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Abstract

Background: Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We
developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a
given tumour type (‘outlier genes’), a hallmark of potential oncogenes.

Methodology: A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms
originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in
meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated
data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we
evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published
studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas.
According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier
genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-
expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples.
Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a
typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types
other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier
gene candidate as a potential therapeutic target.

Conclusions/Significance: Taken together, these results support the GTI as a novel approach to identify potential oncogene
outliers and drug targets. The algorithm is implemented in an R package (Text S1).
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Introduction

The identification of genes associated with cancer development

and progression is a central goal for many microarray data analysis

projects [1–4]. Oligonucleotide microarrays offer clinicians and

researchers the ability to analyze gene expression on a genome-

wide scale. Expression arrays have been widely used in biological

and clinical transcriptome studies for over a decade, and vast

amounts of data have been accumulated in the public domain. For

example, the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/) currently contains over 9247 ex-

pression studies in which human samples have been analyzed with

gene expression microarrays [5].

Most microarray studies have focused on the identification of

differentially expressed genes, using a panel of test and control

samples collected at the same time and analyzed on a single

platform. Most of these studies have been based on relatively

homogeneous datasets consisting of comparably small numbers of

samples. However, when results from such individual studies are

compared with each other, the overlap of the differentially

expressed gene sets is often minimal and disappointing. In order to

identify consistently differentially expressed genes based on robust

statistics, it is advisable to systematically combine multiple public

datasets. The power of this ‘meta-analysis’ strategy has been

demonstrated in the case of ArrayExpress [6], the Oncomine

database [7], GeneSapiens [8], the Connectivity Map database [9]

and several others. Large-scale integrated microarray datasets

typically combine strongly diverging datasets based on different

experimental conditions, independent cohorts of samples, varying

sample preparation methods and labelling methods or scanner

settings, and even different microarrays or microarray platforms.

These multiple layers of variability pose a significant challenge to

the statistical methods applied in meta-analyses. For example, the

oligonucleotide array design utilized by Affymetrix, the leading

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e17259



manufacturer of expression arrays, has significantly changed over

the last decade, resulting in many datasets with a variant probe set

content and addressing variable numbers of genes. Several groups

have already described methods for the integration of such diverse

datasets [10], [11], [8]. As a result of these developments, there is a

need for improved algorithms that facilitate the successful mining

of heterogeneous multi-study or meta-analysis datasets.

Out of the many statistical methods used for the identification of

differentially expressed genes [12,13], the t-statistic has been one

of the most basic and straightforward approaches for the analysis

of individual studies. More recently, methods have been developed

to detect differentially expressed genes in a subset of samples.

These include cancer outlier profile analysis (COPA) [14], the

outlier sum (OS) statistic [15] and the outlier robust t-statistic

(ORT) [13]. COPA and OS statistics were derived from the t-

statistic by replacing the mean and standard errors with the

median and median absolute deviations, respectively. ORT was

proposed as a more robust statistic that utilizes the absolute

difference of each expression value from the median instead of the

squared difference of each expression value from the average.

In general, outlier analysis offers a unique and powerful

approach for the identification of key pathogenetic genes involved

in a subset of disease samples. The strength of cancer outlier

profile analysis was powerfully demonstrated by the identification

of the TMPRSS2-ERG fusion oncogene in prostate cancers [14],

considered a major breakthrough in cancer genetics. Another

classic example of a typical cancer outlier gene is ERBB2/HER-2

[16], an important therapeutic target over-expressed in about 20%

of human breast cancers. This is currently utilized for the therapy

of HER2+ breast cancer patients with the therapeutic Herceptin

antibody. Thus, genes generally expressed at low levels in normal

samples, but over-expressed in a subset of cancer samples

(although not all tumours), often represent potential drug targets

of therapeutic interest, and may point to biologically different and

diverse cancer subtypes that may require a specific form of

individualized therapy.

A gene showing over-expression in a subgroup of disease

samples based on a cut-off threshold is defined as an outlier

(Figure 1). Our aim was to find genes that are differentially

expressed in a subset of test samples as compared to the controls.

Here, we describe a novel statistical method for identifying genes

with outlier expression in large-scale microarray data integration

studies and compare this method with existing algorithms. These

comparison methods include the t-statistic, cancer outlier profile

analysis (COPA), the outlier sum (OS) statistic and outlier robust t-

statistic (ORT).

COPA and OS statistics were derived from the t-statistic by

replacing the mean and standard errors used in the t-statistic with

the median and median absolute deviations, respectively. ORT has

been proposed as a more robust statistic that utilizes the absolute

difference of each expression value from the median instead of the

squared difference of each expression value from the average.

In this study, we adapted an existing method from economics

(the poverty index) with a comparable goal, addressing the

question of how many people live below the poverty line in any

given country, a formula developed for socioeconomic studies by

Amartya Sen [17]. To adapt this algorithm for gene expression

analysis, we inverted the original question here by asking, ‘‘in

how many samples from the same body part is a gene X

expressed above a fixed cut-off threshold?’’ Since the index is

determined as a robust proportion of outlying samples, we

assume that every gene is represented by an adequate number of

samples. To this end, our aim was to establish an index that

determines whether there is significantly increased gene expres-

sion in a sub-group of disease samples compared to the normal

control group, without the restriction of making distribution

assumptions for the various group populations. In preliminary

studies, we observed that poverty indices derived from economics

are well suited to measure the proportion of outlying samples

within the disease sub-group relative to the reference group.

