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Abstract Chronic pulmonary hypertension (PH) is characterized by the accumulation of
persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes
involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM)
remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these
activated phenotypes. Furthermore, current approaches to define additional therapeutic targets
have focused on determining the initiating signals and their downstream effectors that are
important in PH onset and development. Although these approaches have produced a large
number of compelling PH treatment targets, many promising human drugs have failed in PH
clinical trials. Herein, we propose that one contributing factor to these failures is that processes
important in PH development may not be good treatment targets in the established phase
of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH
cells, resulting in functional differences between the same factor or pathway in normal or early
PH cells versus cells in chronic PH. We propose that the high expression of genes involved in
the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin
structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic
regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs,
the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus,
determining how gene expression is controlled by examining chromatin structure, TFs and
epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in
chronic PH, may uncover new PH therapeutic targets.
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Abstract figure legend Hypothetical representation of chromatin structure, transcription factors (TFs) and TF
co-regulators in normal (top panel), and persistently “activated” PH vascular cells (lower panel) of genes involved
in proliferation, apoptosis-resistance and pro-inflammation. We posit that the persistently high expression of these
genes in PH vascular cells is due to their “open” chromatin structure, allowing binding of multiple stress-related TFs and
pioneer TF(s), which help maintain an active chromatin structure and high levels of gene expression by recruiting and
maintaining high levels of TF co-factors including epigenetic regulators such as HATs, BRDs and the Mediator Complex
(lower panel). Abbreviations: Ac, acetylation; EGR1, early growth response 1; p-TEFb, positive transcription elongation
factor B; Pol II, RNA polymerase II.

Introduction

Pulmonary hypertension (PH) exists both as a primary
pulmonary vascular disease, as in pulmonary arterial
hypertension (PAH) or secondary to an underlying
disease, such as chronic exposure to hypoxia as seen in
respiratory diseases (COPD, sleep disordered breathing,
and others) or chronic exposure to high altitude (Stenmark
et al. 2009; Stenmark & Rabinovitch, 2010; Simonneau
et al. 2013). Despite likely differences in the initiating
vascular stresses and signalling pathways between primary
and secondary forms of PH, there are shared consequences
such as vasoconstriction and pathological remodelling
of pulmonary vessels that increase pulmonary vascular
resistance and stiffness, which stresses the right ventricle
(RV), leading to progressive heart failure and death.
At the cellular level, pathological remodelling of
pulmonary vessels is due to endothelial dysfunction,
as well as dysregulated proliferation, apoptosis and

inflammatory signalling in all pulmonary vascular wall
cells. Importantly, PH vascular cells established from
animals with severe hypoxia-induced PH, as well as
humans with end-stage idiopathic PAH, maintain in vitro
their dysregulated or persistently activated cell phenotypes
such as hyper-proliferation, apoptosis-resistance and
pro-inflammation (Li et al. 2011; Pullamsetti et al. 2016,
2017; Stenmark et al. 2018). These activated phenotypes
are likely due to a persistently high expression of genes such
as CCND1, CCNA2 (hyper-proliferation), BCL2, BCL2L1
and Survivin (apoptosis-resistance), CCL2, CXCL12,
GM-CSF, IL6 and VCAM1 (pro-inflammation), epi-
dermal growth factor receptor (EGFR) ligands (AREG,
EREG, TGFA), fibroblast growth factor receptor (FGFR)
ligands (FGF7) and MET ligand (HGF) (Li et al.
2016; Pullamsetti et al. 2016, 2017)(authors unpublished
observations). These persistently activated phenotypes
and aberrant gene expression programmes are maintained
in vitro, even after multiple passages and in the absence
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of complex in vivo environments, indicating that the
gene expression and cell phenotypes of vascular cells of
chronic PH are stable and irreversible. Interestingly, all
currently approved treatments for PH are based on the
“vasoconstrictor hypothesis” of PH and are directed at
either inhibiting vasoconstriction (endothelin receptors)
or stimulating vasodilatation (prostacyclin and inhibition
of phosphodiesterase 5 (PDE5)). Clearly treatments
such as prostanoids, endothelin receptor antagonists,
phosphodiesterase 5 inhibitors, soluble guanylate cyclase
stimulants or, rarely, certain calcium channel blockers can
improve patients’ symptoms and extend life (Maron &
Galie, 2016; Lau et al. 2017). However, though useful,
these existing therapies do not halt or reverse PH since
these treatments do not directly address the aberrant
gene expression programmes responsible for persistently
activated cell phenotypes. Thus, it is important to
determine the molecular mechanisms that contribute to
persistent activation of signalling pathways in cells of the
chronically hypertensive vessel wall. Most current studies
aimed at identifying therapeutic targets that may reverse
the activated cell phenotypes have used an approach
aimed largely at determining the initiating signals and
their downstream effectors that are important in PH
development. These studies have led to the generation of a
large number of compelling PH treatment targets, which
will be summarized. We will then summarize the success
and failure of the clinical trials that target the factors
or pathways that are important for PH development.
Then, in the following sections, we will describe the
data supporting a new hypothesis and its translational
implications regarding mechanisms that contribute to the
persistently activated cell phenotype that occurs in chronic
PH. We specifically propose that alterations in chromatin
structure and epigenetic regulators in chronic PH regulate
the phenotypes of specific vascular cell types, distinct from
the transcriptional mechanisms involved in disease onset.

