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Background: Many factors affect the prognosis of kidney renal clear cell carcinoma (KIRC). Early 
diagnosis can significantly improve the prognosis of KIRC patients. Therefore, a method needs to be 
developed to diagnose KIRC early, predict patient prognosis, and improve personalized treatments. The 
objective of this study is to utilize bioinformatics tools and public database resources to identify differentially 
expressed genes (DEGs) between renal cancer tissues and adjacent normal tissues, and to further screen for 
prognostic-related genes (PRGs) of KIRC.
Methods: KIRC was studied using R language and FunRich software and several databases, including 
the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), the University of Alabama at 
Birmingham cancer data analysis Portal (UALCAN), and Tumor Immune Estimation Resource (TIMER) 
databases. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the 
expression of multiple genes in KIRC and adjacent normal tissues.
Results: There were substantial differences in immune cell infiltration between the KIRC and adjacent 
normal tissues in the GSE40435 and GSE46699 datasets. In addition, we screened multiple PRGs of KIRC 
by combining the GEO and TCGA data. The UALCAN database verified that some representative PRGs 
were differently expressed depending on the lymph node metastasis status, grade, and stage of KIRC. The 
qRT-PCR results confirmed the expression of the PRGs in KIRC and adjacent normal tissues. Through the 
GO and KEGG analyses, interaction analysis, and TIMER database, we found that the prognosis of KIRC 
was closely related to immune microenvironment and vascular endothelial growth factor (VEGF)/VEGF 
receptor (VEGFR) signaling.
Conclusions: Our findings could contribute to the prognosis prediction of KIRC, the selection of 
personalized treatments, and the early diagnosis of KIRC.
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Introduction

Kidney renal clear cell carcinoma (KIRC) is the most 
prevalent type of renal cell carcinoma (RCC), accounting 
for about 75% of all RCC cases (1,2). Metastasis is the 
leading cause of death in KIRC patients (3). However, the 
early clinical manifestation of KIRC is not obvious, making 
the early diagnosis of KIRC patients difficult. Surgical 
treatment can achieve good results in some KIRC patients; 
however, the 5-year survival rate of KIRC patients with 
metastasis remains very low (4,5). Additionally, the survival 
time of KIRC patients is significantly affected by intra-
tumor heterogeneity (6). The prognosis of patients with 
KIRC, even those that have the same pathological grade, 
tumor node metastasis stage, and have undergone similar 
treatments (7,8), may be quite different, which shows the 
high heterogeneity of KIRC. Therefore, it is particularly 
important to find a suitable method to estimate the survival 
and prognosis of KIRC patients, and to diagnose KIRC 
early.

With the development of bioinformatics technology, 
a large number of genomics data are stored in public 

databases, such as The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO), which can be used by 
researchers to integrate and study massive resources. In this 
study, we combined the GSE40439 and GSE46699 datasets 
to examine the immune infiltration of KIRC patients, 
and identify the differentially expressed genes (DEGs) of 
KIRC tissues compared with adjacent normal tissues. We 
also determined the main biological processes (BPs) and 
pathways involved in the DEGs by Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses. In addition, several prognostic-related genes 
(PRGs) were identified by combining data from the GEO 
and TCGA databases. Finally, we verified our findings 
about some PRGs by using the University of Alabama 
at Birmingham cancer data analysis Portal (UALCAN) 
database and quantitative real-time polymerase chain 
reaction (qRT-PCR), and further speculated as to why 
PRGs affect the prognosis of KIRC using the Tumor 
Immune Estimation Resource (TIMER) database. We 
present this article in accordance with the STREGA 
reporting checklist (available at https://tau.amegroups.com/
article/view/10.21037/tau-24-299/rc).

Methods

Acquisition and analysis of GEO data

We first downloaded the following two bulk-RNA 
sequencing datasets containing KIRC and adjacent 
normal tissue data from the GEO database: GSE40435 
and GSE46699. The GSE40435 dataset included 101 
KIRC tissues and 101 paracancerous normal tissues, and 
the GSE46699 dataset included 67 KIRC tissues and 63 
paracancerous normal tissues. CIBERSORT was employed 
to analyze and compare the immune cell infiltration levels 
between the KIRC tissues and adjacent normal tissues 
in the two datasets (8). We also compared the DEGs of 
the KIRC and paracancerous tissues in the two datasets 
using the “limma” package (https://bioconductor.org/
packages/release/bioc/html/limma.html). The DEGs were 
defined as genes with a P value <0.05, and an absolute log 
fold change (FC) >1. The genes with a P value <0.01 and 
an absolute logFC >3 were displayed in a volcano plot. 
Moreover, we identified the DEGs in both the GSE40435 
and GSE46699 datasets using the “venn” (https://cran.
r-project.org/web/packages/gplots/) and “randomcoloR” 
(https://cran.r-project.org/web/packages/randomcoloR/) 
packages. Meanwhile, the R packages “org.Hs.eg.
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db” (https://bioconductor.org/packages/release/data/
annotation/html/org.Hs.eg.db.html) and “clusterProfiler” 
(https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) were used for the GO and KEGG 
analyses of the DEGs shared by the GSE40435 and 
GSE46699 datasets.