Motivated by these observations, we modified the original

poverty index formula [17], and in this paper we introduce the

gene tissue index (GTI). The GTI is then systematically

compared with the existing methods, i.e. t-statistics, COPA, OS

and ORT. Furthermore, we compare the outlier detection

capability of existing methods with the GTI using a simulated

Figure 1. Illustration of a typical oncogene outlier profile. An example of a gene with high expression in the cancer group compared to the
normal group. The circle in the cancer group refers to a subset of samples with high expression of this gene, while the circle in the normal group
refers to a subset of normal samples, with low expression. The boxplot in B illustrates the concept of data outliers in standard terminology.
doi:10.1371/journal.pone.0017259.g001
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and real clinical large-scale integrated dataset. No comparative

studies are currently available to support the suitability of the

existing methods for the analysis of real, large-scale integrated

meta-datasets such as those collected in the GeneSapiens[8]

database.

Materials and Methods

Existing Statistical Methods
Let xij be the expression values for genes j~1,2, . . . . . . ,p and

samples i~1,2, . . . . . . ,n. We assume that the gene expression

samples are obtained from two different groups (k~1 and k~2),

where n~n(1)zn(2). In our case, n(1) represents the number of

samples from the normal group and n(2) represents the number of

samples from the cancer group. Let Ck be the set of indices of the

observations in group k, for k = 1 and 2.

t-statistic
The formula for the standard unpaired t-statistic is:

Tj~
�xx(2)

j { �xx(1)
j

sj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(1)n(2)

n

r
, ð2:1Þ

where �xx(k)
j is the mean expression of samples for gene j in group k,

�xx(1)
j ~

P
i[C1

xij

n(1)
, �xx(2)

j ~

P
i[C2

xij

n(2)
,

s
(k)
j is the pooled within-group standard deviation of gene j

s2
j ~

P
i[C1

xij{�xx(1)
j

� �2

z
P

i[C2

xij{�xx(2)
j

� �2

n{2
, ð2:2Þ

assuming that the within-group standard deviations for the two

groups are equal.

The two-sample t-test assumes that all disease samples for a

particular gene are over-expressed. This assumption is not the case

in cancer gene outlier analysis, where the genes are only assumed

to be over-expressed in a subset of samples within the disease

group that is assumed to be over-expressed [13].

Cancer Outlier Profile Analysis (COPA)
The COPA [13,14,18–21] statistic is defined as the rth

percentile of the disease samples’ standardized expression values

qr(~xxij : i[C2), using r = 75, 90, or 95 as suggested by the authors.

Observations for gene j are standardized by subtracting the

median medj from each expression value (xij) divided by the

median absolute deviation madj

~xxij ~
xij{medj

madj

, i~1, . . . . . . ,n, j~1, . . . . . . ,p, ð2:3Þ

where, medj is the median and madj is the median absolute

deviation of gene j’s expression values.

medj~mediani~1,...n(xij),

madj~1:4826 �mediani~1,...,n xij{medj

�� ��� �
,

where the product of madj and the constant 1.4826 is approxi-

mately equal to the standard error for normally distributed

random variables.

The approach used in the COPA statistic addresses the problem

of more accurately identifying genes with an outlier population

than the t-statistic.

The COPA statistic is described as

qr(~xxij : i[C2)~
qr(xij : i[C2){medj

madj

, ð2:4Þ

where the rth percentile of the disease samples is qr(xij : i[C2).

Compared to the t-statistic, COPA intuitively replaces the

normal sample mean by the all-sample median medj, the sample

standard error sj by the median absolute deviation madj, and the

disease sample mean by the rth percentile qr(xij : i[C2).
It is evident that the COPA statistic may not be very robust,

since a fixed rth sample percentile is almost equal to using

information from a single sample.

Outlier Sums (OS)
The outlier sums statistic was introduced as an improvement

over the COPA statistic. Here, the OS statistic [13,15,21] was

proposed to replace the rth percentile with a sum over the outlier

samples from the disease group above a given cut-off. The OS

statistic was designed to lower the false discovery rate (FDR) of

COPA, as noted by Wu [13]. OS standardizes each expression

value of gene j (xij) through dividing the result of (xij – medj) by

madj. However, only expression values above a given cut-off are

utilized for the final score.

OS scorej ~

P
i[Oj

(xij{medj)

madj

, ð2:5Þ

where Oj is the set of outlier samples from the disease group

defined by the following heuristic criterion:

Oj ~ i : i[C2,xijwq75(xmj : m~1,:::::,n)z
�
IQR(xmj : m~1,::::,n)

	
,

ð2:6Þ

where m refers to samples 1,2.....,n1,n1+1,....n.

Outlier Robust t-statistic (ORT)
The outlier robust t-statistic[13,19,21] is a direct robust general-

ization of the two-sample t-statistic. With ORT, the sample mean is

replaced with the median and the squared difference is replaced with

the absolute difference. The overall median used as a common

estimate for the two group medians was suggested to be inefficient,

since the normal and disease samples are known to be different. The

ORT statistic was therefore proposed to replace the overall median

estimate used in calculating the COPA and OS score with a median

calculated from the group median-centred expression values.

xij{med
(1)
j

��� ���, i~1,:::::,n1; xij{med
(2)
j

��� ���, i~n1z1,:::::,n,

where med
(1)
j and med

(2)
j are the sample medians for normal and

disease groups.

med
(1)
j ~mediani[C1

(xij), med
(2)
j ~mediani[C2

(xij):
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The median absolute deviation will then be estimated as

1:4286 x median xij{med
(1)
j

��� ���i[C1, xij{med
(2)
j

��� ���i[C2

n o
, ð2:7Þ

which was proved to be similar to the pooled sample variance

estimate

n

n{2
x avg xij{avg

(1)
j

� �2

i[C1

, xij{avg
(2)
j

� �2

i[C2


 �
:

Here, the average (avg) is replaced with the sample median, and

the squared difference is replaced with the absolute difference as a

more robust estimate of the variance.