Essential role of cell signalling ligands/receptors,
signalling transducers, transcription factors,
transcription factor co-factors and epigenetic
regulators, in PH onset and development

We have learned a great deal about PH, particularly
the pathways or factors that are important in PH
onset and development. This knowledge has been
derived from studies using epidemiological investigation,
animal models and tissues/cells established from human
PAH patients. Collectively, these studies support the
well-accepted concept that PH is a multifactorial
disease, which can be induced by numerous stimuli
and pathological conditions that result in activation
of numerous specific signalling pathways and resultant
alterations of gene expression (Fig. 1). Below, we

will briefly summarize these findings in the order
of signalling transduction (from extracellular ligands
to signalling transducers), TFs, TF co-regulators and
epigenetic regulators.

Role of environmental or pathological stimuli in PH
development. Environmental or pathological stimuli
such hypoxia, mechanical stress, growth factors,
chemokines, cytokines, oxidative stress and metabolic
reprogramming can all lead to activation of specific
signalling pathways resulting in pulmonary vascular cell
proliferation, inflammatory response and pulmonary
vessel occlusion (Hassoun et al. 2009; Stenmark &
Rabinovitch, 2010; Schermuly et al. 2011; Pullamsetti et al.
2016, 2017). Some of these stimuli, such as growth factors,
chemokines and cytokines initiate their function by
binding to specific receptors located on the cell membrane.
That increased expression of growth factors such as
platelet-derived growth factor (PDGF), EGFR ligands, and
transforming growth factor β (TGF-β) are important in
initiating development of PH is evidenced by the studies
demonstrating that the inhibitor of the EGFR/PDGF
receptor downstream effector RAS/RHOB, Tipifarnib
(Duluc et al. 2017), the TGF-β ligand trap, a soluble
TGF-β type II receptor extracellular domain expressed
as an immunoglobulin-Fc fusion protein (TGFBRII-Fc)
(Yung et al. 2016) and direct PDGF inhibition with the
tyrosine kinase inhibitor Imatinib (Pullamsetti et al. 2012)
can all attenuate PH. In contrast, decreased signalling
through the bone morphogenetic protein receptor type II
(BMPR2) pathway also leads to PH development (Morrell
et al. 2006; Guignabert et al. 2017; Orriols et al. 2017).
The role of inflammatory cells, cytokines or chemo-
kines in PH development has also been demonstrated
as blocking bone-marrow-derived cell recruitment to the
lung (Hayashida et al. 2005; Frid et al. 2006; Gambaryan
et al. 2010), inhibition of the chemokine SDF-1 (Young
et al. 2009), or its receptor CXCR4 (Yu & Hales, 2011),
can also block or attenuate PH development (Rabinovitch
et al. 2014; Pugliese et al. 2015). Both intracellular
and extracellular redox status has also been shown to
contribute to PH development. For instance, the levels
of reactive oxygen species (ROS) are increased under
hypoxia, due to increased production of ROS from
mitochondria complex II and/or complex III (Paddenberg
et al. 2003; Guzy et al. 2007). The role of ROS in PH
is supported by the spontaneous development of PH in
mice in which superoxide dismutase (Sod1) is deleted in
smooth muscle cells (SMCs) (Nozik-Grayck et al. 2014)
while hypoxia-induced PH is significantly attenuated in
mice with overexpression of extracellular SOD (EC-SOD)
in the lung (Nozik-Grayck et al. 2008).