Data processing of KIRC and paracancerous normal tissues 
in TCGA database

We downloaded data from TCGA for 539 KIRC and 
adjacent normal tissue samples. Using Perl (strawberry-
perl) software (http://strawberryperl.com/), we compiled 
the gene expression matrices and clinical data for these 
samples. We combined the gene expression matrix (using 
the DEGs from both GSE40435 and GSE46699) with the 
survival data of TCGA samples using “limma” package 
(https://bioconductor.org/packages/release/bioc/html/
limma.html) in R language. A forest map of the PRGs 
of KIRC was constructed by a univariate Cox analysis 
by combining the common DEGs in the GSE40435 and 
GSE46699 datasets and the expression matrix and survival 
information of TCGA samples. We conducted a Pearson 
correlation analysis to construct a co-expression network 
by analyzing the PRGs identified in the forest maps and the 
transcription factors (TFs) associated with oncogenesis and  
progression (7,9,10).

Protein-protein interaction (PPI) network

FunRich (3.1.3exe) (http://www.funrich.org) is a powerful 
tool for analyzing human PPI networks and can show 
the signaling pathways in which genes or proteins are 
mainly enriched (11). We conducted a PPI analysis of the 

PRGs through FunRich, and identified the main signaling 
pathways involved in the PRGs.

UALCAN

The UALCAN database allows researchers to examine the 
relative gene expression levels of various cancer types and 
normal tissue samples using straightforward procedures. 
It also provides insights into relative gene expression 
in relation to tumor grades, cancer stages, or other 
clinicopathological characteristics (12). The UALCAN 
database was used to investigate the expression levels of the 
four genes with the highest and lowest hazard ratios (HRs) 
in both the KIRC and adjacent tissues, as well as their 
expression levels across different stages and tumor grades.

qRT-PCR

The expression levels of the PRGs in the KIRC and 
paracancerous tissues of 4 KIRC patients were compared 
by qRT-PCR. Table 1 presents the pathology and basic 
information of the 4 patients. All subjects gave their 
informed consent for inclusion in the study before they 
participated. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013), and 
the protocol was approved by the Ethics Committee of 
Changde Hospital, Xiangya School of Medicine, Central 
South University (The First People’s Hospital of Changde 
City) (approval number: 2024-061-01). RNA from KIRC 
and paracancerous tissues was extracted using the Vazyme 
extraction kit (RC112-01, Vazyme Biotech Co., Ltd., China). 
Reverse transcription was then performed on the extracted 
RNA using PrimeScript™ RT Reagent Kit (Perfect Real 
Time) (RR037A, Takara Bio Inc. Japan). Finally, qRT-PCR 
was conducted using the LightCycler 96 instrument (Roche 
Diagnostics, Switzerland) and ChamQ Universal SYBR 
qPCR Master Mix (Q711-02/03, Vazyme Biotech Co., Ltd., 
Nanjing, China). Each sample was analyzed in triplicate. 
The relative expression levels of the target genes in the 
KIRC and adjacent normal tissues were calculated using 
the 2−∆∆Ct method. The primer information for qRT-PCR is 
shown in Table 2.

TIMER

TIMER is a database that allows users to evaluate the 
immunE−related characteristics of specific tumors according 

Table 1 The clinicopathological information of the four patients 
for qRT-PCR 

Patients Sex
Age  

(years)
TNM  
stage

Pathological 
type

Patient 1 Female 74 T1bN0M0 KIRC

Patient 2 Female 56 T1bN0M0 KIRC

Patient 3 Male 67 T1aN0M0 KIRC

Patient 4 Male 52 T2bN0M0 KIRC

qRT-PCR, quantitative real-time polymerase chain reaction; TNM, 
tumor, node, metastasis; KIRC, kidney renal clear cell carcinoma.

https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://strawberryperl.com/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
http://www.funrich.org


Translational Andrology and Urology, Vol 13, No 8 August 2024 1569

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2024;13(8):1566-1581 | https://dx.doi.org/10.21037/tau-24-299

to specific functional parameters (13). We evaluated the 
correlations between multiple PRGs and the infiltration of 
immune cells in KIRC using the TIMER database.

