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Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic

disease of unknown etiology and without effective treatment options. The onset

of ME/CFS is often associated with neuroinflammation following bacterial or viral

infection. A positron emission tomography imaging study revealed that the degree of

neuroinflammation was correlated with the severity of several symptoms in patients

with ME/CFS. In animal studies, lipopolysaccharide- and polyinosinic-polycytidylic acid-

induced models are thought to mimic the pathological features of ME/CFS and provoke

neuroinflammation, characterized by increased levels of proinflammatory cytokines and

activation of microglia. In this review, we described the anti-inflammatory effects of three

compounds on neuroinflammatory responses utilizing animal models. The findings of the

included studies suggest that anti-inflammatory substances may be used as effective

therapies to ameliorate disease symptoms in patients with ME/CFS.

Keywords: myalgic encephalomyelitis/chronic fatigue syndrome, lipopolysaccharide, polyinosinic-polycytidylic

acid, inflammation, cytokine

INTRODUCTION

ME/CFS is a clinically complex and chronic condition characterized by unexplained fatigue
and post-exertional malaise with symptoms including pain, sleep disturbance, and cognitive,
neuroendocrine, gastrointestinal, and immune dysfunction (1, 2). Viral or bacterial infection is
closely related to the pathogenesis of ME/CFS. In fact, previous studies have reported that infection
with Epstein-Barr virus, human herpesvirus 6, cytomegalovirus, enterovirus (3–7), as well as
bacteria (8–10), is involved in the maladaptive progression of ME/CFS. Viral or bacterial infections
cause inflammatory responses in the brain (neuroinflammation) as well as in peripheral tissues.
Imaging studies done in patients with ME/CFS have shown that the degree of neuroinflammation
is correlated with the severity of several symptoms including pain, depression, and cognitive
impairment (11).

Neuroinflammation is involved in the onset and/or progression of several neurodegenerative
and neuropsychiatric disorders (12–16) and is facilitated by microglia activation and elevated
expression of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor
necrosis factor-α (TNF-α) (17–20). Studies using animal models have shown that systemic and
central administration of lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly I:C)
can induce neuroinflammation through upregulation of proinflammatory cytokines and glial
activation (21–27). These models can be used for evaluating the anti-inflammatory potential
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of therapeutics, healthy foods, and nutraceutical products.
This review describes the anti-inflammatory effects of three
different types of compounds: IL-1 receptor antagonist (IL-1ra),
minocycline, and 6- (methyl sulfinyl) hexyl isothiocyanate (6-
MSITC).

ROLE OF NEUROINFLAMMATION IN
MYALGIC
ENCEPHALOMYELITIS/CHRONIC FATIGUE
SYNDROME (ME/CFS)

Although 0.5–1.5% of people globally suffer from ME/CFS,
identification of abnormal factors in ME/CFS is difficult via
general and conventional medical examination. Such obstacles
delay diagnosis in many patients and could take several months,
or years, to obtain a definite ME/CFS diagnosis. Furthermore,
effective treatments have yet to be established (28).

To date, the pathophysiological mechanisms of ME/CFS
have been assumed to be facilitated by viral infections,
immunological abnormality, oxidative stress, and impaired
energy metabolism with reduced production of mitochondrial
adenosine-5

′

-triphosphate (29–35). Morphological changes and
abnormal functionality in the brain have also been reported,
particularly in imaging and psychiatric studies (36). Specifically,
a MRI study revealed prefrontal cortical atrophy in patients
withME/CFS (37). Further, positron emission tomography (PET)
imaging studies have suggested a reduction in the biosynthesis of
neurotransmitters through estimation of acetyl-L-carnitine and
serotonin transporter densities in the brains of individuals with
ME/CFS (38, 39).

In addition to the observed pathological phenomena,
we hypothesized that neuroinflammation is involved in the
pathophysiology of ME/CFS, on the basis of experimental
observations in animals showing fatigue- or depression-like
behavior after proinflammatory cytokine production by activated
microglia in the brain (40), although there has been no direct
evidence of neuroinflammation in ME/CFS. Nakatomi et al., first
demonstrated that neuroinflammation was widely induced in
patients with ME/CFS by using PET with PK11195, a PET tracer
for activated microglia (11). Furthermore, neuroinflammation
was associated with the severity of neuropsychological symptoms
including the following: severity in the amygdala was correlated
with the cognitive impairment score; severity in the hippocampus
was related to the depression score; and severity in the thalamus
was related to the pain score. Detection of neuroinflammation in
patients with ME/CFS may be essential for an objective diagnosis
and deciding the medical treatment strategy for ME/CFS, as
well as for understanding the underlying pathophysiological
mechanism. In the ongoing coronavirus disease (COVID-19)
pandemic, individuals are suffering from long-lasting symptoms

Abbreviations: IL-1β, Interleukin-1β; IL-6, Interleukin-6; ME/CFS, Myalgic
encephalomyelitis/chronic fatigue syndrome; TNF-α, Tumor necrosis factor-α;
LPS, Lipopolysaccharide; Poly I:C, Polyinosinic-polycytidylic acid; IL-1ra, IL-
1 receptor antagonist; 6-MSITC, 6-(methyl sulfinyl) hexyl isothiocyanate; TLR,
Toll-like receptor; BBB, Blood-brain barrier; i.c.v, Intracerebroventricular.