The role of signalling transducers in PH development.
Association of ligands such as growth factors, cytokines,

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



1106 C.-J. Hu and others J Physiol 597.4

chemokines, or extracellular matrix to their receptors
often leads to activation of intracellular and/or
membrane-associated protein kinases, which results in
signal transduction and signal amplification. Here, we
primarily focus on the role of Ras–MEK–ERK and
PI3K–Akt–mTOR signalling transducers in PH as these
factors play critical roles in cell proliferation, survival
and motility. Activation of Ras proteins, which, in
turn, transduces signals through Raf, MEK and ERK,
can be mediated by growth factors and extracellular
matrix-mediated signals. Specific to PH endothelial cells,
Ras can also be activated by BMPR2 silencing (Awad
et al. 2016). The activation of Ras–MEK–ERK is well
demonstrated in PH (Lane et al. 2005). The function of
Ras–MEK–ERK in PH development is supported by the
fact that Raf-1 kinase inhibitor protein knockout mice
exhibit more severe hypoxia-induced PH (Morecroft et al.
2011). The PI3K–Akt–mTOR pathway is often activated
by receptor tyrosine kinases, G protein-coupled receptors
and integrins. Multiple studies have documented the role
of PI3K–Akt–mTOR in PH initiation including attenuated
development of hypoxia-induced PH in rats when treated
with PI3K or Akt inhibitors (Garat et al. 2013), or in mice
with SMC-specific deletion of Akt (Tang et al. 2015) while

knockdown of PTen, a negative regulator of Akt activation,
leads to spontaneous PH (Nemenoff et al. 2008).

The roles of TFs in PH development. The activities of
transcription factors (TFs) are often regulated by signal
transducers initiated from outside of the cell but they
can also be modulated by intracellular signals. Regulation
of TF activity by signalling molecules is typically
mediated through post-translational modifications such
as phosphorylation, acetylation and methylation, resulting
in alterations of TF protein stabilization, translocation
between cytoplasm and nucleus, alteration of TF binding
affinity to its co-activators, and alteration of TF binding
to DNA (Spitz & Furlong, 2012; Bhagwat & Vakoc,
2015). Multiple TFs have been implicated in PH
development (Pullamsetti et al. 2016). For example,
hypoxia-inducible factors (HIFs) are key regulators of
the molecular response to hypoxia. The target genes of
HIFs include genes controlling neovascularization, cell
proliferation, migration, metabolism and others (Pawlus
& Hu, 2013). Studies from multiple laboratories using
mouse models have established a critical role of HIF2
in hypoxia-mediated PH in which global reduction
(Brusselmans et al. 2003) or knockout of Hif2 in
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Figure 1. Role of cell signals, signalling receptors, signalling transducers, TFs and TF co-factors in altering
chromatin structure and gene expression in normal pulmonary vascular cells
The traditional view is that microenvironmental signals impact gene expression by regulating the activities of TFs
that regulate gene expression and disease progression. Studies in the last two decades support roles of extra- and
intracellular signals in regulating the activities of TF co-factors (including epigenetic regulators) and nucleosome
histone modifications, in addition to regulating TF activity, all of which together control chromatin structure and
gene expression.
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endothelial cells (ECs) (Bryant et al. 2016; Tang et al. 2018)
or in pulmonary ECs (Cowburn et al. 2016) reduces or
completely blocks the development of PH. Conversely,
activation of HIF2 via inactivating mutation of Von
Hippel-Lindau (Vhl) (Hickey et al. 2010) or deletion
of Phd2 (Dai et al. 2016; Kapitsinou et al. 2016; Wang
et al. 2016; Tang et al. 2018), or activating mutation of
Hif2a (Tan et al. 2013) leads to PH development under
normoxic conditions. Increased expression of FOXM1,
a transcription factor crucial for G1–S and G2–M cell
cycle progression and ROS-induced DNA damage repair
has been found upregulated in PH and blocking its
expression prevents and reverses hypoxia-induced PH
in rodents (Bourgeois et al. 2018; Dai et al. 2018).
PH development is often associated with early and
persistent perivascular inflammation in animal models of
PH (Li et al. 2011; Stenmark et al. 2012) and persistent
inflammation is also observed in most chronic forms
of human PH (Tuder et al. 2013; Rabinovitch et al.
2014; Ghataorhe et al. 2017). Increased activation of
inflammatory TFs such as STAT3 (Paulin et al. 2011a,b,
2012) and nuclear factor κB (NF-κB) (Sawada et al. 2007;
Huang et al. 2008; Kimura et al. 2009; Hosokawa et al.
2013; Price et al. 2013; Farkas et al. 2014; Li et al. 2014)
have been consistently observed in animal models and
human PH. Further, STAT3 and NF-κB inhibition either
block or attenuate PH development since these TFs not
only sustain inflammatory responses but also promote
cell proliferation, survival and metabolic reprogramming
(Grivennikov & Karin, 2010). Further, inhibition of a TF
called NFATc3, that is activated by increased levels of ROS,
prevents hypoxia-induced PH in mice (Ramiro-Diaz et al.
2013).

