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The cerebral cortex contains numerous neuronal cell types, distinguished by their
molecular identity as well as their electrophysiological and morphological properties.
Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic
function among these neuron types, but how these patterns are established during
development remains poorly understood. Selective targeting not only of different
cell types but also of distinct postsynaptic neuronal domains occurs in many brain
circuits and is directed by multiple mechanisms. These mechanisms include the
regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre-
and postsynaptic processes, lineage relationships, activity dependent mechanisms and
intercellular molecular determinants such as transmembrane and secreted molecules,
many of which have also been implicated in neurodevelopmental disorders. However,
many studies of synaptic targeting have focused on circuits in which neuronal
processes target different lamina, such that cell-type-biased connectivity may be
confounded with mechanisms of laminar specificity. In the cerebral cortex, each
cortical layer contains cell bodies and processes from intermingled neuronal cell types,
an arrangement that presents a challenge for the development of target-selective
synapse formation. Here, we address progress and future directions in the study of
cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to
identifying developmental mechanisms generating stereotyped patterns of intracortical
connectivity, recent developments in uncovering the determinants of synaptic target
selection during cortical synapse formation, and current gaps in the understanding of
cortical synapse specificity.

Keywords: neocortex, pyramidal cell, inhibitory interneuron, synapse formation, development, cell-type
specificity, targeting

CELL-TYPE-BIASED CONNECTIVITY IN THE NEOCORTEX

The mammalian neocortex is an extensively interconnected network of neurons underlying
a broad repertoire of behaviors including perception, decision-making, and voluntary action.
Approximately 80–90% of cortical neurons are excitatory while the remaining are inhibitory,
and both excitatory and inhibitory neurons are further subdivided into different cell types based
on their molecular, morphological and functional characteristics (Kawaguchi and Kubota, 1997;
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Markram et al., 2004, 2015; Lefort et al., 2009; Meyer et al., 2011;
DeFelipe et al., 2013; Greig et al., 2013; Lodato and Arlotta,
2015; Kubota et al., 2016; Tremblay et al., 2016; Baker et al.,
2018; Lim et al., 2018a; Tasic et al., 2018; Huang and Paul,
2019; Fishell and Kepecs, 2020; Gouwens et al., 2020; Yuste
et al., 2020; Anastasiades and Carter, 2021). The neocortex
is traditionally divided into six layers, and each cortical layer
is composed of different sets of these neuronal cell types
(Callaway, 1998; Thomson and Lamy, 2007; Feldmeyer, 2012;
Harris and Mrsic-Flogel, 2013; Harris and Shepherd, 2015;
Anastasiades and Carter, 2021; Staiger and Petersen, 2021), most
of which also send dendrites and intracortical axons outside
their home layer. The function of the mature neocortex relies
on stereotyped patterns of intracortical connections among these
neuronal cell types both within and across layers as well as
predictable properties of their synaptic connections (Thomson
and Lamy, 2007; Feldmeyer, 2012; Harris and Shepherd, 2015;
Kubota et al., 2016; Tremblay et al., 2016; Adesnik and Naka,
2018; Anastasiades and Carter, 2021; Staiger and Petersen,
2021). Although much progress has been made in identifying
mechanisms regulating cell-type-specific synapse formation in
other brain areas and model organisms (Kolodkin and Tessier-
Lavigne, 2011; Rawson et al., 2017; Favuzzi and Rico, 2018;
Apostolo and De Wit, 2019; Kast and Levitt, 2019; Agi et al., 2020;
Honig and Shapiro, 2020; Sanes and Zipursky, 2020), how the
synaptic organization of intracortical connections arises during
development to generate the circuits of the mature mammalian
neocortex is only beginning to be understood.

During development, the intracortical axons and dendrites of
cortical cell types reach their appropriate laminar destinations
(Larsen and Callaway, 2006; Fame et al., 2011; Gibson and
Ma, 2011; Kalil and Dent, 2014; Hand et al., 2015; Dorskind
and Kolodkin, 2021), and there encounter multiple classes of
synaptic targets. They must then select the correct cell types
and postsynaptic domains within those cell types with which to
form synaptic connections (Thomson and Lamy, 2007; Brown
and Hestrin, 2009a; Krook-Magnuson et al., 2012; Harris and
Shepherd, 2015; Kubota et al., 2016; Tremblay et al., 2016;
Chevée and Brown, 2018; Kast and Levitt, 2019; Anastasiades and
Carter, 2021). The appropriate synaptic machinery must also be
recruited to the pre- and postsynaptic membranes to establish
synaptic properties specific to each connection type (Larsen and
Sjöström, 2015; Nusser, 2018; Südhof, 2018; Sanes and Zipursky,
2020). Here, we highlight some of the long-standing barriers to
understanding these developmental processes in the neocortex,
some mechanisms that have been recently implicated in the
development of cell-type-biased intracortical connectivity, and
remaining challenges to understanding the cell-type-dependent
development of intracortical circuits.

PETERS’ RULE: AXODENDRITIC
OVERLAP CONSTRAINS THE
DEVELOPMENT OF INTRACORTICAL
CIRCUITS

A conceptual barrier to identifying mechanisms that contribute
to the development of cell-type dependent synaptic organization

in intracortical circuits has been the debate over whether
the organization of cortical circuits is fully explained by the
dendritic and axonal morphologies of different cell types,
or whether additional mechanisms contribute to cell-type-
biased connectivity. One hypothesis is that the synaptic
connectivity between two cortical cell types reflects their
average axodendritic overlap and thus depends only on the
densities of the axonal processes of the presynaptic cell types
and the dendritic processes of the postsynaptic cell types
in the target region (Figure 1A). This concept, known as
Peters’ rule, was first posited when describing the connectivity
between thalamocortical axons and the postsynaptic elements
in layer 4 (L4) of the visual cortex (Peters and Feldman,
1976), and has been extensively applied to studies of cortical
connectivity (Braitenberg and Schüz, 1998; Stepanyants and
Chklovskii, 2005; Rees et al., 2017). Although Peters’ rule
has been extended to different spatial scales (Rees et al.,
2017), Peters originally proposed that the synaptic connectivity
between cell types reflects the average spatial overlap between
the presynaptic axon of one cell type and the different
postsynaptic targets in a volume of cortex. If Peters’ rule
explains the connectivity patterns of the neocortex, mechanisms
governing the development of each cell type’s characteristic
axonal and dendritic morphologies, including their vertical
and horizontal distribution and their density, would establish
the predictable patterns of intracortical synaptic connectivity
among cortical cell types by regulating the average axodendritic
overlap for different cell-type combinations (Hill et al., 2012;
Ramaswamy et al., 2012; Reimann et al., 2017). Additional
developmental mechanisms for establishing biases in synaptic
connections would not be required. Since synapse formation
requires apposition between a presynaptic neuron’s axon and
a postsynaptic neuron’s dendrite, by necessity, the synaptic
connectivity among different neuron types is constrained by the
morphological patterning of their axons and dendrites. However,
studies comparing the rate of synaptic connectivity among
different cortical cell types with their axodendritic overlap suggest
that additional mechanisms must contribute to establishing
intracortical circuits.