FIGURE 1 | Schematic illustration indicating the viral infection-induced

neuroinflammation in the brain via activation of microglia, and the possible

therapeutic points by IL-1ra, minocycline, and 6-MSITC. Virus activates

toll-like receptor 3 (TLR3) in immune cells and triggers the production of

proinflammatory cytokines including IL-1β. Such cytokines in the periphery

induce activation of microglia and production of IL-1β in the central nervous

system (CNS). Neuroinflammation could be alleviated by suppressing immune

response in peripheral immune cells and/or microglia in CNS.

including “brain fog,” which is deemed long COVID or post-
COVID-19 syndrome. It has been suggested that this pandemic
has increased the prevalence of ME/CFS with prolonged or
intermittent neuroinflammation (41, 42).

ANIMAL MODELS FOR
NEUROINFLAMMATION

Neuroinflammation is defined as an inflammatory response in
the central nervous system, including the brain and spinal cord,
and plays a crucial role in the pathogenesis of several diseases
including Alzheimer’s disease, Parkinson’s disease, depression,
and ME/CFS. In experimental studies, toll-like receptor (TLR)
ligand-induced inflammation is used as an animal model of
neuroinflammation (Figure 1). Similarly, LPS and poly I:C
models are thought to mimic the pathological relevance of
ME/CFS (43, 44), potentially through TLR signaling. LPS is a
TLR4 ligand and main component of the outer membrane of
Gram-negative bacteria. In rodents, a peripheral LPS challenge
induced expression of proinflammatory cytokine expression
at the gene and protein level, and evoked activation of
microglia/macrophages in the brain as well as in peripheral
tissues (19, 45). In general, LPS injected systemically does
not pass through the blood-brain barrier (BBB). Therefore,
signal transduction in the periphery may facilitate the induction
of inflammatory reactions in the brain (46, 47). Central
(intracerebroventricular or intraparenchymal) administration of
LPS can directly and acutely induce inflammatory brain reactions
(48). Indeed, a peripheral LPS challenge elevated expression of
proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the brain
at 2 h, as well as increasing plasma IL-6 levels (48). This indicated
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that central LPS-induced neuroinflammation may be linked to
the induction of peripheral inflammatory responses.

On the other hand, poly I:C, a synthetic double-stranded RNA,
can be used to mimic viral infections through TLR3 (43, 49, 50).
As with LPS, systemic administration of poly I:C promoted
increased expression of proinflammatory cytokines (IL-1β, IL-
6, and TNF-α) in the brain and serum (21, 22, 51). Recently,
it has been shown that a central poly I:C challenge provoked
upregulation of proinflammatory cytokines (IL-1β, IL-6, and
TNF-α) in the brain, with maximal gene expression peaking
at 4 h (25). These findings suggest that peripheral and central
administration of LPS and poly I:C can induce inflammatory
responses in the brain and can be used as neuroinflammatory
animal models for the screening of anti-inflammatory drugs
and foods.

TREATMENTS FOR
NEUROINFLAMMATION

Herein we describe the anti-inflammatory effects of three
compounds, IL-1ra, minocycline, and 6-MSITC, on LPS- or poly
I:C-induced neuroinflammation.

IL-1ra is a member of the IL-1 family and is known as
an endogenous competitive antagonist for IL-1 receptors, that
is, IL-1ra counteracts the action of IL-1β (52). We previously
investigated that poly I:C-induced decrease in locomotor
activity was completely blocked by intracerebroventricular (i.c.v)
infusion of recombinant IL-1ra (40). Also, we demonstrated that
the recovery from a decrease in spontaneous activity during
poly I:C-induced neuroinflammation was significantly delayed by
i.c.v. infusion of a neutralizing antibody for endogenous IL-1ra.
These results indicate that endogenous IL-1ra in the brain has
an important role in the prevention of prolonged inflammation
(Figure 1). Recent studies have shed light on neuroinflammation
as an essential precipitating event in nervous system diseases
including ME/CFS (11, 53, 54). Therefore, a balance between the
production of IL-1β and its endogenous antagonist could regulate
neuroinflammation and decrease locomotor activity. These
reports enhance our understanding of how neuroinflammation
could shift from an acute to a chronic state.