Reduced activities of TFs such as p53 and FoxOs also
promote PH development. p53 is necessary for responding
to DNA damage and other stresses, and p53 activation
often leads to inhibition of cell proliferation. Thus, it
is not surprising that reduced p53 expression/activity
contributes to PH development in which more severe
PH is observed in Tp53 knockout mice under chronic
hypoxia (Mizuno et al. 2011) or in rats treated with
a p53 inhibitor (Jacquin et al. 2015). The activities
of FoxO TFs are often reduced by growth factors
and inflammatory cytokine-mediated signalling pathways,
leading to increased cell proliferation, survival and
metabolic reprogramming. Indeed, both in vitro and in
vivo, reduction of FoxO activity increases the severity of
PH while restoration of FoxO activity can block or reverse
PH (Savai et al. 2014).

The role of TF co-factors in PH development. A TF
co-factor (co-activator or co-repressor) is a type of protein
that itself has no DNA binding activity, but can inter-
act with other general or sequence-specific TFs to modify

the ability of TFs to regulate gene expression. Broadly
speaking, TF co-factors can be divided into two types, one
with activity on chromatin structure, called epigenetic
regulators, and another type functioning on TF activity
only (Kornberg, 2001; Cosma, 2002; Ries & Meisterernst,
2011). We first focus on two non-epigenetic TF co-factors:
PKM2 and C-terminal binding protein-1 (CtBP1). Both
of these factors are controlled by the metabolic state of the
cell, which in all pulmonary vascular wall cells is known to
change in both acute and chronic forms of PH (Sutendra
& Michelakis, 2014; Stenmark et al. 2015; Plecita-Hlavata
et al. 2016, 2017; D’Alessandro et al. 2018). The metabolic
adaptation, often referred to as ‘Warbug-like” leads to
increased glycolysis and increased fatty acid oxidation,
but reduced oxidative phosphorylation in mitochondria.
The reduced oxidative phosphorylation in mitochondria
is the result of reduced input of acetyl-CoA to TCA,
and/or increased mitochondria fission (D’Alessandro et al.
2018). PKM2 is one of the splicing isoforms of a gene
called pyruvate kinase muscle type, a gene that plays an
important role in glycolysis (Wong et al. 2015; Dayton
et al. 2016; Dong et al. 2016). However, in addition
to its role in glycolysis, PKM2 can serve as a HIF1
co-activator by promoting HIF1’s role in activating HIF
target genes through its binding to and phosphorylation
of HIF1α protein (Luo & Semenza, 2011; Luo et al.
2011). PKM2 also has other functions including activating
cell proliferation via phosphorylation of the cell cycle
regulator BUB3 and regulating chromatin structure by
phosphorylating histones (Dong et al. 2016). Indeed,
inhibition of PKM2 activity directly, or of its upstream
activator or downstream effectors reduce the “activated”
phenotypes of PH vascular cells (Caruso et al. 2017; Zhang
et al. 2017). Different from PKM2, CtBPs function as
transcriptional corepressors (Kuppuswamy et al. 2008;
Wang et al. 2012; Blevins et al. 2017). CtBPs repress
gene expression by binding to an inhibitory TF and
recruiting histone-modifying enzymes that add repressive
histone marks and remove activating histone marks
(Byun & Gardner, 2013). In PH fibroblasts, CtBP activity
is increased, due to increased free NADH (increased
NADH/NAD+ ratio). Increased CtBP activity enhances
cell proliferation and apoptosis resistance by decreasing
expression of cell cycle inhibitors such as p15 and
p21 and pro-apoptosis genes such as NOXA and PERP
(Li et al. 2016). Importantly, normalizing metabolic
activity via metabolic inhibitors such as 2-deoxyglucose
(2DG) or directly reducing CtBP1 expression reduces PH
fibroblast proliferation and apoptosis resistance (Li et al.
2016).