Statistical analysis

All statistical analyses were conducted using R programming 
(Version 4.0.2). Differential expression between KIRC 
tissues and adjacent normal tissues was analyzed using the 
“limma” package, with significant genes identified at a  
P value <0.05 and an absolute logFC >1. CIBERSORT was 
used to assess immune cell infiltration. Pearson correlation 
analysis was applied to explore relationships between PRGs 
and TFs. Gene Ontology and KEGG pathway analyses 
were performed using “clusterProfiler”. Survival outcomes 
based on PRG expression were evaluated using univariate 
Cox proportional hazards models. qRT-PCR reactions were 
conducted in triplicate, and gene expression was quantified 
using the 2−∆∆Ct method. Results with a P-value <0.05 were 
deemed significant.

Results

Analysis of the immune infiltration of KIRC

To investigate the expression characteristics of the cancer 
tissues of the KIRC patients, we first analyzed immune cell 
infiltration of the KIRC and adjacent normal tissues in the 
GSE40435 (Figure 1A) and GSE46699 (Figure 1B) datasets 
using the CIBERSORT algorithm. In the GSE40435 
dataset, the KIRC tissues showed a significant decrease 

in naive B cells, memory resting cluster of differentiation 
(CD)4+ T cells, plasma cells, resting dendritic cells, 
monocytes, activated natural killer cells, eosinophils, 
and activated dendritic cells compared to the adjacent 
normal tissues (Figure 1C), but the proportion of memory 
activated CD4+T cells, gamma delta T cells, regulatory T 
cells, CD8+T cells, neutrophils, follicular helper T cells, 
M2 macrophages, and M1 macrophages was significantly 
higher in the KIRC tissues than the paracancerous tissue 
(Figure 1C). In the GSE46699 dataset, the proportion of 
memory B cells, plasma cells, memory resting CD4+T cells, 
regulatory T cells, resting dendritic cells, and activated 
mast cells was significantly lower in the KIRC tissues than 
the paracancerous tissue (Figure 1D), but the proportion 
of follicular helper T cells, M2 macrophages, gamma delta 
T cells, monocytes, M1 macrophages, M0 macrophages, 
neutrophils, and activated dendritic cells was significantly 
higher in the KIRC tissues than the paracancerous tissues 
(Figure 1D). According to these results, KIRC and normal 
tissues have a significantly different immune composition.

Identification of DEGs between the KIRC and 
paracancerous tissues

To further explore the characteristics of KIRC, we 
compared the DEGs between the KIRC and paracancerous 
tissues. As the volcano map shows (Figure 2A), in the 
GSE40435 dataset, 484 genes were significantly increased, 
and 599 genes were significantly decreased in the KIRC 
tissues compared with paracancerous tissues. While in the 

Table 2 Primer information for qRT-PCR 

Gene name Forward primer Reverse primer

GAPDH GTGGACCTGACCTGCCGTCTAG GAGTGGGTGTCGCTGTTGAAGTC

FCGR1B TGGGTCAGCGTGTTCCAAG GTCACTTCGCCCTGAGAGAC

ISG20 TCTACGACACGTCCACTGACA CTGTTCTGGATGCTCTTGTGC

PRC1 ATCACCTTCGGGAAATATGGGA TCTTTCTGACAGACGGATATGCT

NUSAP1 AGCCCATCAATAAGGGAGGG ACCTGACACCCGTTTTAGCTG

BPHL TTCGGCACCTCGGTAACCT GGACTGCGTGATCTCCCTCT

PLCL1 AAAGTCCGGCCAAATTCTCG TTTCCGTGTTTTTCCCCAGTC

CLIC5 CTTGACCCCTGAAAAGTACCC ACTTGGAAAAGATGTCGATGCC

HIBCH GCAATTTCGAGTGGCTACAGA CCTTGGAGTCGTGGCAAGAA

qPCR, quantitative real-time polymerase chain reaction.
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GSE46699 dataset, 511 genes were significantly increased 
and 558 genes were significantly decreased in the KIRC 
tissues compared with the paracancerous tissues (Figure 2B).  
Moreover, there were 261 upregulated genes and 290 
downregulated genes in both the GSE40435 and GSE46699 
datasets (Figure 2C,2D).