ORT is then described as

ORT~

P
i[Rj

xij{med
(1)
j

� �

median xij{med
(1)
j

��� ���
i[C1

, xij{med
(2)
j

��� ���
i[C2


 � ,

j~1, . . . . . . ,p,

ð2:8Þ

where R is the set of outlier disease samples for gene j defined by

Rj~ i : i[C2,xijwq75(xmj : m~1,:::::,n1)z
�
IQR(xmj : m~1,::::,n1)

	
,

ð2:9Þ

where m refers to samples 1,2…..,n1.

It should be noted that only the normal group samples are used

to estimate outliers when calculating an ORT score.

Gene Tissue Index (GTI)
The GTI algorithm was originally used to calculate an index for

a single treatment group k based on a standard cut-off. In this

study, there was no defined standard cut-off per gene j for every

normal tissue. Therefore, we defined a cut-off (B) based on the

expression of gene j among all samples (n). These samples were

obtained from one body part or tissue type such as the breast of

normal (k = 1) and cancer-affected (k = 2) individuals. We then

asked whether the proportion of samples above the cut-off is larger

than it should be. Our choice of B is the standard statistical outlier

cut-off (q75+IQR). We propose the following score, which weighs

the proportion of outliers by a robust measure of how outlying the

outliers are in a single group:

GTI
(k)
j ~

T
(k)
j

n
(k)
j

�
A

(k)
j {Bj

� �

A
(k)
j

, ð2:10Þ

where T
(k)
j is the number of samples with expression values above

the cut-off (number of elements in set O
(k)
j ), n

(k)
j is the total number

of samples in group k and A
(k)
j is the average expression of the

samples above the cut-off for gene j.

We write

IQR(xij : i~1,::::::,n)~

q75(xij : i~1,:::::,n){q25(xij : i~1,:::::,n)

for the interquartile range (IQR).

Expanding the definition of the GTI and substituting our choice

of B, we get

GTI
kð Þ

j ~

T
kð Þ

j

n
kð Þ

j

�
�xx

kð Þ
j { q75 xij : i~1,::::,n

� �
zIQR xij : i~1,::::,n

� �� �
�xx

kð Þ
j

ð2:11Þ

where �xx(k)
j is the mean of ‘outlier samples’ in the group (k = 1 or

k = 2) for genes j~1, . . . . . . ,p,

�xx(k)
j ~

X
i[O

(k)
j

xij

n
,

where the set O
(k)
j consists of the outliers in group k. The set O

(k)
j is

defined using the following criterion:

O
(k)
j ~ i : i[Ck,xijwq75(xmj : m~1,:::::,n)z

�
IQR(xmj : m~1,::::,n)

	
,

ð2:12Þ

where m refers to samples 1,2, …..,n(1),n(1)+1, …..n.

We calculate the actual GTI scores for each group k and gene j

multiplied by 100, as this makes them more readable.

Finally, the index per gene is a direct association between two

groups defined by GTIj~GTI
(2)
j {GTI

(1)
j , where 2 and 1

represent the grouping. The index GTIj can be a large positive

number if there are outliers in the disease group 2 or a large

negative number if there are outliers in the normal control group

1. All samples (cancer and normal combined) are then used to

determine the cut-off point for each gene. As in the existing

methods, we use permutations to estimate the null distribution and

p-values of the GTI.

Microarray data
The pre-processed Affymetrix transcriptome data utilized in this

study were derived from the GeneSapiens database [8], and were

acquired from multiple public repositories such as the Gene

Expression Omnibus (GEO). In GeneSapiens, different Affymetrix

array generations were normalized and combined to form a single

large-scale multi-study dataset. It should be noted that the data in

GeneSapiens are normalized first within a sample and then

between samples using an Array Generation-based gene Centering

(AGC) normalization [8]. The outlier analysis performed for the

GTI evaluation study covered a total of 16 868 human genes, each

represented by a different number of normal and cancer samples

in the database. As the compositions of microarrays are regularly

updated to incorporate new genes with improved target sequences,

it is evident that combining data from different generations of the

same microarray platform will generally result in largely varying

numbers of samples per gene. We compared the log-transformed

data of the normal group with the cancer group and performed

five separate tests using the five methods introduced earlier.

Cell culture and reagents
Human glioblastoma cell lines A172 and U87-MG were

obtained from the ECACC (European Collection of Cell Cultures,

UK), the LN-405 cell line was obtained from DSMZ (Deutsche

sammlung von microorganismen und zellkulturen GmbH, Ger-

many), and the U373-MG and astroglia SVG p12 cell lines from

the ATCC (American Type Culture Collection, VA, USA). The

Gene Tissue Index Outlier Algorithm
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A172, LN-405 and U373-MG cell lines were cultured in DMEM

with 4500 mg/L glucose, 10% FBS, 2 mM L-glutamine and

penicillin-streptomycin. U373-MG cells were supplemented with

300 ng/mL hygromycin. The U87-MG and SVGp12 cell lines

were cultured in EMEM with 2 mM L-glutamine, 1 mM sodium

pyruvate, 0.1 mM non-essential amino acids, 1.5 g/L sodium

bicarbonate, penicillin-streptomycin and 10% FBS.