Minocycline is known as a second-generation and semi-
synthetic tetracycline antibiotic. Minocycline is quickly
absorbed into the body, penetrates the BBB, and affects
many biological actions (differing from its antibiotic action)
both in vivo and in vitro, including the following: attenuation
of BBB breakdown by inhibiting the production of matrix
metalloproteinase-9; functional improvement after traumatic
brain injury via suppression of aquaporin-4 production;
relieve white matter injury in the neonatal rat brain by
suppression of IL-1β and TNF-α production; neuroprotection
from ischemic brain damage; alleviation of LPS-induced
depressive-like behavior; and suppression of NOx production
in cultured microglia under hypoxia (55, 56). In our study,
we demonstrated that intraperitoneal pretreatment with
minocycline (20 mg/kg/day, 3 consecutive days) attenuated
poly I:C-induced IL-1β mRNA expression in rat brain, transient

fever, and decrease in locomotor activity (57). Further, it was
also reported that intrathecal pretreatment with minocycline
attenuated chronic stress-induced muscular hyperalgesia
and mechanical allodynia by suppression of spinal cord
microglial activation in rat model for ME/CFS (58). These
observations suggest that minocycline could be a new drug
for improving some deficits seen in neurological disorders
(Figure 1).

Although the mechanisms underlying minocycline’s
anti-inflammatory effect on neuroinflammation are not
well-understood, once severe neuroinflammation occurs,
suppression might prove to be difficult. Indeed, we could not
demonstrate suppression of neuroinflammation by minocycline
after poly I:C-injection without pretreatment (57). A better
understanding of minocycline’s role in neuroinflammation is
required to maximize its therapeutic potential. Overall, control
of neuroinflammation will alleviate fatigue and chronic pain,
and contribute to preventing the progression of neurological
disorders, including ME/CFS.

Finally, 6-MSITC derived from Wasabi (Wasabia japonica) is
a naturally occurring compound that has several biological
functions, including anti-inflammatory, antitumor, and
anticoagulant activities. In vitro studies have shown that 6-
MSITC treatment inhibited activation of murine macrophage
cells following the application of LPS (59), and attenuated
TNF-induced upregulation of IL-6 in human umbilical
vein endothelial cells (60). In addition, 6-MSITC alleviated
several inflammatory responses in a murine model of
inflammatory bowel disease, known as chronic inflammatory
disorders of the gastrointestinal tract (61). However, the anti-
inflammatory effects of 6-MSITC on LPS- or poly I:C-induced
neuroinflammation have not been characterized. In our studies,
long-term use of 6-MSITC relieved neuroinflammatory
responses following a peripheral injection of poly I:C
(Figure 1), but did not show anti-inflammatory effects on
neuroinflammation following a central LPS challenge (62).
The observed discrepancy is unclear but warrants further
investigation. Still, these findings suggest that 6-MSITC may
ameliorate the neuropsychological symptoms of ME/CFS with
viral infections.

Recently, the gut microbiota has been reported to be
closely associated with the ME/CFS pathophysiology, including
neuroinflammation and cognitive symptoms (63, 64). Long-
term complications of long COVID or post-COVID-19
syndrome have also been attributed to the dysregulation
of the gut microbiota (65, 66). Minocycline may suppress
neuroinflammation by affecting the gut microbiome and
intestinal permeability, as shown in a rat model of Gulf War
illness (67). Peripheral IL-1ra also plays a crucial role in the
regulation of the gut microbiota (68), although we employed the
direct i.c.v. infusion of recombinant IL-1ra for the prevention of
prolonged neuroinflammation in our animal study introduced
in this review (40). Therefore, these findings suggest that the
gut microbiota should be taken into consideration in animal
models for ME/CFS. It is expected that effective food nutrients
and/or ingredients as well as medicinal drugs will be discovered
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for the treatment of neuroinflammation in ME/CFS and
long COVID.

CONCLUSIONS

ME/CFS is a complex multi-system illness without diagnostic
markers or efficacious therapy options. The pathogenesis of
ME/CFS is linked with viral or bacterial infection-induced
neuroinflammation. In animal studies, LPS and poly I:C models
can be used as infection-induced neuroinflammation and can
promote increased expression of proinflammatory cytokines
and microglia activation. Neuroinflammation is thought to
be mitigated by suppressing immune response in the central
nervous system as well as in the periphery. Herein, we
reviewed the anti-inflammatory effects of three compounds
using animal models and highlight the potential of these

anti-inflammatory drugs to alleviate symptoms in patients
with ME/CFS.
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