GO and KEGG analyses of common DEGs of GSE40435 
and GSE46699

We conducted an analysis of the common DEGs in both 
the GSE40435 and GSE46699 datasets using the GO and 
KEGG pathways to examine the biological alterations in 
the KIRC tissues compared to the normal tissues. The 
results showed that the co-upregulated 261 DEGs were 
mainly involved in the regulation of immune-related BPs, 
such as lymphocyte proliferation, T cell activation, and 
leukocyte cell-cell adhesion (Figure 3A), and the main 
KEGG pathways included the nuclear factor Kappa-

light-chain-enhancer of activated B cells (NF-Kappa B), 
phosphoinositide 3-kinase-protein kinase B signaling 
pathway (PI3K-Akt), and tumor necrosis factor (TNF) 
signaling pathways (Figure 3B). The co-downregulated 290 
DEGs were mainly involved in kidney development and the 
BPs related to metabolism (Figure 3C), and the main KEGG 
pathways included the peroxisome proliferator-activated 
receptor (PPAR) signaling pathway, peroxisome, and other 
metabolic-related signaling pathways (Figure 3D).

Identifying the PRGs in KIRC by combining TCGA and 
GEO data and constructing a regulatory network

After identifying the DEGs in both the GEO datasets, 
we combined the gene expression matrix with survival 
information from TCGA database to identify the genes 
that significantly affected the survival of the KIRC patients. 
Of the 261 DEGs upregulated in both the GSE40435 
and GSE46699 datasets, we identified 60 PRGs of KIRC 

Figure 1 The levels of immune cell infiltration in the KIRC and adjacent normal tissues. (A,B) Levels of immune cell infiltration in 
GSE40435 (A) and GSE46699 (B). (C,D) Comparison of the level of immune cell infiltration between the KIRC and adjacent normal tissues 
in GSE40435 (C) and GSE46699 (D). ns, not significant; *, P<0.05; **, P<0.01; ***, P<0.001. CD, cluster of differentiation; NK, natural 
killer; KIRC, kidney renal clear cell carcinoma.
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patients by combining TCGA-KIRC data (Figure 4A). Of 
the 290 DEGs downregulated by both the GSE40435 and 
GSE46699 datasets, we identified 53 PRGs by combining 
the TCGA-KIRC data (Figure 4B). Moreover, we combined 
TCGA-KIRC data with the DEGs in the GSE40435 and 
GSE46699 datasets to construct a regulatory network 
of the PRGs and TFs to explore the incidence and 
development of KIRC (Figure 4C). RARRES2 (Retinoic 
Acid Receptor Responder 2) expression was negatively 
correlated with ETS1 (E26 Transformation Specific 1) 
expression. ALDH6A1 (Aldehyde Dehydrogenase 6 Family 
Member A1), BPHL (Aldehyde Dehydrogenase 6 Family 

Member A1), PDZK1 (PDZ Domain Containing 1), and 
ACADM (Acyl-CoA Dehydrogenase Medium Chain) were 
negatively correlated with CEBPB (CCAAT Enhancer 
Binding Protein Beta) expression, but other PRGs were 
positively correlated with the expression of TFs (Table S1).  
Additionally, 113 PRGs were analyzed to examine the PPIs 
to further understand the possible reasons why the PRGs 
affected the prognosis of patients with KIRC. The results 
showed that there were complex interactions between 
these PRGs, and these PRGs were mainly related to the 
enrichment of the VEGF/VEGFR signaling network  
(Figure 4D).

Figure 2 Identification of DEGs between the KIRC and adjacent normal tissue. (A,B) Volcano map of DEGs in GSE40435 (A) and 
GSE46699 (B). (C,D) Venn diagram of both upregulated (C) and downregulated (D) genes in GSE40435 and GSE46699. FC, fold change; 
DEGs, differentially expressed genes; KIRC, kidney renal clear cell carcinoma.
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UALCAN database and qRT-PCR verified the expression 
of the PRGs in KIRC