BEYOND PETERS’ RULE: THE
CHALLENGE OF IDENTIFYING
ADDITIONAL CELL-TYPE-DEPENDENT
DEVELOPMENTAL MECHANISMS

Directly testing whether Peters’ rule fully explains stereotyped
patterns of intracortical connectivity is technically challenging
for several reasons. First, one must know the identity of the
cell types in the cortex to compare the synaptic connectivity
and morphological relationships for different combinations of
cell types. However, despite much progress, a full catalog of
the cell types in the neocortex remains out of reach. Indeed,
what constitutes a cell type is still debated (Zeng and Sanes,
2017), and increasingly sophisticated methods for determining
cell types in the cortex have revealed more and more complexity
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(Zeisel et al., 2015; Tasic et al., 2016, 2018; Paul et al., 2017;
Huang and Paul, 2019; Loo et al., 2019; Gouwens et al., 2020;
Kim et al., 2020; Scala et al., 2020; Yao et al., 2020; Yuste et al.,
2020). For example, parvalbumin-positive (PV) interneurons,
one of the three major classes of cortical inhibitory neurons,
have long been further subdivided into two morphological
subclasses, basket cells and Chandelier cells (Kawaguchi and
Kubota, 1997; Tremblay et al., 2016). However, prior studies
using morphological, electrophysiological and molecular criteria
as well as recent studies using single cell transcriptomics
combined with other characteristics such as cellular morphology
have identified multiple types of PV interneurons even within
a single cortical layer (DeFelipe et al., 1989; Gupta et al., 2000;
Wang et al., 2002; Blatow et al., 2003; Kumar and Ohana, 2008;
Tan et al., 2008; Buchanan et al., 2012; Bortone et al., 2014;
Jiang et al., 2015; Koelbl et al., 2015; Tasic et al., 2016, 2018;
Frandolig et al., 2019; Gouwens et al., 2020; Scala et al., 2020;
Yao et al., 2020). These differences have functional consequences.
For example, the synapses of deep layer pyramidal neurons
onto two types of PV interneurons, one with locally ramifying
axons and one that sends axons toward more superficial layers,
differ in whether or not they contain presynaptic NMDA
receptors (Buchanan et al., 2012). To fully evaluate any selectivity
in synaptic connectivity, these different cell types must be
taken into account.

In addition to an evolving classification of cortical cell types,
methods for comparing the patterns of functional synaptic
connectivity with those predicted by neuronal morphology
remain low-throughput and technically challenging. Three-
dimensional volume electron microscopy reveals the physical
connectivity among cells within volumes of cortex, but
identifying different cell types within these blocks based on
criteria such as long-range axonal targets or transcriptomic
classes remains challenging, and the functional properties of
the synapses cannot be fully ascertained (Briggman and Bock,
2012; Helmstaedter, 2013; Kubota et al., 2018). Performing
paired whole-cell recordings of unitary synaptic connections
followed by cell filling and morphological reconstruction is also
laborious (Miles and Poncer, 1996; Thomson and Lamy, 2007;
Qi et al., 2020). Importantly, these technical limitations have also
hindered the ability to test for effects of perturbations of processes
hypothesized to underlie the development of intracortical
synaptic connections. Despite these obstacles, exceptions to
Peters’ rule have been identified, implying the existence of
additional mechanisms that contribute to specifying intracortical
circuits during development.

INTRACORTICAL CIRCUITS, SYNAPTIC
TARGETING AND SYNAPTIC
SPECIALIZATION

As experimentally measured synaptic connectivity and
anatomically predicted connectivity patterns among
different cortical cell types have been directly compared,
more and more exceptions to connectivity rates based
solely on average axodendritic overlap have been observed

(Dantzker and Callaway, 2000; Shepherd et al., 2005; Brown
and Hestrin, 2009b; Petreanu et al., 2009; Little and Carter,
2012; Kasthuri et al., 2015; Lee et al., 2016; Schmidt et al.,
2017; Motta et al., 2019; Karimi et al., 2020). For example,
layer 5 corticocortical neurons (L5 CCNs) synapse onto
neighboring L5 corticotectal neurons (L5 CTectNs) at a
higher rate than predicted from their axodendritic overlap
(Brown and Hestrin, 2009b). This general preference for
intratelencephalic pyramidal neurons (L5 IT neurons), of
which L5 CCNs are a subtype, to synapse onto L5 pyramidal
tract neurons (L5 PT neurons), of which L5 CTectNs are a
subtype, but not the reverse, has been found across cortical
areas (Morishima and Kawaguchi, 2006; Brown and Hestrin,
2009b; Kiritani et al., 2012; Harris and Shepherd, 2015).
Similarly, a reconstruction of mouse visual cortex using electron
microscopy showed that neurons with similar orientation
tuning were preferentially connected even though the axons
and dendrites of neurons of all orientation selectivities were
intermingled (Lee et al., 2016). Although it remains possible
that additional structural constraints contribute to predictable
patterns of intracortical connectivity, such as the packing
density of neuronal processes of different cortical cell types in
sublamina within the cortex (Udvary et al., 2021), these results
suggest that mechanisms beyond axodendritic overlap must
contribute to preferential synapse formation among some cell
types in the cortex.

Synaptic biases for particular neuronal domains have also
been shown to be inconsistent with mechanisms for establishing
synaptic connections based solely on average axodendritic
overlap (Petreanu et al., 2009; Little and Carter, 2012; Reimann
et al., 2015; Motta et al., 2019; Schneider-Mizell et al., 2020).
For example, different classes of cortical inhibitory neurons
target distinct regions of the dendritic and axonal arbors
of pyramidal neurons (Jiang et al., 2013; Kubota et al.,
2016; Paul et al., 2017), a feature that plays an important
role in determining how these inputs are integrated by
pyramidal neurons. Chandelier cells (ChCs) form specialized
synaptic connections onto the axon initial segments (AISs)
of pyramidal neurons (Somogyi, 1977; Fairen and Valverde,
1980; Somogyi et al., 1982; Gallo et al., 2020), in contrast to
PV basket cells that preferentially target pyramidal cell somas
and proximal dendritic shafts, and somatostatin-expressing
(SST) Martinotti cells that synapse onto distal apical dendrites
(Kubota, 2014; Kubota et al., 2016; Tremblay et al., 2016;
Fishell and Kepecs, 2020). The subcellular preference of neither
ChCs (Schneider-Mizell et al., 2020) nor SST Martinotti cells
(Reimann et al., 2015) is fully predicted by axodendritic overlap.
The developmental targeting of subcellular domains is likely
not limited to inhibitory neuron types. For example, the
distribution of excitatory and inhibitory synapses around the
initial bifurcation of the apical dendritic tuft differs across
different classes of pyramidal neurons (Karimi et al., 2020).
Similarly, a recent ultrastructural reconstruction of layer 4
(L4) in mouse somatosensory cortex showed that a fraction of
both excitatory and inhibitory axons preferentially innervated
specific subcellular domains, inconsistent with a purely geometric
mechanism (Motta et al., 2019).
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Finally, the properties of synaptic connections formed
during development can depend on the identity of the pre-
or postsynaptic cell type. For example, single pyramidal
neurons form both depressing synapses onto PV basket
cells and facilitating synapses onto SST Martinotti cells
(Reyes et al., 1998; Koester and Johnston, 2005). Similarly, the
synapses of deep layer pyramidal neurons onto other pyramidal
neurons, SST Martinotti cells and translaminar PV neurons
contain presynaptic NMDA receptors while those onto PV
basket cells do not (Buchanan et al., 2012). These studies
indicate that synaptic machinery must be selectively recruited
to particular synapse types to determine connection-type-
biased synaptic properties (Nusser, 2018; Südhof, 2018; Sanes
and Zipursky, 2020). Together, these results suggest that,
although Peters’ rule sets a minimum necessary constraint

on synapse formation, additional mechanisms contribute to
the predictable synaptic target choices and the development
of synaptic properties formed by some cortical cell types
during development.