The role of epigenetic regulators in PH development.
Another type of TF co-factors in eukaryotic cells are
chromatin or epigenetic regulators that function in gene
expression by controlling chromatin structure (Shlyueva
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et al. 2014; Voss & Hager, 2014). These factors include
histone post-translational modifying enzymes such as
histone acetylases (CREB-binding protein (CBP) and
p300), readers of histone modifications such as bromo-
domain (BRD) proteins, Brahma-associated factor (BAF)
complex, Mediator complexes and others (Fig. 1).
All of these epigenetic regulators can be recruited
by TFs, but can also be additionally recruited by
other chromatin-associated proteins including histones
(see below). CBP and its paralogue p300 are histone
acetyl-transferases (HATs) that acetylate histones at both
promoters and enhancers as well as numerous non-histone
proteins including TFs (Spange et al. 2009; Slingerland
et al. 2014). HATs are often recruited to chromatin
by TFs. BRD4 is a member of the BET (bromo-
domain and extra-terminal domain) family proteins that
are characteristic of two tandem bromodomains (BDs)
located in the N-terminus. The BDs of BET proteins
recognize acetylated-lysine residues in nucleosomal
histones and other proteins such as TFs (Filippakopoulos
et al. 2012). BRD proteins can activate gene transcription
by recruiting positive transcription elongation factor
(P-TEFb), Mediator, and other chromatin remodelling
complexes including BAF complex (Jang et al. 2005).
Mediator is a large multiprotein complex >1 MDa in
size and >30 nm in length. Besides interacting with
BRD proteins, different TFs bind different Mediator
subunits. Thus, Mediator complex can act as a bridge
mediating interaction between TFs and components of
the general TFs (GTFs)/RNA polymerase II (RNA Pol II).
Additionally, Mediator also activates gene transcription
by recruiting the P-TEFb to activate elongation activity of
RNA Pol II (Allen & Taatjes, 2015). BAF complexes (not
shown in Abstract figure), which belong to the SWI/SNF
family of ATPase-dependent chromatin remodelling
complexes, are also involved in chromatin structure
changes through their effects on movement of nucleosome
position relative to specific DNA sequence, ejection of
nucleosome, and exchange of classic core histones with
variant histones (Halliday et al. 2009; Reisman et al.
2009). BAF complexes can be recruited by TFs, BRDs and
acetylated histones since BAF complex contains multiple
bromodomain-containing proteins (Halliday et al. 2009;
Reisman et al. 2009).

Recently, new work has led to an appreciation of the
important role epigenetic regulators play in PH initiation
as several epigenetic regulators such as histone deacetylases
(HDACs), and double bromodomain proteins (BRDs),
have been shown to exhibit increased expression in PH
vascular cells (Zhao et al. 2012; Meloche et al. 2015, 2017).
Furthermore, HDAC and BRD inhibitors have been shown
to prevent or reverse PH (Zhao et al. 2012; Meloche et al.
2015, 2017).

Can we reverse the persistently “activated”
phenotypes of PH vascular cells, based on potential
targets uncovered in PH initiation studies?