To further confirm the reliability of the PRGs obtained 
by combining TCGA and GEO data, we used the 
UALCAN database to validate the expression of the 
four KIRC upregulated genes with the largest HRs (i.e., 
FCGR1B, ISG20, PRC1, and NUSAP1), and the four 
KIRC downregulated genes with the smallest HRs (i.e., 
BPHL, PLCL1, CLIC5, and HIBCH), and their effects 
on the prognosis of KIRC. The results showed that the 
expression levels of FCGR1B, ISG20, PRC1, and NUSAP1 
were significantly higher in the KIRC tissues than the 
paracancerous tissues (Figure 5A-5D). The expression 

levels of FCGR1B, ISG20, PRC1, and NUSAP1 in the 
cancer tissues increased as KIRC stage (Figure 5E-5H), 
grade (Figure 5I-5L), and the occurrence of lymph node 
metastasis (Figure 5M-5P) increased. Moreover, the high 
expression of FCGR1B, ISG20, PRC1, and NUSAP1 
significantly suppressed the survival time of patients with 
KIRC (Figure 5Q-5T). In addition, the expression levels 
of BPHL, PLCL1, CLIC5, and HIBCH were significantly 
lower in the KIRC tissues than the paracancerous tissues  
(Figure 6A-6D). Further, as KIRC stage (Figure 6E-6H), 
grade (Figure 6I-6L), and the occurrence of lymph node 
metastasis (Figure 6M-6P) increased, the expression levels 
of BPHL, PLCL1, CLIC5, and HIBCH decreased in the 

Figure 3 GO and KEGG analyses of common DEGs of GSE40435 and GSE46699. (A,B) Bubble charts displaying the primary BPs (A) 
and KEGG pathways (B) involved in the co-upregulated DEGs. (C,D) Bubble charts displaying the primary BPs (C) and KEGG pathways 
(D) involved in the co-downregulated DEGs. KEGG, Kyoto Encyclopedia of Genes and Genomes; TNF, tumor necrosis factor; NOD, 
nucleotide-binding oligomerization domain; GO, Gene Ontology; DEGs, differentially expressed genes; BPs, biological processes.

A

C

B

D

15 
20 
25 
30

20 
30
40

7.5 
10.0 
12.5 
15.0 
17.5

4 
6 
8 
10 
12

Size

Size

Size

Size

6e−08 

4e−08 

2e−08

9.0e−09 

6.0e−09 

3.0e−09

0.03 

0.02

0.01

0.020 
0.015 
0.010 
0.005

q value

q value

q value

q value

B
io

lo
gi

ca
l p

ro
ce

ss
B

io
lo

gi
ca

l p
ro

ce
ss

K
E

G
G

 p
at

hw
ay

K
E

G
G

 p
at

hw
ay

0.07 0.09 0.11 0.13

0.06 0.09 0.12 0.15 0.18 0.02 0.03 0.04 0.05 0.06 0.07

0.06 0.08 0.10
Ratio

Ratio Ratio

Ratio

Positive regulation of cell adhesion 

Leukocyte cell-cell adhesion 

Regulation of T cell activation 

Leukocyte proliferation 

Positive regulation of leukocyte activation 

Mononuclear cell proliferation 

Lymphocyte proliferation 

Regulation of mononuclear cell proliferation 

Cell chemotaxis 

Antigen processing and presentation of peptide antigen

Small molecule catabolic process 

Organic acid catabolic process 

Carboxylic acid catabolic process 

Amino acid metabolic process 

Renal system development 

Kidney development 

Alpha-amino acid metabolic process 

Monocarboxylic acid catabolic process 

Amino acid catabolic process 

Kidney epithelium development

PI3K-Akt signaling pathway 

Cell adhesion molecules 

Cytokine-cytokine receptor interaction 

Antigen processing and presentation  

TNF signaling pathway 

NOD-like receptor signaling pathway  

Complement and coagulation cascades  

Th17 cell differentiation 

Th1 and Th2 cell differentiation 

NF-kappa B signaling pathway

Carbon metabolism 

PPAR signaling pathway 

Peroxisome 

Arginine and proline metabolism 

Tryptophan metabolism 

Glycine, serine and threonine metabolism 

Aldosterone-regulated sodium reabsorption 

Collecting duct acid secretion 

Proximal tubule bicarbonate reclamation 

Ascorbate and aldarate metabolism



Translational Andrology and Urology, Vol 13, No 8 August 2024 1573

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2024;13(8):1566-1581 | https://dx.doi.org/10.21037/tau-24-299