CELL-TYPE-SPECIFIC NEURITE
MORPHOLOGIES CONSTRAIN
POSSIBLE SYNAPTIC PARTNERS

The development of the distinctive intracortical axonal and
dendritic morphologies of different cortical cell types, as well
as their cell number and position within the cortex, set
baseline constraints on the synaptic connectivity between cell
types (Figure 1A; Hill et al., 2012; Reimann et al., 2017;

FIGURE 1 | Proposed mechanisms for establishing stereotyped patterns of synaptic connectivity in the neocortex. (A) Predictable patterns of synaptic connectivity
may be defined by anatomical relationships between presynaptic axons and postsynaptic dendrites. For example, the axodendritic overlap between Input 1 (green)
and the two pyramidal cell types (magenta, blue) precludes synapse formation with the blue cell type. The axodendritic overlap of Input 2 (orange) and the two
pyramidal cell types predicts a higher probability of connection with the blue type than the magenta type. (B) Fine-scale neurite geometry such as axon tortuosity
and dendritic spine outgrowth may contribute to synaptic partner selection. Growth patterns of axons and dendrites at small scales alter the amount of apposed
membrane between cells, and thus the number of potential synaptic sites. Inhibitory interneuron axons (Inh, blue) in the cortex are highly tortuous, which can increase
potential sites of contact with the dendrites of preferred synaptic partners, allowing the formation of more synapses between them. The axons of excitatory pyramidal
neurons (Exc, orange) are more linear but directed dendritic spine growth in postsynaptic neurons (Exc, magenta) could also allow for the preferential formation of
synaptic sites. (C) Lineage relationships affect synaptic connectivity. Clonally related pyramidal cells (sister cells) arising from the same neural progenitor lineage are
preferentially interconnected by gap junctions ( ) during the first postnatal week (postnatal day 0–6; P0–P6). These gap junctions disappear during the second
postnatal week (∼P10+), and chemical synapses are preferentially formed between clonally related pyramidal cells. (D) Activity-dependent plasticity may guide
cell-type biased synaptic targeting. Different axonal inputs to a cortical cell type may have distinct neural activity patterns, and synapses between specific cell-type
combinations may be selectively strengthened (orange input) or weakened (green input) through activity-dependent mechanisms, leading to preferential connectivity
between cortical cell types. (E) Specific expression of recognition molecules may mediate cell-type or domain-specific synaptic targeting and synapse-type-specific
functional properties. During development, preferred synaptic partner cell types may express cognate receptors and ligands (red) on the pre- (orange) and
postsynaptic processes (purple). These molecular signals guide growth and synaptogenesis, leading to cell-type-biased connectivity and function in adulthood.
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Udvary et al., 2021). Mechanisms establishing the characteristic
intracortical axonal guidance and branching of different cell
types remain incompletely understood but likely include
extrinsic molecular cues such as semaphorin, Wnt, netrin, and
ephrin family members, interactions with radial glia, selective
stabilization of axon collaterals and the cellular migration
patterns of inhibitory neurons (Fame et al., 2011; Leyva-Diaz and
Lopez-Bendito, 2013; Hand et al., 2015; Dorskind and Kolodkin,
2021). For example, both SST Martinotti cells and translaminar
PV interneurons migrate through the marginal zone before
arriving into position in the cortex, and preventing this migration
impairs the growth of their axonal arbors into the appropriate
target layers (Lim et al., 2018b). The size and shape of the
dendritic arbors of different classes of cortical neurons are also
regulated by multiple mechanisms including extrinsic secreted
cues that orient the apical dendrites of pyramidal neurons toward
the pial surface (Polleux et al., 2000) as well as intrinsic expression
of transcription factors that regulate dendritic arbor complexity
and lamination (Chen et al., 2005; Tran et al., 2009; Cubelos
et al., 2010, 2015; Lefebvre et al., 2015; Fazel Darbandi et al.,
2018). Because the mechanisms regulating axonal and dendritic
morphogenesis, together with neuronal positioning and cell
number, limit the possible connectivity between cortical cell types
during development, they may lead to some predictable patterns
of connectivity.

Directed axon growth at finer spatial scales during
development (Figure 1B), guided by short-range secreted
or contact based cues, may increase the amount of membrane
surface apposed to preferred postsynaptic targets, and thus the
number of potential synapse sites. The local axonal structure of
cortical inhibitory neurons is highly correlated with the dendritic
structure of their synaptic target cells, and their axons exhibit
high tortuosity (Stepanyants et al., 2004; Portera-Cailliau et al.,
2005). This tortuosity suggests that short-range interactions
affecting axon outgrowth may generate inhibitory synapse
selectivity through increasing membrane contact with target
cell types or specific postsynaptic domains, but this hypothesis
has not been directly tested. Axon tortuosity may also affect
the angular alignment between axons and different dendritic
segments, which has been shown to influence the number of
synapses formed between axons and target dendrites in the
spinal cord (Balaskas et al., 2019). In contrast, the axons of
pyramidal neurons are less tortuous and exhibit little spatial
correlation with connected neurons (Stepanyants et al., 2004;
Kalisman et al., 2005).

The fine-scale structure of dendritic branches and spines
may also influence synaptic connectivity with preferred partners
(Figure 1B). Not only do the dendritic arbors of cortical
pyramidal neurons exceed the theoretical density required for
sampling all potential synaptic partners in their dendritic field,
they are also studded with dendritic spines that further increase
the number of potential sites for synapse formation (Stepanyants
et al., 2008; Wen et al., 2009; Bird et al., 2021). Yet pyramids
form synapses with only a small subset of available synaptic
partners (Song et al., 2005; Stepanyants and Chklovskii, 2005;
Kasthuri et al., 2015). Types of nominally aspiny inhibitory
interneurons also exhibit spines, albeit at very low densities

(Kawaguchi et al., 2006). Spine density and distribution, which
varies across cell types and cellular domains, is controlled by
a large number of cell-intrinsic and extrinsic factors, including
competition between different spine types (Koleske, 2013; Bian
et al., 2015; Moyer and Zuo, 2018; Henderson et al., 2019).
Directed growth and stabilization of dendritic filopodia has been
proposed as a potential strategy for increasing the probability
of connection between preferred synaptic partners in the cortex,
although direct evidence for such mechanisms has not yet been
reported (Dailey and Smith, 1996; Ziv and Smith, 1996; Jontes
and Smith, 2000; Bonhoeffer and Yuste, 2002; Konur and Yuste,
2004; Stepanyants et al., 2004; Yuste, 2011).

NEURONAL LINEAGE INFLUENCES
SYNAPSE FORMATION OF CLONALLY
RELATED NEURONS

Developmental mechanisms contributing to the pattern of
intracortical circuits also reflect the lineage relationships of
neurons (Figure 1C). Clonally related excitatory neurons are
more likely to be synaptically connected than expected based
on their cell types (Yu et al., 2009, 2012; Cadwell et al.,
2020), first through the preferential formation of gap junctions
among clonally related neurons followed by a transition to
chemical synapses (Yu et al., 2009, 2012). Rather than exhibiting
increased connectivity within a cell type or cortical layer, these
interconnected, clonally related excitatory neurons span multiple
cell types and show increased interlaminar connectivity (Cadwell
et al., 2020). Formation of these synaptically connected clusters
requires normal processes of radial migration and is disrupted
by the depletion of DNA-methyltransferase 3 or clustered
protocadherins (Tarusawa et al., 2016). Interestingly, clonally
related excitatory neurons have similar selectivity for visual
stimuli (Li et al., 2012; Ohtsuki et al., 2012). Clonally related
inhibitory neurons also preferentially form electrical synapses
during development, but do not go on to form preferential
chemical synapses (Zhang et al., 2017). Instead, these electrically
coupled, clonally related inhibitory neurons tend to target the
same set of excitatory neurons (Zhang et al., 2017), but how these
synaptic relationships are established is not yet known.