The antifolate drugs used in EC50 determinations were 5-

fluorouracil (Sigma-Aldrich Co, St. Louis, Missouri), gemcitabine

(trade name: Gemzar, Eli Lilly, Indianapolis, Indiana) and

raltitrexed (trade name: Tomudex, Astra Zeneca, London, UK).

Determination of the Median Effective Concentration
(EC50)

The human glioblastoma cell lines A172 and U87-MG were

obtained from the ECACC (European Collection of Cell Cultures,

UK), LN-405 cell line was obtained from DSMZ (Deutsche

Sammlung fuer Microorganismen und Zellkulturen GmbH,

Germany), and the U373-MG and SVG p12 cell lines were

purchased from the ATCC (American Type Culture Collection,

VA, USA). The A172, LN-405 and U373-MG cell lines were

cultured in DMEM with 4500 mg/L glucose, 10% FBS, 2 mM L-

glutamine and penicillin-streptomycin. U373-MG cells were

supplemented with 300 ng/mL hygromycin. The U87-MG and

SVGp12 cell lines were cultured in EMEM with 2 mM L-

glutamine, 1 mM sodium pyruvate, 0.1 mM non-essential amino

acids, 1.5 g/L sodium bicarbonate, penicillin-streptomycin and

10% FBS. The antifolate drugs used in EC50 determinations were

5-fluorouracil (Sigma-Aldrich Co, St. Louis, Missouri), gemcita-

bine (trade name: Gemzar, Eli Lilly, Indianapolis, Indiana) and

raltitrexed (trade name: Tomudex, Astra Zeneca, London, UK).

Results

The suitability of existing outlier methods for the analysis of

large-scale multi-study datasets is not only measured by the

absolute statistical quality of the results obtained in theoretical

settings, but strongly depends on a number of technological and

practical issues. In this respect, it is mandatory to meticulously test

whether such methods can be used for the analysis of extremely

large-scale integrated microarray datasets. Currently, multi-study

datasets such as those collected in GeneSapiens, or the clinical

data sets provided by large-scale international cancer profiling

consortia such as TCGA or ICGC, easily contain hundreds to

several thousands of samples. The tendency towards large data sets

will further increase with the progress of these integrated

approaches, and with the introduction of next-generation genome

sequencing technologies in cancer research. Some existing outlier

methods may not be suitable to handle matrices with very many

sample numbers, in particular if the data points available within

these sets vary gene by gene. Even given the suitability of certain

statistical approaches for successful outlier identification, the

process may be exceedingly slow and may not be suitable for

repeated application after every update to a database. For these

reasons, we decided to evaluate the suitability of the GTI and the

existing methods for identifying outliers in complex multi-study

datasets.

Comparison of the new GTI method with previously
described outlier identification methods in a simulated
single study dataset

First, to compare the GTI method with previously described

outlier identification methods, we conducted simulation studies

using ORT, OS, and COPA methods with a fixed statistical

outlier cut-off (q75+IQR). In addition, the t-statistic was

considered; however, this method did not require any cut-off

selection. For the simulation, an artificial dataset was generated

representing 1000 genes assuming an equal number of normal and

cancer samples (n(1) = n(2) = 30), in which all expression values were

drawn from a standard normal distribution. Next, we generated

expression values for a gene assumed to be differentially expressed

by adding a constant, m, to the expression values in only the first k

cancer samples (k = 1, 10 or 30), where k equals the number of

outlier samples, and used this value as the true positive (TP). The

true positive and false positive (FP) values were calculated based on

50 simulations.

In each simulation, a p-value was calculated as the proportion of

genes with a score greater than that of the true positive. After

collecting the 50 p-values, the true positive rate corresponding to a

given false positive threshold was estimated as the proportion of

simulations identifying the true positive gene using the false

positive threshold. In other words, the generated p-value was not

greater than the false positive rate. We varied the values of k

(k = 30, 20, 10, 1) to simulate how the five statistical methods

would perform in these different artificial cases. This procedure

was repeated for each method as well as each dataset simulated

with a varying value of k. The data from the simulations were used

to calculate the true positive rate based on a given false positive

threshold. These results are summarized in Table S1. The data in

the Excel sheet named ‘‘ROC curve data from simulations’’ were

used to construct the receiver operating characteristic (ROC)

curves illustrated in Figure 2. Each curve generated for each

method refers to a defined true positive rate for a particular

method versus the false positive rate. An optimal method should

generate large areas under the curve (AUC) for each simulated

dataset.

The results presented in Figure 2 suggest that the GTI performs

equally well to the other methods under single study settings. The

first case of k = 1 (1 outlier in 30 samples) may exist, but is often

neglected. The last case of having all samples in the disease group

(k = 30) over-expressed is a typical profile for disease biomarkers

rather than outlier expression.

The most interesting case of having k = 10 (10 outliers in 30

samples) showed that all methods were equally suited to identify

the outliers. To visualize our approach, Figure S1 shows the

simulated expression values of the top 12 genes ranked by the

GTI. However, according to the results presented in Figure S1, all

of these genes showed a strong outlier population in the cancer

group.

Importantly, all of the simulations used to derive these results

were carried out in a single study setting. However, multi-study

data sets are becoming increasingly common and powerful

resources, and it would be practical to test the applicability of

these methods to multi-study datasets. To achieve this goal, our

systematic analysis was extended by using pre-processed data from

the GeneSapiens database.