Figure 4 Identifying PRGs in KIRC by combining TCGA and GEO data and constructing a regulatory network. (A) Forest map of the 
genes that were significantly upregulated in the GEO database (GSE40435 and GSE46699) and significantly influenced the survival time of 
TCGA-KIRC patients. (B) Forest map of the genes that were significantly downregulated in the GEO database (GSE40435 and GSE46699) 
and significantly influenced the survival time of TCGA-KIRC patients. (C) Alluvial map of PRGs and TFs. (D) PPI network diagram 
between PRGs. PRGs, prognostic-related genes; TFs, transcription factors; VEGF, vascular endothelial growth factor; VEGFR, vascular 
endothelial growth factor receptor; KIRC, kidney renal clear cell carcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression 
Omnibus; PPI, protein-protein interaction.
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Figure 5 The expression of PRGs with the top four HRs in KIRC and their effects on the prognosis of KIRC verified by UALCAN 
database. (A-D) The expression levels of FCGR1B (A), ISG20 (B), PRC1 (C), and NUSAP1 (D) in the KIRC and adjacent normal tissues. 
(E-H) The expression levels of FCGR1B (E), ISG20 (F), PRC1 (G), and NUSAP1 (H) in tissues from patients with different stages of 
KIRC. (I-L) The expression levels of FCGR1B (I), ISG20 (J), PRC1 (K), and NUSAP1 (L) in tissues from patients with different grades of 
KIRC. (M-P) The expression levels of FCGR1B (M), ISG20 (N), PRC1 (O), and NUSAP1 (P) in the KIRC tissues of patients with different 
lymph node status. (Q-T) Effect of FCGR1B (Q), ISG20 (R), PRC1 (S), and NUSAP1 (T) expression on the survival time of KIRC patients. *, 
P<0.05; **, P<0.01; ***, P<0.001. KIRC, kidney renal clear cell carcinoma; TCGA, The Cancer Genome Atlas; PRGs, prognostic-related 
genes; HRs, hazard ratios.
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Figure 6 The expression of the PRGs with the smallest four HRs in KIRC and their effects on the prognosis of KIRC verified by UALCAN 
database. (A-D) The expression levels of BPHL (A), PLCL1 (B), CLIC5 (C), and HIBCH (D) in the KIRC and adjacent normal tissues. (E-H) 
The expression levels of BPHL (E), PLCL1 (F), CLIC5 (G), and HIBCH (H) in the tissues form patients with different stages of KIRC. (I-L) 
The expression levels of BPHL (I), PLCL1 (J), CLIC5 (K), and HIBCH (L) in the tissues form patients with different grades of KIRC. (M-P)  
The expression levels of BPHL (M), PLCL1 (N), CLIC5 (O), and HIBCH (P) in the KIRC tissues of patients with different lymph node 
metastasis status. (Q-T) Effect of BPHL (Q), PLCL1 (R), CLIC5 (S), and HIBCH (T) expression on the survival time of KIRC patients. 
*, P<0.05; **, P<0.01; ***, P<0.001. KIRC, kidney renal clear cell carcinoma; TCGA, The Cancer Genome Atlas; PRGs, prognostic-related 
genes; HRs, hazard ratios.
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cancer tissues. Meanwhile, the KIRC patients with high 
expression levels of BPHL, PLCL1, CLIC5, and HIBCH 
had a significantly longer survival time compared to those 
with low expression (Figure 6Q-6T). The results of the 
UALCAN database were consistent with our findings, and 
the expression levels of the PRGs were further analyzed in 
terms of the different lymph node metastasis statuses, and 
grades and stages of KIRC. These results demonstrated 
the practicability and reliability of the PRGs identified by 
combining TCGA and GEO data. Finally, the qRT-PCR 
also verified that FCGR1B, ISG20, PRC1, and NUSAP1 
were significantly more abundant in the KIRC tissues 
than the paracancerous tissues (Figure 7A-7D), and the 
expression levels of BPHL, PLCL1, CLIC5, and HIBCH 
were significantly lower in the KIRC tissues than the 
paracancerous tissues (Figure 7E-7H).

The relationship between the PRGs and immune cell 
infiltration in KIRC

To extend our understanding of how the PRGs influenced 
KIRC, we analyzed the relationship between the expression 
levels of the KIRC PRGs (i.e., FCGR1B, ISG20, PRC1, 
NUSAP1, BPHL, PLCL1, CLIC5 and HIBCH) and the 
infiltration levels of immune cells using the TIMER 
database. The expression levels of the four PRGs with the 

highest HRs (i.e., FCGR1B, ISG20, PRC1, and NUSAP1) 
were positively correlated with the infiltration levels of 
dendritic cells, CD8+T cells, B cells, macrophages, CD4+T 
cells, and neutrophils (Figure 8A-8D). Moreover, the 
expression levels of the four PRGs with the lowest HRs 
(i.e., BPHL, PLCL1, CLIC5, and HIBCH) were positively 
correlated with the infiltration levels of various immune 
cells (Figure 8E-8H), but the expression levels of the four 
genes with the highest HRs were more closely associated 
with the infiltration levels of immune cells. These results 
suggest that the effect of PRGs on the prognosis of patients 
with KIRC is closely related to changes in the tumor 
immune microenvironment.