There is a large body of compelling data, including
some that was described above, supporting critical roles
for factors ranging from membrane receptors, signalling
transducers, TFs, non-epigenetic TF co-factors, and
epigenetic regulators in PH development (Fig. 1). Clearly,
the alterations of these factors or pathways are required in
PH development, and are at least in part, responsible for
changing the gene expression programme that gradually
transforms the normal pulmonary vascular cells to the
activated PH vascular cells (Abstract figure). Importantly,
the role of many of these factors has been evaluated
with regard to both PH prevention and PH reversal in
animal models. Further, the function of these factors,
in some cases, has also been demonstrated in one or
multiple human PH vascular cells in vitro. Thus, these
studies provided a large list of potential new PH treatment
targets (Lythgoe et al. 2016; Wilkins, 2018). However,
despite all these efforts, there has been little success in
new therapies targeting structural remodelling or the
activated phenotypes of the PH vascular cells (Lythgoe
et al. 2016; Wilkins, 2018). For example, drugs such
as Terquride (a serotonin antagonist), statins and vaso-
active intestinal peptide (VIP), all with very promising
effects in pre-clinical animal models (Said et al. 2007;
Morecroft et al. 2010; Wright et al. 2011), all failed to
meet their primary endpoint in clinical trials. Further,
the tyrosine kinase inhibitor Imatinib, though shown to
improve haemodynamics in many patients, has not been
licensed because of unacceptable side effects (Lythgoe et al.
2016). More recent reports indicate that an inhibitor for
ASK1 (apoptosis signal-regulating kinase 1) also failed
to meet the primary endpoint in a clinical trial (Wilkins,
2018), again despite the demonstrated critical role of ASK1
in PH animal models and in human PH vascular cells
(Welsh et al. 2001; Mortimer et al. 2007; Church et al. 2015;
Budas et al. 2018). Additionally, Eiger BioPharmaceuticals
announced that it has halted clinical development of
Ubenimex for PAH due to lack of efficacy to treat PH
in the Phase 2 LIBERTY study although leukotriene B4,
the target of Ubenimex, plays an important role in PH
in animals (Tian et al. 2013). Collectively, failure of these
clinical trials indicates a significant challenge in developing
new PH treatments. The reasons for these disappointing
findings could be multiple, including a need to improve the
selection of patients in clinical trials and the poor fidelity
of animal models of PH for the human PH disease, all
of which have been reviewed by Lythgoe et al. (2016).
We believe that another factor usually not considered,
but that could also contribute to the failure of translation
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from animal studies to humans, is that most PH targets
tested have been uncovered from studies in the early stages
of PH development. We think that factors or pathways
that are essential in PH development may or may not be
critical in established disease due to extensive changes in
chromatin structure, between normal pulmonary vascular
cells and vascular cells in chronic PH patients (Stenmark
et al. 2018). There are multiple examples in a variety of
cancers that support the hypothesis that pathways/factors
that play major roles in cancer development play no or only
minor roles in maintaining the transformed phenotypes
of established cancers. The best studied example is KRAS
whose mutation drives multiple early onset lung tumours.
Interestingly, these lung cancers often become KRAS
independent, if the phenotype of the cancer switches
from epithelial to mesenchymal (Singh et al. 2009).
Further, although mutations of EGFR predispose to the
development of lung cancer, most of the EGFR mutated
lung cancers are resistant to EGFR inhibition (Ware et al.
2013). Also, both HIF1 and HIF2 are required for initiation
of clear cell renal cell carcinoma (ccRCC) (Schonenberger
et al. 2016). However, in the later stage of human ccRCC
tumours, both HIF1 and HIF2 are dispensable (Shen et al.
2011; Murakami et al. 2017).

Below, we will examine the importance of chromatin
structure and epigenetic regulators in maintaining the
activated phenotypes of PH vascular cells. Because the
cancer paradigm is often invoked in explaining the cellular
changes observed in severe chronic PH, we will start
this section by summarizing the extensive epigenetic
changes observed in cancer cells and reported success
of developing epigenetic regulators as promising cancer
treatment targets in human cancers.

Future research in “transcriptional addiction” of PH
vascular cells: roles of chromatin structure, multiple
transcription factors and epigenetic regulators in
persistent activation of PH vascular cells

Transcriptional addiction as a promising cancer
therapeutic strategy. Research performed in the
last 20 years makes it clear that mutated signalling and
TFs that initiate cancer development often end in changes
of chromatin structure and gene expression in cancer
cells (Lee & Young, 2013; Sur & Taipale, 2016; Bradner
et al. 2017) since kinases can alter chromatin structure
by: (1) controlling the activities of epigenetic regulators;
(2) controlling chromosomal histone phosphorylation;
and (3) controlling the levels of epigenetic regulators on
chromatin by regulating the activities of TFs (Badeaux
& Shi, 2013; Morgan & Shilatifard, 2015; Sur & Taipale,
2016) (Fig. 1). For example, expression of oncogenes such
as MYC are much higher in pancreatic and colorectal
cancers, as well as in T cell leukaemia, versus their normal