ACTIVITY-DEPENDENT MECHANISMS
SCULPT CELL-TYPE-BIASED
CONNECTIVITY

Both spontaneous and evoked neuronal activity play central
roles in the development of the neocortex, affecting the number
of cells, their position, their intracortical axonal and dendritic
morphology and their synaptic connectivity (Katz and Shatz,
1996; Kirischuk et al., 2017; Lim et al., 2018a; Simi and Studer,
2018; Bragg-Gonzalo et al., 2021; Hanganu-Opatz et al., 2021).
Activity-dependent strengthening or elimination of specific types
of intracortical connections may work in concert with cell-
type-specific molecular mechanisms to establish stereotyped
patterns of connectivity in cortical circuits (Figure 1D). For
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example, the preferential connectivity between neurons with
similar receptive field properties or activity state suggests that
cell-type-biased connectivity is influenced by neuronal activity
patterns (Yassin et al., 2010; Ko et al., 2011, 2014; Cossell et al.,
2015; Lee et al., 2016). Similarly, while the initial subcellular
domain-specific targeting of AISs by ChCs is regulated through
molecular mechanisms (Favuzzi et al., 2019; Tai et al., 2019),
subsequent changes in neuronal activity modify the location of
the AIS and the density of ChC synapses onto AISs (Grubb and
Burrone, 2010; Wefelmeyer et al., 2015; Pan-Vazquez et al., 2020).
Nonetheless, some stereotyped targeting is maintained despite
abnormal cortical activity patterns. For example, the preferential
innervation of different subcellular domains by inhibitory neuron
subclasses is preserved in organotypic slices (Di Cristo et al.,
2004), even though neuronal activity patterns are drastically
altered in culture. Although activity-dependent mechanisms
likely shape cell-type and domain selectivity of intracortical
synaptic connections, the molecular cascades evoked by neuronal
activity to affect these processes are still not clear.

MOLECULAR MECHANISMS FOR
BIASING CELL-TYPE AND
DOMAIN-SELECTIVE TARGETING IN
THE NEOCORTEX DURING
DEVELOPMENT

In addition to processes regulating axodendritic overlap and
directed neurite outgrowth, neural activity, and cell lineage
relationships, molecular recognition mechanisms contribute to
the stereotyped patterns of connectivity among cortical cell
types (Figure 1E). Molecular pathways for establishing cell-
type and domain-selective neuronal connections have been well
characterized in other model systems and brain areas, including
the retina, olfactory bulb, cerebellum, and spinal cord (Sanes and
Yamagata, 2009; Shen and Scheiffele, 2010; De Wit and Ghosh,
2016; Rawson et al., 2017; Apostolo and De Wit, 2019; Honig
and Shapiro, 2020; Sanes and Zipursky, 2020). Most of these
molecules belong to a few families of cell-surface and secreted
proteins capable of trans-cellular interactions (Apostolo and De
Wit, 2019; Sanes and Zipursky, 2020). The identification of cell-
type-biased connectivity in the neocortex suggests that similar
mechanisms contribute to cortical development, and recent
studies have identified molecular recognition processes that play
a role in neocortical synaptic targeting. In the following sections,
we first focus on the contributions of molecular mechanisms
to domain-specific and cell-type specific synapse formation of
inhibitory synapses, including examples where such mechanisms
are hypothesized but not yet known (see the sections “Chandelier
Cells and Synaptic Targeting at the Axon Initial Segment,”
“Somatostatin and Parvalbumin-Expressing Interneurons and
Subcellular Targeting,” “Cell-Type-Biased Connections From
Inhibitory Interneurons to Pyramidal Neurons,” and “Cell-Type-
Specific Inhibitory Networks”). In the subsequent sections (see
the sections “Mechanisms Shaping the Synaptic Connectivity
of Pyramidal Neurons,” “Mechanisms for Targeting Excitatory

Input to Subcellular Domains of Pyramidal Neurons,” and “Cell-
Type-Biased Connections From Pyramidal Neuron to Inhibitory
Neuron Types”), we describe molecular mechanisms involved
in the cell-type and domain-selective targeting of excitatory
synapses. Finally, in Section “The Development of Synapse-
Type-Specific Functional Properties,” we describe molecular
mechanisms implicated in establishing synapse-type-specific
functional properties.

Chandelier Cells and Synaptic Targeting
at the Axon Initial Segment
A notable example of subcellular domain targeting by a cortical
inhibitory neuron is the ChC, an inhibitory interneuron type
that preferentially synapses on the AISs of pyramidal neurons
while avoiding somatic and dendritic domains (Somogyi, 1977;
Fairen and Valverde, 1980; Somogyi et al., 1982; Gallo et al.,
2020). This level of specificity requires additional mechanisms
beyond axodendritic overlap (Schneider-Mizell et al., 2020). The
preference of ChCs for AISs appears before their specialized
axonal cartridges are formed (Gour et al., 2021). Although
immature ChCs initially generate some axonal varicosities not
associated with AISs, these are subsequently pruned during
postnatal development so that by postnatal day 28 (P28) in
the mouse, the cells exhibit adult selectivity with the majority
of their synapses formed onto AISs (Steinecke et al., 2017;
Gour et al., 2021).

Recent work has uncovered a number of molecular pathways
that underlie ChC synaptic targeting (Figure 2; Contreras et al.,
2019; Gallo et al., 2020). One recent study compared results from

FIGURE 2 | Molecular mechanisms regulating chandelier cell (ChC) targeting
of the axon initial segment of pyramidal neurons. Chandelier cells form
synapses preferentially on the axon initial segment (AIS) of pyramidal neurons
(Pyr), generating specialized axonal structures called cartridges (green).
Chandelier cell-AIS targeting requires the expression of Fgf13 and ErbB4 in
chandelier cells, and the expression of L1cam and α2 subunit-containing
GABAA receptors in the AIS. ErbB4 is further regulated by the expression of
intracellular Dock7 in chandelier cells, while L1cam interacts with Ankyrin-G
and β-spectrin within the AIS to mediate axo-axonic synaptogenesis.
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cell-type-specific RNA sequencing of three classes of developing
interneurons – ChC, PV, and SST interneurons – and identified
Fgf13, a fibroblast growth factor family member, as required for
ChCs to correctly target AISs (Favuzzi et al., 2019). Another
recent study found that the interaction of L1cam, a member of
the immunoglobulin cell adhesion molecule superfamily, with
ankyrin-G at the AIS, is also required to target ChC synapses to
AISs (Tai et al., 2019). This mechanism is similar to the process
for GABAergic innervation of Purkinje cell AISs directed by the
L1cam family member, neurofascin (Ango et al., 2004; Kriebel
et al., 2011). Expression of ErbB4, a receptor tyrosine kinase, in
ChCs also promotes the formation of axoaxonic synapses, likely
through the ErbB4 receptor Neuregulin 1 which is expressed in
pyramidal neurons (Fazzari et al., 2010; Del Pino et al., 2013,
but see Neddens et al., 2011). ErbB4 is further regulated by the
protein Dock7, a member of the DOCK180 family of atypical Rac
or Cdc42 GTPase guanine nucleotide exchange factors. Dock7
is required to activate ErbB4 autophosphorylation and promote
ChC synaptogenesis (Tai et al., 2014), and may also interact
with the α2 subunit of the GABAA receptor which is itself
required for synaptogenesis at AISs in the hippocampus (Hines
et al., 2018; Yang et al., 2019). Notably, perturbations of most
of these mechanisms do not result in complete absence of ChC-
AIS targeting, suggesting that multiple molecular mechanisms act
together to mediate synaptic specificity.