Application to a large-scale glioma microarray integrated
dataset

The GTI and the ORT, OS, and COPA methods were then

tested with publicly available microarray datasets derived from

central nervous system (CNS) tissues and tumours. We chose CNS

tissue samples because there is an enormous wealth of data on

glioblastoma in public repositories such as the Cancer Genome

Atlas (TCGA) and GEO. Gliomas make up a group of primary

CNS tumours that arise from glial cells. We focused on two

subgroups of gliomas, anaplastic astrocytoma (WHO grade III) (74

samples) and glioblastoma multiforme (GBM, WHO grade IV)

Gene Tissue Index Outlier Algorithm
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(353 samples). We used Affymetrix microarray data from healthy

CNS tissues (392 samples) as a reference. The overlap of the top

100 genes identified by the GTI, COPA and the OS statistic is

presented in a Venn diagram in Figure 3. The results indicate that

approximately half of the genes could be identified by all three of

these methods. COPA and the GTI showed more overlap than the

GTI and OS; however, the OS statistic shared more genes with

COPA than the GTI. The GTI identified 29 potentially novel

outlier genes not identified in the top 100 by the other methods.

Naturally, we wanted to focus on these 29 unique genes and

further validate the GTI method by examining the value of these

candidates in the cancer biology of glioma (see section on

validation of targets below).

More specifically, we examined genes previously known to be

over-expressed in and/or associated with the development,

maintenance, and progression of glioblastoma multiforme and

anaplastic astrocytoma and that were identified in the top 100 by

any of the methods, as illustrated in Table 1. COPA identified

seven known genes among the top 100 followed by the GTI (6),

OS (4), ORT (3) and finally the t-statistic (2) (Table 1). All six genes

identified by the GTI were also identified by COPA. More

significantly, the GTI did not identify GFAP, a known

differentiation marker for normal cells of astroglial origin as well

as a glioma marker, which ranked highly using COPA (Table 1)

[22,23]. Next, we compared CDKN2A, which was the gene

ranked lowest by the GTI (Table 1), with GFAP, which was only

ranked highly by COPA. The distribution plots showed interesting

differences between the respective gene expression profiles. While

the gene expression levels of CDKN2A (ranked 71 with COPA

and 92 with the GTI) showed a significantly clearer outlier

population than GFAP (ranked 29 with COPA and 1866 with the

GTI) (Figure 4), GFAP also showed a relatively high level of

Figure 2. ROC curves for four different numbers of outliers. Receiver operating characteristic (ROC) curves from the above simulation study
comparing the five statistics. One cancer gene is over-expressed by m units equal to 2 in k of the 30 samples. ROC curves are plotted based on 50
simulations. K refers to the number of outliers in the disease group.
doi:10.1371/journal.pone.0017259.g002
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expression in the normal samples, indicating that this gene may in

fact not be relevant for cancer progression. This pattern was

similar for many of the genes uniquely identified by COPA,

contradictory to its purpose of identifying outliers.

To further examine the relevance of GFAP identified by COPA,

but not the GTI, we also examined the expression of GFAP in

tissue specimens. Specifically, immunohistochemical data from the

Human Protein Atlas [www.proteinatlas.org] (HPA) confirmed

that GFAP is expressed in all normal brain as well as brain cancer

samples, and hence cannot be considered a ‘cancer outlier’ (data

not shown). Briefly, and as illustrated by the GFAP mRNA

expression profile, although not the only example, a high COPA

score did not necessarily imply a significant outlier expression

difference between the normal and cancer groups (Figure 4).

The observed results for GTI are to some extent in agreement

with the genomic and transcriptional aberrations linked to

gliomas. This is the case for some of the 14 genes presented in

Table 2, which are known to be amplified or lost in significant

subsets of gliomas. The ranks of selected oncogenes and tumour

suppressor genes reported to be involved in glioblastoma multi-

forme (GBM) and anaplastic astrocytoma are presented in Table 2.

It is apparent that some of the amplified and/or over-expressed

genes, such as CDKN2A and CDKN2B, acquired high GTI

scores, while commonly deleted genes such as PTEN acquired low

scores. Interestingly, the GTI and COPA identified these over-

expressed genes almost equally well, while all other methods (OS,

ORT, t-statistics) performed significantly less well. The main

difference between the GTI and COPA therefore appears to be

the successful exclusion of false positive genes such as GFAP,

which may be highly expressed in the glioma samples, but do not

represent true outliers.

The glioblastoma large-scale integrated dataset used in this

work contains varying numbers of samples per gene due to the

combining of different generations of Affymetrix platforms. To

predict whether the final score is affected by the varying number of

samples, Spearman’s rank correlation coefficient was calculated

for each method from the scores of each method and the number

of samples per gene (Table 3). A correlation value close to zero

means that the final score of the method does not depend on the

number of samples. As revealed in Table 3, OS and ORT statistics

resulted in higher correlation values with the total number of

samples, the number of normal samples and the number of cancer

samples compared to GTI, the t-statistic and COPA.

Overall, the GTI seemed to perform best in comparison to the

other methods in identifying genes with an outlier profile among

the glioma large-scale integrated dataset. Notably, when there are

datasets with varying numbers of samples for different genes, the

GTI, but not COPA, OS, ORT or the t-statistic, produced

comparable scores among differentially expressed genes.

