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Hair graying is an interesting physiological alteration associated with aging and certain 
diseases. The occurrence is due to depigmentation of the hair caused by depletion and 
dysfunction of melanocyte stem cells (MeSCs). However, what causes the depletion and 
dysfunction of MeSCs remains unclear. MeSCs reside in the hair follicle bulge which 
provides the appropriate niche for the homeostasis of various stem cells within hair follicle 
including MeSCs. In addition to local signaling from the cells composed of hair follicle, 
emerging evidences have shown that nerves, adipocytes and immune cells outside of 
hair follicle per se also play important roles in the regulation of MeSCs. Here, we review 
the recent studies on different cells in the MeSCs microenvironment beyond the hair follicle 
per se, discuss their function in regulating hair graying and potentially novel treatments 
of hair graying.
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INTRODUCTION

Hair graying is one of the representative signs of aging. It has been considered to be  triggered 
by a decreased number of follicular melanocyte stem cells (MeSCs; Nishimura et  al., 2005; 
Iida et  al., 2020) or dysfunction of MeSCs such as decreased oxidation resistance capacity 
with aging (Shi et  al., 2014). Hair graying in people younger than 30 years old is termed 
premature canities which can cause an adverse effect on the self-esteem (Tobin and Paus, 
2001). Premature hair graying is also associated with many diseases, such as cancer, pernicious 
anemia, and hyper/hypo-thyroidism. Certain medications including Chloroquine, Tamoxifen, 
and Pazopanib, can also induce hair graying (Ricci et  al., 2016; Acer et  al., 2020). Regardless 
of the advances in the study of hair graying, the mechanisms underlying depigmentation are 
poorly understood.

MeSCs, derived from neuronal crest, mainly locate within the hair bulge area in hair follicle. 
The proliferation and differentiation of MeSCs are in parallel with hair follicle cycle (Figure  1). 
Micro-ophthalmia-associated transcription factor (MITF) is a master regulator that promotes 
melanocytic development and melanogenesis by upregulating many melanogenesis-related genes, 
including tyrosinase, tyrosinase-related protein 1 and dopachrome tautomerase (DCT; Hou 
and Pavan, 2008). Expression of MITF can be  stimulated by PAX3, a transcription factor 
which also directly represses DCT expression by competing with MITF maintaining MeSCs 
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in an undifferentiated state (Lang et al., 2005). This homeostasis 
can be  disrupted by WNT/β-catenin activation (Lang et  al., 
2005). At the onset of pigmented hair regeneration in anagen 
phase, MeSCs receive elevated signaling such as WNT signaling, 
endothelins, α-MSH, and KITL from surrounding hair follicle 
stem cells (HFSCs) and the inferior dermal papilla, directing 
MeSCs proliferate and migrate to hair bulb, and differentiate 
into melanocytes to synthesize melanin which is transported 
to adjacent precortical keratinocytes of hair shaft (Slominski 
et  al., 2005; Li and Hou, 2018; Lim et  al., 2019; Qiu et  al., 
2019). Toward the end of anagen, melanogenesis is shut down, 
melanocytes undergo apoptosis in the following catagen and 
telogen, and MeSCs surviving from hair cycles become quiescent 
by factors like TGF-β, Notch ligands JAG and DLL1, and 
WNT inhibitors SFRP and DKK3 secreted by HFSCs (Qiu 
et  al., 2019).

Cross-talks between stem cells and their surrounding 
microenvironments are critical for the maintenance and self-
renewal of stem cells. The role of HFSCs and dermal papilla 
cells have been intensively investigated in MeSCs niche for 
decades. However, other types of cells including neural cells, 
adipocytes, and immune cells are also important components 
of the hair bulge niche and can also affect MeSCs, especially 
in some pathological conditions. Here, we  reviewed recent 
studies on the mechanisms of hair graying induced by cells 
outside hair follicles and try to offer some new insights for 
clinical treatment of hair graying.