Somatostatin and
Parvalbumin-Expressing Interneurons
and Subcellular Targeting
Another example of target selectivity of inhibitory synapses in
the neocortex is the biased innervation of different dendritic
regions of pyramidal neurons by PV and SST interneurons
(Figure 3). Cortical pyramidal neurons are distinguished by their
apical dendrite ending in an apical tuft near the pial surface
and a domain of basal dendrites surrounding the cell soma.
These dendritic domains differ in their integration properties
and influence on pyramidal neuron computations (Spruston,
2008; Stuart and Spruston, 2015). SST Martinotti cells and
PV interneurons exhibit different preferences for these two
dendritic regions: SST Martinotti cells synapse onto the distal
apical dendrites of pyramidal neurons while PV interneurons
preferentially synapse onto the perisomatic region (Kubota, 2014;
Kubota et al., 2016; Tremblay et al., 2016). Comparisons of
the transcriptional profiles of developing ChCs, SST and PV
interneurons not only identified a role for Fgf13 in directing ChC
synapses to the AIS, but also identified molecules contributing to
SST and PV targeting of dendritic domains (Favuzzi et al., 2019).
Cbln4, a member of the C1q family, is necessary for specifying
distal dendrite targeting of SST Martinotti cells and Lgi2, a
leucine-rich glioma inactivated family member, for perisomatic
targeting of PV basket cells (Figure 3). Furthermore, Cbln4 is
sufficient to direct non-SST interneurons to form synapses onto
distal dendrites, while not affecting normal targeting of somatic
and proximal regions. However, these molecular mechanisms
work in concert with additional developmental mechanisms to
generate the synaptic patterns seen in the mature cortex: while

FIGURE 3 | Molecular mechanisms regulating the synaptic targeting of two
inhibitory interneuron types to the perisomatic and distal dendritic regions of
pyramidal neurons (Pyr), respectively. (A) Parvalbumin-positive (PV)
interneurons preferentially form synapses onto the perisomatic region of
pyramidal neurons, a process that requires the expression of the secreted
protein Lgi2 in PV neurons. (B) Somatostatin-positive (SST) interneurons
preferentially form synapses on the distal dendrites of pyramidal neurons, a
process that requires the expression of secreted Cbln4 in SST neurons.

the synapses of SST interneurons are biased for apical dendrites
at the earliest time points tested, those of soma-targeting basket
cells also rely on pruning of inappropriate synapses during
development (Gour et al., 2021). Similarly, the development
of basket cell synapses from cholecystokinin-expressing (CCK)
basket cells but not PV interneurons onto pyramidal neurons
is regulated by dystroglycan (Fruh et al., 2016; Contreras et al.,
2019). These experiments show that interneuron targeting of
subcellular domains during development relies on distinct cell-
type-specific mechanisms.

Cell-Type-Biased Connections From
Inhibitory Interneurons to Pyramidal
Neurons
Cortical inhibitory interneuron types not only exhibit specificity
for a particular cellular region when forming synaptic
connections during development but also exhibit cell-type-
biased synaptic targeting. As cell types among cortical pyramidal
neurons have become better defined, instances of striking
specificity in inhibitory targeting of pyramidal neuron subtypes
have been identified (Krook-Magnuson et al., 2012; Anastasiades
and Carter, 2021). For example, although some studies showed
that innervation of pyramidal neurons by PV basket cells and SST
Martinotti cells is consistent with Peters’ Rule (Fino and Yuste,
2011; Packer and Yuste, 2011), PV neurons in the mouse medial
prefrontal cortex (mPFC) have a higher connection probability
with L5 PT cells than IT pyramids (Lee et al., 2014; Anastasiades
et al., 2018). Recent work has shown that transsynaptic signaling
through chemokine C-X-C motif proteins may play a role in
this targeting. In L5 pyramidal neurons, the ligand Cxcl12 is
secreted from PT pyramids and helps direct PV neuron axon
terminals, which express its receptors Cxcr4 and Cxcr7, to
synapse onto perisomatic regions of PT neurons (Figure 4;
Wu et al., 2017). Conditional knockout of Cxcl12 in a subset of
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FIGURE 4 | Chemokine signaling regulates cell-type-specific
parvalbumin-positive (PV) interneuron targeting in medial prefrontal cortex
(mPFC). PV interneurons in mPFC preferentially innervate intratelencephalic
pyramidal (IT Pyr) neurons over neighboring pyramidal tract (PT Pyr) neurons.
This process is mediated by the selective expression of the secreted protein
Cxcl12 at higher levels in IT pyramidal neurons compared to PT pyramidal
neurons. Cxcl12 likely acts through its receptors Cxcr4 and Cxcr7, which are
expressed in PV interneurons.

L5 pyramidal neurons using the Rbp4-Cre mouse line resulted
in a ∼30% decrease in perisomatic inhibitory synapses on L5
pyramidal neurons in mPFC and decreased inhibitory input
onto L5 PT but not IT pyramids (Wu et al., 2017). Additional
examples of inhibitory neuron types biasing their synaptic
output to particular classes of pyramidal neurons have been
identified, but the developmental mechanisms establishing these
patterns are not yet understood. For example, in layer 2 (L2)
of the medial entorhinal cortex, CCK basket cells preferentially
innervate one subtype of pyramidal neuron that projects to
contralateral entorhinal cortex while avoiding a pyramidal cell
subtype that projects to the ipsilateral dentate gyrus (Varga et al.,
2010). Similarly, a study using electron microscopy showed that
inhibitory axons targeted L1 apical tufts from superficial or deep
layer neurons, but not both (Karimi et al., 2020).

Chandelier cells also exhibit cell-type-biased synaptic
targeting in addition to selective targeting of AISs. ChCs form
axoaxonic synapses onto pyramidal neurons and other ChCs
but not onto other interneuron types (Somogyi, 1977; Jiang
et al., 2015; Shapson-Coe et al., 2021). Furthermore, ChCs do
not synapse onto all the neurons within range of their axonal
arbor, and pyramidal cell types receive different numbers of
ChC synapses (Somogyi, 1979; Fairen and Valverde, 1980; De
Carlos et al., 1985; DeFelipe et al., 1985; Farinas and DeFelipe,
1991; Wang and Sun, 2012; Inan et al., 2013; Lu et al., 2017;
Schneider-Mizell et al., 2020). For example, in cat visual cortex,
ChCs form more synaptic inputs onto corticocortical neurons
whereas corticothalamic neurons receive relatively fewer ChC
synapses (Farinas and DeFelipe, 1991). Furthermore, a recent
electrophysiological study of connectivity between ChCs and
identified pyramidal cell types in prelimbic cortex of mice
indicated that L2 ChCs preferentially synapsed onto pyramidal
neurons projecting to the basolateral amygdala as compared
to those projecting to the contralateral cortex (Lu et al., 2017).
Whether differential laminar positioning of pyramidal neurons

(Lu et al., 2017; Schneider-Mizell et al., 2020) combined with the
distinct morphologies of different types of ChCs (Wang et al.,
2019) explains cell-type-specific biases in connectivity must
be assessed in concert with testing for molecular mechanisms
that may contribute to the formation of these additional
levels of selectivity. Nonetheless, these examples suggest that
currently unidentified developmental mechanisms sculpt the
intracortical connections from inhibitory neurons onto different
excitatory cell types.