Biological validation of some GTI top outliers
As stated above and shown in Table S2, 29 outlier genes were

uniquely identified by the GTI (Table S2). Interestingly, among

these 29, thymidylate synthase (TYMS) was the second best hit on

the list (Table 4, GTI score 35, COPA score 105, OS score 1864,

ORT score 1646), indicating high expression of this gene in many

but not all glioblastomas, but generally low expression levels across

the vast majority or all of the normal samples. GTI may therefore

identify a putative subset of cancers that may particularly profit

from therapy targeting the TYMS gene, which may not be the

case for all of the glioblastoma patients.

However, there are no publications to date linking TYMS to

glioblastoma. In fact, only 7 of the 29 genes identified (24%) had

been previously linked to glioblastoma in two or more publications

(Table 4). Similarly, as many as 18 out of the 29 genes (62%) were

linked to oncogenic functions in other cancers (Table 4). These

observations suggest that the GTI identified more previously

Figure 3. Venn diagram showing overlapping genes. The three
sets of the top 100 genes only partially overlap, which means that at
least one of them has many false positives or false negatives.
doi:10.1371/journal.pone.0017259.g003

Table 1. Genes known to be associated with anaplastic
astrocytoma and glioblastoma multiforme (GBM) out of the
top 100 genes from every method after ranking according to
the score.

Methods Rank Gene GTI COPA OS ORT t-test

GTI 51 VEGFA 32 56 1 766

92 CDKN2A 71 212 15 2846

31 EGFR 33 125 41 1411

32 IL13RA2 31 102 354 1664

27 IGFBP2 4 10 3373 51

65 CHI3L1 9 22 11962 405

COPA 32 VEGFA 51 56 1 766

71 CDKN2A 92 212 15 2846

33 EGFR 31 125 41 1411

31 IL13RA2 32 102 354 1664

4 IGFBP2 27 10 3373 51

9 CHI3L1 65 22 11962 405

29 GFAP 1866 487 11990 6052

OS 56 VEGFA 51 32 1 766

10 IGFBP2 27 4 3373 51

22 CHI3L1 65 9 11962 405

71 PDGFC 1301 768 11968 24

ORT 1 VEGFA 51 32 56 766

15 CDKN2A 92 71 212 2846

41 EGFR 31 33 125 1411

t-test 51 IGFBP2 27 4 10 3373

24 PDGFC 1301 768 71 11968

The rank column here refers to the position of the gene if all the 100 genes are
sorted in descending order so that we have the first gene being the one with
the highest outlier score for a particular method. Some of the methods, such as
ORT, identified very few known outlier genes among the top 100.
doi:10.1371/journal.pone.0017259.t001
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known oncogenes critical for the progression of other (e.g.

epithelial) cancer types, which nevertheless have not been

associated with glioblastoma. We also investigated protein staining

images for 19 of the 29 genes uniquely identified by GTI, available

in the human protein atlas database (HPA) (Table 4).

In contrast to the 29 unique GTI-identified candidates

including TYMS, cyclin-dependent kinase inhibitor 2A, isoform

4/p16 (CDKN2A), was flagged by most of the methods (GTI score

92, COPA score 71, OS score 212, ORT score 15). This should

therefore represent a cancer-relevant gene that is over-expressed in

subsets of many different cancer types, but is not particularly

specific for glioblastoma. For both CDKN2A and TYMS,

immunohistochemical staining images were available from the

HPA [24,25], and were used to validate the outlier gene expression

(Figure 5), assuming that differences in mRNA levels actually

reflect differences in protein expression. Indeed, CDKN2A and

TYMS showed strong positive staining in a subset, but not in all

cancer samples (Figure 5). The Human Protein Atlas illustrated

moderate or strong staining in 9 of 12 samples for TYMS and 5

out of 12 glioma samples for CDKN2A. For CDKN2A, 7 out of

12 glioma samples showed negative staining, possibly reflecting the

fact that CDKN2A is often deleted in gliomas. Characteristic for a

distinct outlier gene is the observation that one subgroup of

Table 2. Ranks of known anaplastic astrocytoma (grade III)
and glioblastoma multiforme (GBM grade IV) genes.

No Symbol

No. of
PubMed
refs GTI COPA OS ORT t-test

1 GFAP 965 1866 29 487 11990 6052

2 EGFR 904 31 33 125 41 1411

3 OLIG2 44 3598 2773 13557 13643 5053

4 CHI3L1 19 65 9 22 11962 405

5 IQGAP1 6 1093 1141 1313 3314 1231

6 IGFBP2 61 27 4 10 3373 51

7 IL13RA2 2 32 31 102 354 1664

8 MDM2 169 7088 9138 6439 3623 7762

9 RB1 38 1869 2862 2621 2308 1788

10 CDKN2A 367 92 71 212 15 2846

11 CDKN2B 46 778 2790 418 244 3259

12 PTEN 471 5476 4524 2479 2557 3895

13 TP53 291 719 1325 1386 3342 709

14 MCM3 1 2673 3290 2837 1939 1484

The third column shows the number of articles as of 27/04/10 linking each gene
to glioblastoma multiforme. Columns 4 to 8 present the rank of each gene
among the five methods.
doi:10.1371/journal.pone.0017259.t002

Table 3. Spearman’s rank correlation between the number of
samples and ranks of genes per method.