Discussion

The prognosis of different KIRC patients varies greatly. 
To achieve the best outcomes, the early diagnosis and 
treatment of KIRC is critical. Thus, it is particularly 
important to identify genes that can be used in both the 
early diagnosis and prognosis prediction of KIRC. This 
study sought to explore the histological characteristics of 
KIRC by integrating KIRC data from the GEO and TCGA 
databases, and using multiple gene expression levels to 
jointly diagnose KIRC early and estimate the prognosis of 
KIRC. Our findings could contribute to the early diagnosis 

Figure 7 The expression of the PRGs in the KIRC and adjacent normal tissues was verified by qRT-PCR. (A-D) qRT-PCR confirmed 
that the expression levels of FCGR1B (A), ISG20 (B), PRC1 (C), and NUSAP1 (D) were significantly higher in the KIRC tissues than the 
adjacent normal tissues. (E-H) qRT-PCR confirmed that the expression levels of BPHL (E), PLCL1 (F), CLIC5 (G), and HIBCH (H) were 
significantly higher in the KIRC tissues than the adjacent normal tissues. *, P<0.05; **, P<0.01; ***, P<0.001. KIRC, kidney renal clear cell 
carcinoma; PRGs, prognostic-related genes; qRT-PCR, quantitative real-time polymerase chain reaction.
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and personalized treatment of KIRC patients.
First, we compared the immune cell infiltration of 

KIRC and adjacent normal tissues in both the GSE40435 
and GSE46699 datasets. Our results revealed significant 
differences in the immune composition of the KIRC 
and adjacent normal tissues. Moreover, similarities 
and obvious differences were observed in the immune 
infiltration of the KIRC tissues between the GSE40435 and 
GSE46699 datasets, which indicated the commonality and 
heterogeneity of KIRC in terms of immune infiltration. The 
difference in immune infiltration is an important reason for 
prognosis differences in KIRC patients (14,15). Therefore, 
finding commonalities among the differences to evaluate 
the prognosis of patients with KIRC is very important. 

We compared the DEGs between the KIRC and 
paracancerous tissues in the GSE40435 and GSE46699 
datasets, and analyzed the common DEGs of the two 
datasets. The co-upregulated DEGs in the two GEO 
datasets mainly involved the TNF, NF-kappa B, and PI3K-
Akt signaling pathways. A large number of studies have 
shown that the activation of the NF-kappa B pathway 
is related to the occurrence and progression of tumor 
metastasis (16). For example, the activation of the NF-
kappa B pathway promotes the progression of RCC (17), 
the metastasis and chemotherapy resistance of intrahepatic 
bile duct carcinoma (18), and the angiogenesis and 
blood metastasis of bladder cancer (19). In addition, the 
activation of the TNF signaling pathway promotes KIRC  
proliferation (20), and the stimulation of the PI3K-Akt 
signaling pathway is associated with the formation of many 
tumors (21-23). Our results are consistent with the above 
reports, and comprehensively explain the formation and 
development of KIRC in many ways.

Further, we identified multiple PRGs of KIRC by 

combining TCGA and GEO data. There are extensive 
interactions among these PRGs, and they are mainly related 
to the VEGF/VEGFR signaling network. Research has 
revealed a direct relationship between VEGF signaling and 
lymphatic and blood vessel neovascularization, which has 
a potential correlation with the poor prognosis of KIRC 
patients (24,25). The continuous activation of the VEGF 
pathway causes the uncontrolled progress of KIRC (26). 
According to the above reports and the findings of our 
study, the enhancement or attenuation of VEGF signaling 
by PRGs affects the prognosis of KIRC patients.