NEURAL MICROENVIRONMENT

Stress has been considered as a major risk factor for hair 
graying for decades. Several cases of rapidly graying after stress 

have been reported in both human and mouse (Ephraim, 1959; 
Peters et  al., 2017; Shen et  al., 2020). The autonomic nervous 
system (ANS) and the hypothalamo-pituitary-adrenocortical 
axis are major effectors responding to stresses (Ulrich-Lai and 
Herman, 2009). ANS immediately responds to stresses through 
sympathetic or parasympathetic nerves. Hair follicles are 
innervated by several types of nerves including sympathetic 
nerves and sensory nerves, which enwrap the infundibulum, 
isthmus and bulge of hair follicles (Botchkarev et  al., 1997; 
Crawford and Caterina, 2020). Sensory nerves form highly 
arranged lanceolate nerve endings at the isthmus and bulge 
region, which are longitudinally and circularly oriented, 
respectively. In contrast, sympathetic nerve fibers enwrap and 
penetrate the arrector pili muscle and extend to the hair follicle 
bulge and the hair germ (Botchkarev et  al., 1999; Zhang et  al., 
2020). The plasticity of hair follicle innervation of both sensory 
and sympathetic nerves is hair cycle-dependent, especially a 
significant transient increase in longitudinal fiber number is 
at the early stage of anagen (Botchkarev et  al., 1997). Given 
nerves are in close contact with hair bulges where MeSCs 
reside (Zhang et  al., 2020), signals from nerves should also 
have direct impact not only on hair follicles but also on MeSCs. 
Additionally, it has been shown that hair graying was retarded 
in two patients with cervical or lumbar sympathectomy (Lerner, 
1966; Ortonne et  al., 1982), indicating that sympathetic nerves 
might play a role in hair pigmentation.

Recently, Hsu and her colleagues found a solid link between 
sympathetic nerves and hair graying, revealing its underlying 
mechanism in mouse models (Zhang et al., 2020). They showed 
that noradrenaline, released by sympathetic nerves that were 
hyper-activated by acute stresses, forces MeSCs but not mature 
melanocytes to enter a rapid but abnormally proliferative state. 
These MeSCs differentiate and migrate out of the hair bulge, 
resulting in a permanent, irreversible loss of MeSCs, which 
ultimately leads to hair graying. However, MeSCs loss can 
be  prevented if the proliferation of MeSCs was suppressed 
early in the stress response through inducing the expression 
of P27 which is an inhibitor of cyclin-dependent kinase. These 
preserved MeSCs with normal morphology and functionality 
can recolor newly regenerated hairs in next hair cycle. 
Consistently, a more recent study in humans showed that hair 
graying and hair recoloring can occur in parallel with stress 
exposures in young individuals of 9–39 years old (Rosenberg 
et  al., 2021). Hair graying and recoloring can be  observed 
within a single hair shaft in humans but not in mice. A possible 
reason is that humans have a much longer anagen period of 
hair follicles. On the other hand, Hsu et al. also have demonstrated 
that stress-induced corticosterone and noradrenaline released 
by adrenal glands and stress-induced immune attacks have no 
effect on hair pigmentation (Zhang et  al., 2020). Together, 
these results indicate that signals from nerves surrounding 
MeSCs niche (hair bulge) play an essential role in regulating 
MeSCs’ functions with exposure of stresses.

Sonic hedgehog (SHH) signaling, a major regulator of cell 
differentiation and proliferation, has been reported to stimulate 
the proliferation of melanocytes that are isolated from human 
epidermis in vitro. Over-activation of SHH pathway results in 

FIGURE 1 | Cyclical regeneration of melanocyte stem cells during hair 
cycling.
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proliferation and survival of melanomas by regulating downstream 
GLI1 and the RAS–MEK/AKT pathways (Stecca et  al., 2007). 
Brownell et al. have demonstrated that sensory neurons projected 
from dorsal root ganglions (DRGs) around hair follicle bulge 
can secret SHH (Brownell et  al., 2011), suggesting that nerve-
derived SHH may also participate in pigmentation. Moreover, 
single-cell analysis of mouse DRG reveals that Tgfb, Wnt, and 
Kitl, which are essential factors for the maintenance of 
melanocytes or MeSCs, are detectable in DRGs (Usoskin et al., 
2015). Further studies are required to investigate whether nerves 
projected to hair follicles secrete these factors and whether 
these factors modulate melanogenesis.