control cells (see Fig. 6B of Hnisz et al. 2013). Interestingly,
detailed analysis of MYC enhancers in myeloid leukaemia
cells indicates that the MYC gene is regulated by at
least five active enhancers (E1–E5) that cover a large
region (more than 100 kB) of DNA and each enhancer
exhibits high levels of active histone modification marks
(H3K27Ac and H4K8Ac), high binding densities of
epigenetic regulators (BRD4 and p300) and multiple
TFs (PU.1, FLI, ERG, CEBPα, CEBPβ and MYB) (Roe
et al. 2015) (Fig. 2), all of which are marks of open
chromatin structure. Further, all the BRD4-occupied sites
overlap with binding sites of one or more TFs and most
BRD4-enriched regions exhibit binding of several TFs
(Fig. 2), indicating BRD4 protein is commonly required
for different TFs to regulate gene expression. The role
of epigenetic deregulation and chromatin structure
changes in cancer gene expression is also supported
by the fact that almost every cancer cell type contains
mutation of genes involved in epigenetic regulation
(Koschmann et al. 2017). All these studies support
a critical role of chromatin structure and epigenetic
regulators in cancer development and maintenance
(Badeaux & Shi, 2013). Thus, epigenetic regulators such
as histone methyltransferases and de-methylases, histone
acetylases and deacetylases, and the BET proteins (BRD2,
BRD3 and BRD4) are attractive targets for therapeutic
intervention in cancers (Barbieri et al. 2013; Heerboth
et al. 2014; Slingerland et al. 2014; Wee et al. 2014;
Cai et al. 2015; McGrath & Trojer, 2015; Jones et al.
2016). Clearly, like cancer, there is a “transcriptional
addiction” in PH vascular cells, reflected in persistently
high expression of genes involved in hyper-proliferation,
apoptosis-resistance and pro-inflammation (Li et al.
2016; Pullamsetti et al. 2016, 2017). We have preliminary
data to support a hypothesis that high expression of genes
involved in the persistently activated pro-inflammatory
phenotype of PH vascular cells, at the chromatin level, are
maintained by an open chromatin structure and multiple
TFs, via the recruitment and maintenance of high levels of
epigenetic regulators such as histone acetylate P300/CBP,
histone acetylation readers including BRDs, Mediator
complex and positive transcription elongation factor
(Abstract figure). Thus, it will be important to perform
chromatin immunoprecipitation-sequencing (ChIP-Seq)
occupancy profiles of histone modifications, TFs and
epigenetic regulators in PH vascular cells, as has been
done for oncogenes in cancers (Fig. 2).

Mechanisms that can drive “transcription addiction” of
PH vascular cells. We believe that various components
of transcriptional and epigenetic control play a crucial
role in controlling gene expression in chronic disease
such as PH, in which mutations of epigenetic regulators
are rarely reported. In addition, we also posit that the
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components that control gene expression in normal and
persistently activated PH vascular cells are different. Thus,
determining the mechanisms controlling gene expression
in persistently activated PH vascular cells may uncover
new molecular mechanisms and may form the basis on
which novel PH therapeutic targets will be developed.

The genomic DNA in eukaryotic cells is packaged in
the nucleosome, which consists of two copies of each
histone protein (H2A, H2B, H3 and H4) and 146 base
pairs of superhelical DNA wrapped around this histone
octamer. The nucleosome structure creates a problem for
TFs and RNA polymerase to access the DNA, but also
provides an opportunity for regulated gene expression. It
is now accepted that the level or rate of gene transcription
in eukaryotic cells is determined by interplay among
cis-acting regulatory DNA elements, which includes the
core promoter, proximal promoter regions as well as those
that act over large genomic distances, such as enhancers
(Spitz & Furlong, 2012), and trans-acting factors including
gene-specific TFs, epigenetic regulators, general TFs and
RNA polymerase II. Thus, it is important to address
all three components (chromatin structure, TFs and
epigenetic regulators) that control gene expression in PH
vascular cells.