Additionally, we utilized the UALCAN database to 
validate the expression of the four KIRC upregulated 
genes with the highest HRs—FCGR1B, ISG20, PRC1, and 
NUSAP1—as well as the four downregulated genes with the 
lowest HRs—BPHL, PLCL1, CLIC5, and HIBCH. Existing 
researches have reported on the impact of these genes in 
KIRC. For instance, a study by Xu et al. demonstrated 
that ISG20 promotes cell proliferation and metastasis by 
regulating the expression of MMP9/CCND1, and it may 
serve as a potential biomarker and therapeutic target in clear 
cell renal cell carcinoma (ccRCC) (27). Research by El-
Hussieny et al. indicated that NUSAP1 is highly expressed 
in KIRC, and its expression level is associated with poor 
prognosis in KIRC patients (28). Pan et al. showed that 
PLCL1 inhibits tumor progression in renal cell carcinoma 
by regulating AMPK/mTOR-mediated autophagy (29). 
We also verified the expression of these PRGs in terms of 
different lymph node metastasis statuses, and grades and 
stages of KIRC. The factors affecting the 5-year survival 
rate of KIRC included lymph node metastasis status, tumor 
grade, and tumor stage (30-32). However, the expression 
of these PRGs obtained by combining TCGA and GEO 
data varied significantly with the stage, grade, and lymph 

Figure 8 The correlation between the PRGs and the infiltration of immune cells in KIRC. (A-H) The associations of the FCGR1B (A), 
ISG20 (B), PRC1 (C), NUSAP1 (D), BPHL (E), PLCL1 (F), CLIC5 (G), and HIBCH (H) expression levels in the KIRC tissues and the 
infiltration levels of multiple immune cells. TPM, transcripts per million; PRGs, prognostic-related genes; KIRC, kidney renal clear cell 
carcinoma.
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node metastasis of KIRC, and the expression of these 
PRGs was significantly changed in the early stage of KIRC. 
This shows that the survival time of KIRC patients can be 
reliably evaluated using these PRGs, and these PRGs may 
contribute to the early diagnosis of KIRC patients.

Tumor development and treatment response are closely 
related to the tumor immune microenvironment (33,34). 
More and more studies have shown that the different 
percentage of immune cell populations in tumors and the 
heterogeneity of immune-related genes are important 
reasons for significant differences in prognosis (35-37). 
Therefore, we further explored the association between 
eight representative PRGs in KIRC and immune cell 
infiltration. These high-risk genes (FCGR1B, ISG20, PRC1, 
and NUSAP1) and low-risk genes (BPHL, PLCL1, CLIC5, 
and HIBCH) were significantly positively correlated with 
the infiltration of immune cells. This shows that immune 
cell infiltration is a double-edged sword, which may be 
beneficial or harmful to the prognosis of KIRC patients 
(38,39). The positive correlation between high-risk PRGs 
and immune cell infiltration indicates that these genes 
may regulate immunosuppressive cells or signals within 
the tumor microenvironment, thereby maintaining the 
state of immune escape. This contributes to the tumor’s 
evasion of immune surveillance and adversely impacts 
patient prognosis. Such high-risk PRGs might suggest 
potential resistance to treatments, particularly those aimed 
at modulating the immune environment, as the associated 
immunosuppressive milieu could compromise the efficacy 
of immunotherapeutic agents. Conversely, the positive 
correlation of low-risk PRGs with immune cell infiltration 
suggests that these PRGs may activate the tumor immune 
environment, enhancing the ability of immune cells to 
attack tumor cells. This indicates that low-risk PRGs 
could serve as potential biomarkers to identify patients 
more likely to respond to immunotherapies, thereby 
facilitating more personalized and effective treatment 
approaches. Our study linked the immune cell population 
to the expression characteristics of the KIRC PRGs, 
which is helpful in understanding the interaction between 
tumor-specific signatures characteristics and the immune 
microenvironment. Future research should therefore focus 
on conducting clinical trials that incorporate PRG profiling 
to evaluate its practical utility in predicting drug response 
and personalizing therapy regimens.

Our findings will assist in predicting the survival 
prognosis and early diagnosis of KIRC patients. However, 
our study also had certain limitations. The data were 

mainly obtained from public databases, and prospective 
cohort validation is lacking. However, our results were 
derived from the combined results of multiple databases, 
which increases the reliability of the results. Our study has 
considerable instructive implications for predicting the 
survival and early diagnosis of KIRC patients, and reveals 
multiple possible mechanisms influencing KIRC prognosis.

Conclusions

The degrees of immune cell  infiltration in KIRC 
and paracancerous tissues differed significantly. The 
PRGs of KIRC played a significant role in the immune 
microenvironment and VEGF/VEGFR signal ing. 
Compared with the paracancerous tissues, the expression 
of the representative PRGs we identif ied showed 
significant changes in early-stage, low-grade, and non-
lymph node metastasis of KIRC. Our findings could assist 
in determining the prognosis of KIRC patients, selecting 
personalized treatments, and facilitating the early diagnosis 
of KIRC.
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