All samples
Count of normal
samples

Count of cancer
samples

GTI 20.073 20.056 20.058

t-test 20.059 20.054 20.072

COPA 0.042 0.022 0.069

OS 0.25 0.20 0.29

ORT 0.22 0.18 0.26

For each method, the scores are converted into ranks. Spearman’s rank
correlation is calculated between each method and the number of samples.
doi:10.1371/journal.pone.0017259.t003

Figure 4. GeneSapiens database gene plots for GFAP and CDKN2A. The above plots are from the publicly available GeneSapiens database.
The y-axis defines the expression level of each gene while the x-axis defines the number of samples per gene. We compared the expression of each
gene among normal and cancer samples.
doi:10.1371/journal.pone.0017259.g004
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samples showed very strong and uniform staining, while the

remainder of the samples only showed very weak or negative

staining, similar to the normal expression of this gene in non-

malignant, control samples. Significantly, similar outlier protein

staining patterns were observed in 17 out of the 19 genes (90%) for

which a panel of immunostaining histology images was available in

the HPA (Table 4).

TYMS is a known target of many antifolate drugs, such as 59-

fluorouracil (5FU) and gemcitabine. These drugs have been tested

for the treatment of GBM patients, but have offered little general

advantage over other treatment options [26–28]. Whereas 5FU

and gemicitabine also inhibit RRM2 (ribonucleoside-diphosphate

reductase M2 subunit) and DHFR (dihydrofolate reductase) [29],

the new drug raltitrexed may be more specific to TYMS, but no

published data are available for glioblastoma treatment.

Assuming that the concentration of the target gene would

correlate with the sensitivity of cancer cells against the specific

drug, we determined the median effective concentration (EC50)

values for these three anti-folate drugs in cytotoxicity/cell

proliferation assays with four established GBM cell lines and an

immortalized foetal astrocyte cell line, SVGp12. Gemcitabine and

the TYMS-specific raltitrexed showed EC50 values on the nM

scale (Figure 6) against the GBM cell lines which all expressed

significant levels of TYMS, whereas 5FU was only effective at

1000-fold higher concentrations (data not shown). The immortal-

ized normal foetal astrocyte SVGp12, which only expressed

TYMS at low levels, was 4- to 20-fold less sensitive to raltitrexed

than any of the cancer cell lines. This suggests that TYMS may be

a therapeutic target for glioma cells, and further studies to test the

efficacy of a folate-targeting drug in gliomas showing outlier

expression for TYMS should be undertaken.

Taken together, the results suggest that the detection of gene

outliers with the GTI may provide complementary information on

potential oncogenic genes in tumour tissue samples, and that these

genes may be biologically relevant and associated with tumour

progression.

Table 4. Assessing GTI-unique hits in relation to key terms (‘‘glioblastoma’’ and ‘‘oncogene’’) and their HPA staining images.

No Symbol
No. of PubMed refs,
keyword ‘‘glioblastoma’’

No. of PubMed refs,
keyword ‘‘oncogene’’ Rank GTI

HPA outlier
positive

HPA outlier
negative

HPA outlier
inconclusive

1. LY96 1 4 29 - - -

2. TYMS 0 5 37 3

3. RASEF 0 0 42 3

4. SRPX2 1 0 44 3

5. VMO1 0 0 45 - - -

6. TK1 5 8 52 3

7. CCNB2 2 50 57 3

8. TREM1 2 3 58 3

9. CHAC2 0 0 64 - - -

10. CCDC102B 0 0 70 - - -

11. VCAM1 0 4 71 3

12. PRC1 2 39 72 3

13. NCAPG 0 0 75 - - -

14. NOD2 0 6 76 - - -

15. NPW 0 4 79 - - -

16. IL32 1 7 80 3

17. GALK1 0 0 81 3

18. EZH2 6 81 82 3

19. WHSC1 2 11 84 3

20. TTK 0 16 89 3

21. TFPI 11 18 90 3

22. PLEKHA4 0 0 91 - - -

23. EHD2 0 0 93 - - -

24. NMU 1 58 94 3

25. C6orf173 0 0 95 - - -

26. UBE2T 0 1 96 3

27. PROM1 1 1 97 3

28. ARSJ 0 0 99 3

29. SOCS2 1 37 100 3

Most of the 29 genes uniquely identified by the GTI have not been associated with oncogenic processes in glioblastoma, although there were several articles listed in
PubMed linking them to oncogenic processes in other cancers as of 01/12/2010. The majority of the genes show variable immunohistochemical staining patterns in the
Human Protein Atlas (HPA).
doi:10.1371/journal.pone.0017259.t004
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Discussion

In summary, we have shown how our newly-developed

algorithm can be successfully utilized for the robust detection of

outlier gene expression in cancers. The GTI performs particularly

well with heterogeneous large-scale datasets that contain either

variable numbers of samples between the groups being compared

or variable numbers of informative samples for different genes.

Figure 5. Human Protein Atlas images illustrating outlier gene expression. Glioma specimens were grouped into four categories of staining
intensity (protein expression): i) negative, ii) weak, iii) moderate and iv) strong; a) and e) show staining of a normal sample. The upper panel TYMS/
CDKN2A shows the staining of cancer samples for genes TYMS (b, c and d) and CDKN2A (f, g and h). Green-coloured samples represent normal tissue,
and red-coloured samples represent cancer samples. In section (i) above containing (a) and (e), both normal and cancer samples show negative
staining. The lower panel presents mRNA expression data divided into four quartiles illustrating a typical outlier pattern.
doi:10.1371/journal.pone.0017259.g005

Figure 6. EC50 curves for raltitrexed and gemcitabine. EC50 curves show that the glioblastoma cell line A172 is more sensitive to raltitrexed
than gemcitabine. EC50 values were determined using the Cell Titer Glo cell proliferation assay after four days of incubation with the drugs (see Text
S1). Each data point and the standard deviations were calculated from six replicates.
doi:10.1371/journal.pone.0017259.g006
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The GTI requires gene expression data from both disease tissues

and corresponding reference samples, and approximates the

proportion of the outlying population for each gene. Our results

demonstrated that the GTI provided valuable complementary

information when compared to existing analytical methods. This

was demonstrated by the identification of 29 genes with outlier

expression profiles not previously linked to glioblastoma. False

positives, for example genes with high expression in both normal

and cancer tissues, such as GFAP, [22,23] were more often

identified by the other methods such as COPA, which otherwise

also performed well. With the increasing interest in examining

outlier gene expression profiles in very large-scale meta-datasets,

the GTI should complement the discovery of oncogenic genes and

facilitate the identification of novel therapeutic targets.