Peripheral nerve axons are supported by variable glial cells 
including Schwann cells (SCs). Both longitudinal and circular 
nerve fibers at the level of hair follicle bulge are accompanied 
by SCs. A previous study shows that melanocytes and SCs 
share the same progenitor called Schwann cell precursors 
(Adameyko et al., 2009). When peripheral nerve injury occurs, 
SCs dedifferentiate and transdifferentiate into melanocytes by 
activating MAP kinase pathway through inhibiting neurofibromin, 
which results in consequent pigmentation of skin dermis (Van 
Raamsdonk and Deo, 2013). These results provide a new strategy 
to treat hair graying in clinic: transplanting SCs-derived 
melanocytes or promoting the transdifferentiation of SCs around 
hair follicles. However, whether SCs could modulate hair follicle 
melanocytes needs to be  further studied.

ADIPOCYTES

There are abundant adipocytes in skin dermis, referred as 
dermal white adipose tissue (dWAT; Kruglikov and Scherer, 
2016). The dWAT exists below the reticular dermis as well as 
surrounding hair follicles, and is separated from subcutaneous 
WAT in rodents by the panniculus carnosus that is absent in 
many mammals including human beings. dWAT is histologically 
and functionally distinguished from subcutaneous WAT (Driskell 
et  al., 2014). dWAT has been demonstrated to be  involved in 
several physiological and pathological processes, including 
immune response, wound healing and scarring, and hair follicle 
growth (Alexander et  al., 2015; Kruglikov and Scherer, 2016). 
dWAT changes along with hair cycles in both rodents and 
humans (Guerrero-Juarez and Plikus, 2018). In anagen, when 
melanin synthesis is activated, adipocytes in dWAT show larger 
size, increased cell number, and higher lipid metabolic activity, 
especially at the hair bulge (Nicu et al., 2021b). Growth factors 
derived from adipocytes of dWAT greatly affect hair follicle 
cycles (Hesslein et  al., 2009; Festa et  al., 2011; Guerrero-Juarez 
and Plikus, 2018). dWAT is a key component of hair follicle 
niche, and previous studies have shown that obesity and higher 
BMI are correlated with premature hair graying (Kocaman 
et  al., 2012; Shin et  al., 2015), which gives rise to a hypothesis 
that adipocytes could affect hair pigmentation in certain ways.

Recently, Nicu et  al., have found that perifollicular dWAT 
significantly stimulates hair pigmentation by hepatocyte growth 
factor (HGF) but inhibits melanogenesis by adiponectin which 
is an adipocytokine. HGF, secreted mainly by adipocyte 

progenitors and pericytes in anagen perifollicular dWAT, 
stimulates WNT/β-catenin activity in hair matrix by inhibiting 
WNT antagonist SFRP1 as well as upregulating WNT10B that 
promotes melanocytes maturation and pigmentation (Ye et  al., 
2013; Nicu et al., 2021b). Adiponectin oligomers, however, 
downregulates KITL, TYRP1 and WNT10B, and inhibits the 
expression of the HGF receptor c-Met within hair matrix (Nicu 
et al., 2021a). Adiponectin also circulates as a globular fragment, 
which is evidenced to stimulate melanogenesis by upregulating 
MITF through MAPK signaling pathway (Kim et  al., 2018b). 
Therefore, the ratio of adiponectin oligomer to globular 
adiponectin, or the ratio of HGF to adiponectin is important 
in sustaining melanin synthesis.

On the contrary, adipocytes in dWAT isolated from human 
abdomen produce abundant TGF-β1 and interleukin-6 (IL-6) 
and suppress pigmentation in skin by inhibiting several key 
melanogenic enzymes such as tyrosinase (Kim et  al., 2014; 
Klar et al., 2017). These results suggest that dWATs in different 
tissues are likely to regulate melanogenesis in different ways. 
TGF-β signaling is demonstrated to downregulate MITF and 
its downstream melanogenic genes, and promotes MeSCs 
re-entering into the quiescent state at the end of anagen in 
mice (Nishimura et  al., 2010), which raises the possibility that 
perifollicular dWAT in human might also secret TGF-β1 to 
maintain MeSCs during the anagen-catagen transition of hair 
follicles. Additionally, a previous study has shown that HGF 
could inhibit TGF-β1 by up-regulating Smad transcriptional 
corepressor TG-interacting factor (TGIF; Dai and Liu, 2004). 
However, only few research about the relationship between 
dWATs and MeSCs in hair follicles has been performed, and 
all studies in human by far were conducted in vitro; therefore, 
further investigations are required.