Cell-Type-Specific Inhibitory Networks
In addition to forming synapses onto specific neuronal domains
and types of cortical excitatory neurons, inhibitory interneurons
form cell-type-specific inhibitory networks within the neocortex
(Hestrin and Galarreta, 2005; Tremblay et al., 2016; Fishell
and Kepecs, 2020; Anastasiades and Carter, 2021). Although
the molecular mechanisms underlying the development of
these stereotyped patterns of connectivity remain unclear,
the increasing availability of genetic tools for identifying and
manipulating interneuron subtypes make them potentially
tractable systems for investigating molecular recognition
mechanisms in neocortical development. For example, PV, SST,
and layer 1 (L1) neurogliaform neuron types are each strongly
interconnected via electrical synapses (Galarreta and Hestrin,
1999; Gibson et al., 1999; Beierlein et al., 2000; Amitai et al., 2002;
Simon et al., 2005). PV interneurons are also interconnected
through GABAergic synapses, while rarely innervating other
inhibitory neuron subtypes (Galarreta and Hestrin, 1999; Gibson
et al., 1999; Pfeffer et al., 2013; Jiang et al., 2015). Studies of
inhibitory neuron types have also identified cell-type-biased
patterns of connectivity between different inhibitory subtypes
(Hestrin and Galarreta, 2005; Tremblay et al., 2016; Fishell
and Kepecs, 2020). For example, SST cells are thought to avoid
forming chemical synapses onto other SST interneurons while
forming GABAergic synapses onto PV interneurons (Gibson
et al., 1999; Pfeffer et al., 2013; Xu et al., 2013 but see Jiang
et al., 2015), and vasoactive intestinal polypeptide-expressing
(VIP) interneurons synapse onto SST Martinotti cells and PV
neurons but not onto more numerous neighboring pyramidal
neurons (Lee et al., 2013; Pfeffer et al., 2013; Pi et al., 2013). Many
additional examples of preferences in synaptic connectivity
among inhibitory neuron types indicate that such biases are
common in neocortical circuits (Chittajallu et al., 2013; Jiang
et al., 2013; Lee et al., 2013, 2015; Pfeffer et al., 2013; Pi et al., 2013;
Xu et al., 2013; Kubota et al., 2016; Feldmeyer et al., 2018). As
inhibitory neuron types represent only 10–20% of the neurons in
the neocortex, these networks represent remarkable stereotyped
biases in synaptic targeting. In contrast to interneuron targeting
of excitatory cells, molecular mechanisms contributing to the
cell-type-specific patterns of electrical and chemical synapses
among inhibitory cell types are still unclear.

Mechanisms Shaping the Synaptic
Connectivity of Pyramidal Neurons
The diversity of excitatory cell types in L5 has served as a model
for understanding synapse specificity among cortical excitatory
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neurons. L5 contains two main classes of pyramidal neurons:
PT neurons, which project to subcortical brain regions including
the spinal cord, brainstem and thalamus, and IT neurons, which
confine their axons within the telencephalon, and each may be
further subdivided into subtypes (Harris and Shepherd, 2015;
Yuste et al., 2020; Anastasiades and Carter, 2021). Studies of
mouse sensory cortex showed that the probability of synaptic
connectivity reflects the pre- and postsynaptic identity of L5
pyramids and not solely their axodendritic overlap (Brown and
Hestrin, 2009b). For example, CCNs, an IT cell class, form
more frequent synaptic connections onto CTectNs, a PT cell
class, as compared to neighboring CCNs than predicted by their
axodendritic overlap (Brown and Hestrin, 2009b). A similar
dependence of synaptic connectivity and functional properties
on cell type was identified for L5 pyramidal cell types in other
cortical areas including motor and frontal cortex (Morishima and
Kawaguchi, 2006; Anderson et al., 2010; Morishima et al., 2011;
Kiritani et al., 2012). The intracortical connections of L5 neurons
thus provide an example of cell-type-biased synaptic targeting
among cortical excitatory neurons.

Recent work has uncovered potential mechanisms for
the development of L5 pyramidal neuron connectivity. The
formation of the layer 2/3 (2/3) pyramidal projection onto L5
pyramids requires expression of Sonic Hedgehog (Shh) by L5
PT neurons and of its receptor, Brother of CDO (BoC), in L2/3
axons (Figure 5; Harwell et al., 2012). Perturbing expression
of either the receptor or ligand results in decreased L2/3-
to-L5 connectivity without affecting connectivity within L2/3
(Harwell et al., 2012). However, whether Shh-Boc signaling
alone is sufficient to specify this targeting remains unknown.
Furthermore, whether this signaling pathway affects differential

FIGURE 5 | Molecular mechanisms regulating cell-type-specific excitatory
connections in cortical layer 5 (L5). Inputs to L5 from layer 2/3 (L2/3) callosal
projection neurons are guided by the expression of Shh in pyramidal tract (PT
Pyr) neurons (magenta), which signals through its receptor Boc expressed on
L2/3 axons (blue). Within L5, intralaminar synapses formed by
intratelencephalic pyramidal (IT Pyr) neurons (green) preferentially innervate PT
pyramidal neurons over other pyramidal IT neurons. PT pyramidal neurons
express higher levels of ephrin B3, which competitively signals through its
receptor EphB2 to mediate biased synaptogenesis (inset). This competitive
ephrin signaling may underlie the targeting preferences of IT pyramidal
neurons.

innervation of L5 cell types by L2/3 pyramids is also not clear
(Otsuka and Kawaguchi, 2008, 2011; Anderson et al., 2010;
Collins et al., 2018). Shh may instead establish laminar identity,
as suggested by recent work implicating Shh in establishing
L5 astrocytic identity (Xie et al., 2020). Competitive signaling
between dendritic spines and potential presynaptic partner axons
may also play a role in determining cell-type-biased connectivity
between L5 pyramidal neurons. Henderson et al. (2019) showed
that levels of ephrin B3, a ligand for the Eph family of receptor
tyrosine kinases, in postsynaptic spines determine synaptogenesis
rates via competitive signaling through EphB2 receptors. Ephrin
B3 is significantly enriched in Ctip2+ L5 PT neurons as
compared to neighboring Satb2+ L5 IT neurons, providing a
potential basis for cell-type-specific synaptic targeting between
these cell types (Figure 5; Henderson et al., 2019). New tools,
including better genetic access to different L5 cell types, will
be required to fully elucidate these mechanisms, including
disambiguating layer- and cell-type targeting mechanisms
and determining whether competitive expression of signaling
molecules in spines underlie such targeting.

Mechanisms for Targeting Excitatory
Input to Subcellular Domains of
Pyramidal Neurons
Just as inhibitory neuron subtypes prefer specific subcellular
domains of pyramidal neurons, some excitatory inputs are
also biased to particular postsynaptic regions. For example,
channelrhodopsin-assisted circuit mapping showed that different
local and long-range excitatory inputs to L2/3 and L5 pyramidal
neurons formed synapses on different regions of their dendritic
arbors at relative strengths inconsistent with average axodendritic
overlap (Petreanu et al., 2009; Little and Carter, 2012). Similarly,
thalamocortical input and the input from different subtypes
of L4 excitatory neurons are biased toward different regions
of the dendritic arbors of L6 pyramidal neurons (Da Costa
and Martin, 2009; Qi and Feldmeyer, 2016). Because the apical
dendrites of pyramidal neurons traverse multiple cortical layers,
it is possible that developmental mechanisms underlying laminar
targeting in the neocortex also contribute to excitatory targeting
of subcellular domains, but how these interact with domain-
specific mechanisms remains to be tested.