When the proportion of outliers among the disease samples

becomes very small, all existing methods become increasingly

insensitive to the presence of small outlier populations. As

demonstrated by Wu et al. (2007), COPA and the OS statistic

use only cancer group samples to determine the rth percentile that

is used as a cut-off to define outliers. Naturally, both of these

methods therefore lead to the false-positive identification of

general tissue-specificity marker genes such as GFAP, which also

show high expression in the non-malignant, normal reference

group. The approach of the GTI to utilize the normal control

group for the calculation of outlier statistics therefore effectively

reduces the number of false positives identified. Moreover, if the

number of cancer samples is considerably larger than the number

of normal samples (which is typical in most gene expression

studies), COPA and OS and ORT statistics often show a

significant increase in false positives (Figure 4). The ORT method

only uses normal samples to determine the number of outliers

[13], and did not perform well with any of the large-scale

integrated datasets (Table 1 and 3). Importantly, we found that the

GTI cut-off based on both cancer and normal samples significantly

improved outlier analysis results. This improvement could explain

why the GTI performed significantly better in large-scale

integrated datasets.

We specifically explored the performance of COPA, OS, ORT,

the t-statistic and the GTI in relation to the number of samples

that were informative for a given gene. Importantly, the total

number of informative samples introduces a strong bias in

differential gene expression analysis, in particular among multi-

study microarray datasets [30]. OS and ORT scores showed a

correlation with the number of samples, pointing to such bias. The

t-statistic and GTI were less affected by the number of samples

(Table 3). For the COPA method, we found that most of the

apparent false-positive hits among the top 100 had a large number

of samples. The scaling factors used by older methods to achieve

comparability of scores across different genes are not efficient

when there are varying numbers of samples per gene present. This

represents the major drawback of all of these methods, which does

not affect the performance of the GTI. The use of the GTI is

therefore particularly recommended in all instances where

complex data structures and highly variable numbers of samples

and data points per gene are provided. Furthermore, compared to

other methods for outlier detection, our results clearly indicated

that the scaling factor used for the GTI (T/N) efficiently dealt with

the strong variation in samples per gene.

We validated the genes highlighted by the GTI using data from

immunohistochemistry and explored their value as drug targets in

glioblastoma cell lines. TYMS is a gene encoding thymidylate

synthetase, which affects the production of nucleotide building-

blocks used in DNA synthesis and repair. Thus, it is likely that fast

growing and genetically unstable cancer cells are more dependent

on TYMS function than normal cells. The immunhistochemical

staining of the corresponding protein in HPA [24] demonstrated

that TYMS is differentially expressed between normal and cancer

samples (Figure 5), and indeed follows a characteristic outlier

profile as predicted by the GTI. We also demonstrated that

specific inhibitors of TYMS protein, such as raltitrexed, clearly

showed cancer specificity, although we did not distinguish

differential sensitivity among different tumour lines corresponding

with the level of over-expression. Immortalized normal foetal

astrocytes (SVGp12) were 4- to 2-fold less sensitive to raltitrexed

than the four cancer cell lines tested, which all expressed similarly

high levels of TYMS. We propose that the combination of outlier

expression with knowledge of possible approved or experimental

drugs based on information available from DrugBank [29] will

open a possibility to reposition known drugs to cancer types for

which they have not been previously used.

In order to better analyze heterogeneous large-scale microarray

datasets, we developed the gene tissue index (GTI) as a new robust

method for detecting cancer gene outliers. The GTI was used to

examine over-expression and under-expression in cancer tissues as

compared to a reference group. Our simulation results demon-

strated that the GTI performs well as an alternative method for

identifying outliers using single study datasets. Using a large-scale

glioblastoma clinical dataset originating from multiple laborato-

ries, the GTI identified more oncogene outliers than all of the

previously described methods. Compared with most existing

methods for outlier analysis, the GTI can uncover outliers by

determining a cut-off based on all samples (both cancer and

normal) and standardizing the score to achieve better compara-

bility across genes. Most top-ranking genes according to the GTI

showed a significant association with cancer.

Supporting Information

Figure S1 Expression profiles of GTI top ranking genes
from the simulation study. Plots of expression values in each

group, for 12 genes ranked highest by the GTI statistic. Points

have been jittered in the vertical direction for clear viewing. The

blue colour refers to the normal and red to the cancer group. In

the first plot with a GTI score of 6.906, it can be seen that the

cancer group has a sub-population with expression above 9.
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Table S1 Single study simulations data used to construct the

receiver operating characteristic (ROC) curves.
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Table S2 Twenty nine genes uniquely identified by GTI among

the top 100 that were further followed up in this study.

(XLS)

Text S1 R programming code of the GTI algorithm introduced

in this study used to identify cancer outliers.
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