IMMUNE CELLS

Immune microenvironment plays an important role in regulating 
skin homeostasis, wound healing, as well as hair cycles. Similar 
to nerves and dWATs, types and numbers of immune cells 
also change along with hair cycles (Wang and Higgins, 2020). 
FGF-5 released by macrophages could induce catagen in both 
rats and humans (Suzuki et  al., 1998; Higgins et  al., 2014). 
The numbers of macrophages increase during telogen progression 
but decrease in period between late telogen and early anagen 
in mice (Castellana et  al., 2014). Mast cells and Treg cells 
accumulate around the hair bulge area during the telogen–
anagen transition, promoting anagen entry and immune privileges 
that prevents autoimmune attack of the shifting antigens in 
the growing hair follicles (Bertolini et  al., 2020; Wang and 
Higgins, 2020). Melanocyte- and melanogenesis-associated 
epitopes are considered as autoantigens for T cells and 
significantly induce higher responses of cytotoxic CD8+ T cells 
to attack hair follicle cells resulting in alopecia areata (Wang 
et  al., 2016; Bertolini et  al., 2020). Hypopigmented or gray 
hair can be also observed in alopecia areata patients (Asz-Sigall 
et  al., 2019), suggesting the possibility that immune cells 
participate in the development of hair graying.
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Programmed death-ligand 1 (PD-L1) suppresses T cells by 
binding to PD-1 on T cells. PD-L1 is highly presented in 
melanocytes in melanoma and plays an important role in the 
establishment of immune privilege (Taube et al., 2012; Willemsen 
et  al., 2020). Dimitriou et  al. have reported a case of a female 
patient with stage IIID melanoma showed hair depigmentation 
after being treated by anti-PD1 antibody, BRAF and MEK 
inhibitors (Dimitriou et al., 2020), indicating a reduced peripheral 
tolerance to melanocytic self-antigen. In Pmel-1 vitiligo mice 
presenting gray hair, PD-L1 treatment, however, could 
significantly reverse and suppress depigmentation development 
in adults by recruiting Treg cells to maintain the normal 
immune privilege for melanocytes and to repress the abundance 
of melanocyte-reactive T cells (Miao et  al., 2018; Chen et  al., 
2021). In addition, using human tyrosinase epitope-reactive 
T-cell receptor cloned from tumor-infiltrating T lymphocytes 
of a metastatic melanoma patient, Mehrotra et  al. established 
transgenic mice and found that these mice spontaneously 
developed severe hair depigmentation (Mehrotra et  al., 2012).
Together, these data suggest that melanocyte-targeting T cells 
that are enriched in the skin under certain pathological conditions 
could induce death and dysfunction of melanocytes, leading 
to subsequent hair graying. However, how different T cells 
change and co-ordinate under pathological conditions and how 
to maintain the homeostasis of different T cells in the healthy 
body remain to be  clarified.