Insights into how these circuits develop in the neocortex may
come from developmental processes identified in hippocampal
circuits. The hippocampus is a highly laminated structure, with
the cell bodies of hippocampal pyramidal neurons contained
primarily within a single layer, and their dendrites oriented
perpendicularly to layer borders such that each lamina contains
dendritic processes of a similar distance from the soma.
Excitatory inputs from the entorhinal cortex and from other
hippocampal regions segregate into these different laminae,
targeting specific dendritic regions of pyramidal neurons
(Figure 6A). After being initially directed to the appropriate
laminae and regions by interaction with pioneer neurons,
guidance molecules, and the expression of topographic partner-
matching cues (Skutella and Nitsch, 2001; Förster et al., 2006;
Berns et al., 2018), these long-range axons are then directed
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FIGURE 6 | Molecular mechanisms regulating the biased formation of
excitatory inputs onto different regions of the postsynaptic dendrite. (A) In
hippocampal CA1, excitatory Schaffer collateral inputs innervate pyramidal
neuron dendrites within the stratum oriens (so) and the stratum radiatum (sr),
whereas excitatory inputs from the entorhinal cortex form synapses onto distal
dendritic regions in the stratum lacunosum moleculare (slm). In CA1 pyramidal
neurons, Lphn3 is localized to so and sr and is required for Schaffer collateral
input targeting to these layers, while Lphn2 is localized to slm and is required
for targeting of entorhinal cortex inputs to dendrites in slm. (B) In layer 5
pyramidal (L5 Pyr) neurons in the neocortex, different semaphorin signaling
pathways regulate morphology and spine density in distinct dendritic regions.
The distribution of the Sema3F receptor Nrp2 is biased to apical dendritic
regions, and a null mutation in Nrp2 results in increased spine density on the
apical dendrite (upper insets). The Sema3A receptor Nrp1 is localized across
the entire dendritic arbor, and a genetic mutation rendering Nrp1 unable to
bind Sema3A results in reduced branching complexity of basal dendrites
(lower insets). sp, stratum pyramidale.

to the appropriate subcellular domain through domain-specific
molecular interactions. Axons originating from each input
selectively express binding partners that interact with a diverse
complement of transmembrane proteins that are selectively
distributed along pyramidal neuron dendrites. For example, in
CA1, two closely related G-protein coupled receptors (GPCRs)
differentially regulate synapse formation across hippocampal
pyramidal neuron dendrites. Lphn2 is enriched in stratum
lacunosum moleculare and required for the targeting of
entorhinal cortex inputs to distal dendrites, while Lphn3 is
enriched in both CA1 stratum radiatum and stratum oriens
and is required for the targeting of those layers by Schaffer
collateral axons from CA3 and commissural fibers from the
contralateral hippocampus (Figure 6A; Anderson et al., 2017;
Sando et al., 2019). Subsequent structural studies have shown
that this mechanism relies on heterotrimeric transsynaptic
binding complexes, and that synapse formation relies on GPCR
intracellular signaling (Del Toro et al., 2020; Li et al., 2020b;
Sando and Südhof, 2021). These results agree in general with
other studies of the hippocampus highlighting the roles of
selectively distributed transmembrane molecules in generating
laminar or subcellular-domain-specific synaptic targeting. In
CA3, interactions between members of the Plexin A family
of receptors and the transmembrane semaphorin, Sema6a,
restrict mossy fiber axons to the proximal region of pyramidal
neuron dendrites (Suto et al., 2007). Similarly, differentially

distributed leucine-rich repeat family proteins in CA1 pyramidal
neuron dendrites play a role in subcellular targeting by CA3
inputs and play domain-specific roles in controlling synaptic
properties (Nishimura-Akiyoshi et al., 2007; DeNardo et al., 2012;
Schroeder et al., 2018).

Although the laminar organization of the hippocampus is
more precise than in neocortex, the differential distribution of
postsynaptic molecules along the dendritic arbors of pyramidal
neurons combined with specific expression of binding partners
on subsets of presynaptic axons may also play a role in
establishing intracortical circuits. Molecular mechanisms that
control domain-specific excitatory synaptic density have been
discovered in the neocortex (Tran et al., 2009; Cubelos et al.,
2015). In L5 pyramidal neurons, expression of the Sema3F
receptor Nrp2 is localized to apical dendrites, while the closely
related Sema3A receptor Nrp1 is distributed across the dendritic
arbor (Figure 6B). Nrp2 controls the density and abundance
of spines on apical dendrites, while Nrp1 plays a role in
basal dendritic arborization in these neurons (Figure 6B; Gu
et al., 2003; Tran et al., 2009). Whether these proteins affect
input-type synaptic targeting onto different dendritic regions
of L5 pyramidal neurons is still uncertain, but these or related
molecular pathways may play a role in excitatory synaptic
targeting in the neocortex.

Cell-Type-Biased Connections From
Pyramidal Neuron to Inhibitory Neuron
Types
Excitatory cortical pyramidal neurons also selectively target
different subtypes of local inhibitory neurons, although
molecular recognition processes underlying the development of
these circuits are still poorly understood. One study found that
L5 IT pyramids that project to contralateral striatum synapsed
more frequently onto one particular subtype of low threshold
spiking (LTS) interneurons while L5 PT neurons projecting to
the pons synapse with similar frequency on all types of L5 LTS
interneurons (Morishima et al., 2017). Layer 6 corticothalamic
neurons (L6 CThNs) also exhibit biased synaptic targeting of
interneurons. L6 CThNs appear to form infrequent or weak
synapses onto SST interneurons as well as neighboring excitatory
neurons in L6, but target rarer PV interneurons in L6 and L4 via
intracortical axon collaterals (Beierlein and Connors, 2002; West
et al., 2006; Bortone et al., 2014; Kim et al., 2014; Crandall et al.,
2017; Frandolig et al., 2019). The developmental mechanisms
that underlie the biases of L5 and L6 pyramids for specific
interneuron subtypes remain unclear.

The Development of
Synapse-Type-Specific Functional
Properties
Not only do cell types within the cortex form stereotyped
patterns of connectivity, but synapses between different cell
types can also acquire distinct signaling characteristics. For
example, individual L2/3 pyramidal neurons form depressing
synapses onto PV interneurons while forming facilitating
synapses onto SST interneurons (Figure 7; Reyes et al., 1998;
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FIGURE 7 | Molecular mechanisms regulating the formation of
synapse-type-specific functional properties. The short-term plasticity of
pyramidal neuron synapses onto somatostatin-positive (SST) and
parvalbumin-positive (PV) interneurons depends on the identity of the
postsynaptic cell type. Single pyramidal neurons form facilitating synapses
onto SST interneurons while forming depressing synapses onto PV
interneurons. The development of facilitation of excitatory synapses onto SST
neurons in the hippocampus and neocortex relies on postsynaptic expression
of Elfn1 (inset), which then signals through presynaptic metabotropic
glutamate receptors (mGluR7). At some synapse types, activation of mGluR7
also interacts with kainate receptors (GluK2) that further enhance synaptic
facilitation.

