein extract sample, a tech-
nical replicate being defined in this study as a new LC-MS/MS analysis of the same sample.

MS data processing.  Discoverer 1.4 (Thermo Electron, San Jose, CA) and a minimally redundant human 
protein database from UniProt (20,198 reviewed, non-redundant protein sequences, January 2015 download) 
were used to process the raw MS files. The database search parameters included: fully tryptic peptides only, max-
imum two missed tryptic cleavages, 500 Da first mass, 5000 Da last mass, 2 Da precursor ion tolerance, 1 Da 
fragment ion tolerance, b/y/a ion fragments included in the search, no posttranslational modifications, and 
peptide-level stringent FDR <1% and relaxed FDR <3%.

Statistical analysis.  Quantitative comparisons were performed based on spectral count data. The five 
LC-MS/MS technical replicates of each sample were combined into one file to increase the number of protein 
IDs per cell state and the reproducibility of their detection in biological replicates. The protein counts were nor-
malized based on the average spectral count data of all cell states. One spectral count was added after normali-
zation to each protein to compensate for missing values. Comparisons between cancerous (MCF7, SKBR3) and 
non-cancerous (MCF10) cell states were performed by using log2-transformed values of protein spectral counts, 
and applying a Student t-test to select individual proteins for the up/down-regulated panels (two-sample com-
parisons, two-tailed/unpaired test, n1 = 3, n2 = 3, α/2 = 0.1, assumption of normally distributed mean protein 
abundance values with equal variances for the population of cancerous and non-cancerous cells).
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Bioinformatics data analysis.  Protein annotations, enrichment, and functional analysis were performed 
with DAVID 6.8, by using a Homo sapiens background, with the thresholds set to count 2 and EASE score 0.1. 
PPI networks were explored with STRING 8.3, having the interaction score confidence set to medium/high. 
Maximum five interaction sources (1st shell) are shown in each figure (i.e., textmining, experiments, databases, 
co-expression, neighborhood, gene fusion, and co-occurrence). Color-coding of functionally-related clusters 
was performed manually. Heat maps were produced in Excel, based on log2(FC) in spectral counts comparisons 
between cancerous and non-cancerous cell states. Circos plots were generated with standard parameters provided 
by the developer52.

Data availability.  The data analyzed in this study are included in the Supplementary Information files. Raw 
files are available from the corresponding author per reasonable request.
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