Additionally, several studies have shown that melanocytes 
can function as antigen presenting cells (APCs) and secrete 
inflammatory cytokines. Similar to canonical APCs, 
melanocytes treated with interferon-γ (IFN-γ) express MHC 
II and secret cytokines like IL-1α, IL-1β, IL-8, and TGF-β1 
(Zachariae et  al., 1991; Swope et  al., 1994; Hedley et  al., 
1998; Le Poole and Boyce, 1999). Innate immune receptor 
Toll-like receptors (TLRs) are also detected in melanocytes, 
and agonists of TLR2/3/4/7/9 can stimulate the production 
and secretion of cytokines and chemokines including IL-6, 
IL-8 and CCL2/3/5 through regulating nuclear translocation 
of NFkB p65 and phosphorylation of IkBα (Yu et  al., 2009; 
Koike and Yamasaki, 2020), indicating that melanocytes play 
a role in enhancing the innate immune response. On the 
other hand, these TLRs are proved to either promote or 
inhibit melanogenesis in melanocytes (Koike and Yamasaki, 
2020). In addition, TLR3 also participates in the release, 
transfer, uptake, and degradation of melanin (Koike et  al., 
2019). However, it is worth to mention that all the expression 
and function of TLRs have been investigated in human 
epidermal melanocytes rather than hair follicle MeSCs and 
melanocytes. Furthermore, a recent study has found that 
MITF can also negatively regulate the expression of innate 
immune genes in melanocytes in vitro. Haploinsufficiency 
of Mitf in mice leads to an elevated and sustained IFN-regulated 
genes (IFN signature) expression in MeSCs that exacerbates 
MeSC differentiation and hair graying, highlighting a negative 
effect of intrinsic innate immune activation on MeSC and 
melanocyte (Harris et  al., 2018). The fact that MeSCs or 
melanocytes can function as immune cells provides new 
insights into the mechanism of hair graying.

CONCLUSION AND PERSPECTIVES

Pigmentation is a multi-step process which involves multiple 
types of cells, therefore, disruption of any step can lead 
to hair graying in reversible or irreversible ways. Cells  
reside in sophisticated but well-organized cellular 
microenvironments that provide the basis for biological 
function. In addition to the intrinsic factors of MeSCs and 
melanocytes and their closely contacted hair follicle cells 
in hair follicle bulge, bulb, and dermal papillae cells, other 
types of cell, including nerves, adipocytes, and  
immune cells, are also emerging as functional components 
of the microenvironments of MeSCs and melanocytes 
(Figure  2).

In addition to the cell types mentioned above, fibroblasts 
and microvessels also make up a large portion of skin 
enwrapping hair follicles, which have been reported to greatly 
affect the pigmentation of epidermis. Fibroblasts secret a 
diversity of factors participate in modulating melanogenesis: 
KITL and KGF induce the proliferation and survival of 
melanocytes by MAPK signaling pathway, DKK1 and SFRP 
modulate pigmentation via WNT/β-catenin pathway (Wang 
et  al., 2017). In pathological conditions, such as melasma 
and solar lentigo, factors stimulating melanogenesis are over 
expressed and secreted by fibroblasts resulting in 
hyperpigmentation (Wang et  al., 2017). A very recent study 
showed that fibroblasts is the dominant cell type in the 
skin that responds to IFN-γ in vitiligo, which recruit and 
active CD8+ cytotoxic T cells to eliminate melanocytes  
(Xu et  al., 2022). On the other hand, endothelial cells 
co-cultured with melanocytes produce endothelin-1 activate 
melanin synthesis by binding to the endothelin receptor B, 
which explains the close relationship between pigmentation 
and the vasculature in melasma (Regazzetti et  al., 2015). 
Conditioned medium obtained from endothelial cells, however, 
are demonstrated to inhibit pigmentation by secreting TGF-β 
and clusterin (Park et  al., 2016; Kim et  al., 2018a). Further 
studies are required to understand whether fibroblasts and 
endothelial cells are also involved in regulating hair 
follicular MeSCs.

Although hair graying is usually not a medical problem, 
it has afflicted many people because of the esthetic problem. 
While hair graying caused by vitamin B12 deficiency or 
hypothyroidism can be  reversed by vitamin supplement or 
hormone replacement, respectively. Most individuals with 
hair graying must rely on colorants to recolor their hairs 
(Kumar et  al., 2018). However, commercial permanent 
colorants are toxic and could cause damage to the hair 
shaft, and people have to perform hair coloring repeatedly 
due to continuous growth of hair shaft, resulting in irritant 
dermatitis and hair loss in some cases (Trueb, 2006). Hence, 
new strategies targeting the biological processes of 
melanogenesis are needed. Although, all cells in the skin 
can communicate with each other directly or indirectly, 
the predominant cell types with aberrant secretome might 
be  different in different diseases or aging individuals. 
Understanding the MeSCs and melanocyte niches will 
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be  helpful to advance the research of on melanogenesis 
and chose the priority cell type for clinical treatments for 
hair graying.
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