Koester and Johnston, 2005). The smaller presynaptic calcium
transients and facilitating postsynaptic potentials of the synapses
onto SST cells suggest lower release probabilities at PyrÔSST
synapses relative to PyrÔPV connections (Reyes et al., 1998;
Koester and Johnston, 2005; Glasgow et al., 2019). Elfn1 has
recently been found to regulate the development of synapse-
type-specific facilitation in the neocortex and hippocampus,
where pyramidal neurons similarly form depressing synapses
onto PV neurons and facilitating synapses on SST neurons.
In hippocampal CA1, SST neurons in the stratum oriens
express the transmembrane protein Elfn1, which is localized
to excitatory postsynaptic structures and is required to form
facilitating synapses (Sylwestrak and Ghosh, 2012). As in CA1,
Elfn1 knockout results in the loss of synaptic facilitation at
neocortical excitatory synapses on L2/3 and L5 SST neurons
(Stachniak et al., 2019) as well as a decrease in facilitation
at excitatory connections onto multipolar vasoactive intestinal
polypeptide-expressing (VIP) interneurons but not bipolar VIP
interneurons (Stachniak et al., 2021). Overexpression of Elfn1 in
hippocampal PV neurons is also sufficient to generate facilitating
excitatory synapses where depressing synapses would normally
occur (Sylwestrak and Ghosh, 2012) as is overexpression in
bipolar VIP interneurons (Stachniak et al., 2021).

The mechanisms by which Elfn1 regulates synaptic
transmission are being elucidated. Elfn1, localized
postsynaptically, binds in trans to the metabotropic glutamate
receptor, mGluR7, which is localized to presynaptic terminals of
Elfn1-positive synapses in both the hippocampus and neocortex
(Figure 7; Tomioka et al., 2014; Dunn et al., 2018; Stachniak
et al., 2019, 2021). Elfn1 recruits mGluR7 and other group III

mGluRs, and can allosterically activate them, modulating their
downstream signaling (Dunn et al., 2019). These mechanisms
alone or in combination with presynaptic GluK2-containing
kainate receptors increase facilitation at different types of
synapses in the neocortex and hippocampus (Figure 7;
Sylwestrak and Ghosh, 2012; Tomioka et al., 2014; Stachniak
et al., 2019, 2021). In VIP interneurons, the transcription
factor Prox1 has been implicated in regulating Elfn1 expression
(Stachniak et al., 2021).

Many additional examples of synapse-type-specific properties
exist in the cortex. Facilitation distinguishes other subsets of
cortical synapses, including, for example, thalamocortical (TC)
synapses onto SST neurons which facilitate versus TC synapses
on PV neurons which depress (Beierlein et al., 2003; Tan
et al., 2008). Some pyramidal cell types also form facilitating
synapses onto other excitatory cells (Ferster and Lindström, 1985;
Stratford et al., 1996; Beierlein and Connors, 2002; Wang et al.,
2006; West et al., 2006; Frandolig et al., 2019). The complement
of receptors also varies in a synapse-type specific manner. For
example, in L5 pyramidal neurons of visual cortex, presynaptic
NMDA receptors are specifically localized to synapses made
on SST neurons and locally projecting PV neurons, but not
on translaminar PV neurons (Buchanan et al., 2012). Similarly,
excitatory synapses onto the dendritic shafts and dendritic
spines of PV interneurons differ in their enrichment for NMDA
receptors (Sancho and Bloodgood, 2018). How these synapse-
type-specific properties are established remains unknown.

CONCLUSION

Recent studies have begun to reveal developmental mechanisms
for biasing the connectivity of cortical cell types and have
implicated specific molecules in these processes. However, many
challenges to fully understanding these mechanisms remain.

First, a catalog of cell types making up the cortex has not yet
been fully established, although an increasingly large repertoire
of cortical cell types has been defined using combinations
of transcriptional, morphological and electrophysiological data
(Zeisel et al., 2015; Tasic et al., 2016, 2018; Paul et al., 2017;
Huang and Paul, 2019; Loo et al., 2019; Gouwens et al., 2020; Kim
et al., 2020; Scala et al., 2020; Yao et al., 2020; Yuste et al., 2020).
Relatedly, although some progress has been made in identifying
approaches for directing gene expression in these different
cortical cell types, genetic access for many of these is still lacking,
preventing manipulation of these cell types during development.
Genetic access allows tests of the sufficiency of a developmental
mechanism for establishing synaptic connections by, for example,
assessing synapse formation with ectopic expression of one or a
small number of genes within a pathway, a strong indication that
the identified molecules direct synaptic targeting itself.

Second, methods for determining cell-type-biased synaptic
connectivity and function remain laborious; thus, not only do
the synaptic relationships of cortical cell types remain to be fully
elucidated, but it remains difficult to assess how these synaptic
relationships change across development or following specific
experimental perturbations. Although a recent study successfully
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used electron microscopy at multiple developmental timepoints
to assess the development of intracortical target specificity of
different types of inhibitory interneurons (Gour et al., 2021), such
studies remain technically difficult.

Third, multiple mechanisms likely work in concert
to establish the specificity of intracortical connectivity
as is illustrated by ChC targeting of AISs (Figure 2;
Gallo et al., 2020), further complicating experimental
approaches. Perturbing any single molecule may generate
only a subtle phenotype, making it even more difficult to
assess any effects.

Fourth, the protein families implicated in synaptic targeting
in the neocortex are multifunctional and often affect other
aspects of cortical development (De Wit and Ghosh, 2016; Sanes
and Zipursky, 2020). Synaptic targeting mechanisms may only
function properly in the context of an appropriate temporal
sequence of developmental events, requiring tools for temporally
specific manipulation such as inducible recombinase systems.

Fifth, most of the work on mechanisms of intracortical
synaptic targeting has focused on cell-intrinsic signaling
pathways or transcellular interactions between neurons. The
roles of additional cortical cell types, like microglia, astrocytes
and oligodendrocyte precursor cells, in establishing cell-type-
biased connections in the cortex remain underexplored. Glial
cells may mediate specific synapse growth or elimination
(Schafer and Stevens, 2015; Bosworth and Allen, 2017; Stogsdill
and Eroglu, 2017; Buchanan et al., 2021). Furthermore,
just as radial glia guide axon growth directions in the
cortex, glial cells may act directly to guide cortical synaptic
partners to each other, as has been observed for cerebellar
Bergmann glia (Ango et al., 2008). More work is required
to understand the role glial cells play in cortical synaptic
target specificity.

Despite these difficulties, methods such as projection-specific
barcoding and profiling of growth cones are being developed
that enable unbiased and high-throughput analyses of candidate
molecular mechanisms for cortical synaptic targeting (Biesemann
et al., 2014; Poulopoulos et al., 2019; Apostolo et al., 2020; Sun
et al., 2021). Furthermore, proximity-based labeling methods
such as APEX and BioID can be used to specifically tag proteins in
the synapses of cell populations of interest, allowing for cell-type
and domain-specific profiling of candidate molecules (Loh et al.,
2016; Spence et al., 2019; Li et al., 2020a). These new molecular

methods provide a toolbox that is particularly useful in the cortex,
where the visualization and purification of synapses is difficult
amid intermingled cell classes.

Understanding how the intracortical patterns of connectivity
are established during development not only has implications
for normal cortical development, but also for disease processes.
Alterations to the molecular mechanisms of cell-type-biased
and synapse-type-specific development may underlie aspects of
neurodevelopmental disorders like autism and schizophrenia, as
shown by the associations between mutations in Elfn1 and ASDs,
epilepsy, and ADHD (Matsunaga and Aruga, 2021). Similarly,
mutations in genes involved in synaptic targeting by ChCs
onto the AISs of pyramidal neurons including L1CAM, ERBB4,
and FGF13 have been implicated in epilepsy, schizophrenia or
intellectual disability (Contreras et al., 2019; Gallo et al., 2020). As
more mechanisms for specific synaptic targeting are uncovered,
it is likely that other links to neurodevelopmental disorders will
emerge given the importance of patterned synaptic connectivity
to the function of the healthy neocortex (Chen et al., 2014; Nelson
and Valakh, 2015).
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