Determine the chromatin structure of genes involved
in the persistently activated cell phenotypes of PH
vascular cells. Enhancers, composed of dense clusters
of TF binding motifs, are cell type-specific and highly
regulated. Thus, enhancers are critically important in
controlling a subset of eukaryotic genes, called regulated

genes, that are often involved in development, cell
identify and functional phenotypes (Shlyueva et al.
2014; Smith & Shilatifard, 2014; Heinz et al. 2015).
Enhancer DNA can exist in an active (accessible to
TF binding) or inactive (inaccessible) status. Tools now
exist for annotating the status of the enhancers on
a genome-wide scale by measuring levels of histone
modifications, TF and epigenetic regulator binding and
chromatin accessibility. These approaches have shown
that the functional enhancer landscape is largely unique
to each cell type and maintained by lineage-specific
TFs and epigenetic regulators. However, new evidence
reveals how acute or chronic signalling events can lead to
reprogramming of enhancer configurations (Brown et al.
2014; Lavin et al. 2014). Studies have uncovered multiple
mechanisms involved in reprogramming enhancers
during development and disease progression. Regulation
of gene expression is inherently associated with alterations
in chromatin architecture because TFs often recruit
co-activators such as p300 to acetylate histones at the
enhancer at which the TF binds, but such histone acetyl-
ation often extends to neighbouring nucleosomes, leading
to larger active DNA regions and more active enhancers.
These transient histone modifications to larger DNA
regions are heritable if cells are proliferating (Probst
et al. 2009). It is well accepted that PH development
involves extensive vascular cell proliferation at least
at the peak stage(s) of PH development, thus trans-
ient increased expression of genes involved in hypo-
xia response, inflammation, growth factor signalling
and others, in a combination of cell proliferation,
may lead to a more “open” chromatin structure of

BRD4
300

1
550

1
260

1
200

1
380

1
330

1
510

1
420

1
480

1
90

1

E1-E5 enhancers 20 kb

p300

H3K27ac

H4K28ac

PU.1

FLI1

ERG

C/EBPα

C/EBPβ

MYB

E5Myc

Figure 2. ChIP-Seq occupancy profiles of
epigenetic regulators BRD4 and p300,
active histone modification marks
H3K27Ac and H4KAc, and TFs PU.1, FL1,
ERG, C/EBPα, C/EBPβ and MYB at the MYC
locus in myeloid leukaemia cells
Note there are at least 5 distinct enhancers for
MYC gene expression in a more than 100 kb
regulatory region. Each enhancer exhibits
co-existence of high histone acetylation and
high binding densities of several TFs and
epigenetic regulators (Roe et al. 2015).
Importantly, although TFs exhibit unique
binding densities to each enhancer, epigenetic
regulators exhibit a similar binding pattern to
each active enhancer, suggesting that
epigenetic regulators are commonly required
for different TFs to regulate gene expression.
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these genes. The second way of TF-mediated enhancer
reprogramming is mediated by a subset TFs called
‘pioneer factors’. These pioneer TFs are particularly
important in creating brand new active enhancers due
to their ability to engage silent, closed enhancers (Zaret
& Carroll, 2011; Adam et al. 2015). Studies have
identified about 100 pioneer TFs in development and
cancer research. While clearly functionally important,
so far the pioneer TF concept has not been introduced
into the PH research. While TF-mediated enhancer
reprogramming is well accepted at least in development
and cancer research, new evidence supports a direct
role of cell signalling in reprogramming enhancers
by kinase-mediated phosphorylation of histones and/or
epigenetic regulators (Badeaux & Shi, 2013). Also, the
activity of chromatin regulators can be altered by other
mechanisms such as metabolic intermediates and redox
stress (Berger & Sassone-Corsi, 2016; Kreuz & Fischle,
2016; Reid et al. 2017). There is extensive literature
demonstrating alterations in growth factor-mediated
signalling, reprogramming of cellular metabolic and
redox state during PH progression (Merklinger et al.
2005; Schermuly et al. 2005; Plecita-Hlavata et al.
2016; Zhang et al. 2017), which could directly impact

chromatin structure in PH vascular cells. Further,
demethylation of H3K4me3 and H3K27me3, two critical
histone modification events, is mediated by oxygen and
2-oxoglutarate dependent dioxygenase enzymes such as
demethylase KDM6B/JMJD3, whose function can be
inhibited by oxygen deprivation (hypoxia) (Hancock et al.
2015; Prickaerts et al. 2016). All these studies provide
ample support for the hypothesis that there are significant
differences in chromatin structure between normal and
PH vascular cells. Thus, it is essential to determine the
chromatin structure in control and PH vascular cells. Such
studies may also provide a molecular explanation of why
targeting TFs that are important in PH initiation may or
may not be sufficient in PH treatment. For example, in a
normal vascular cell (Fig. 3, cell A), TFs X and Y are critical
in expression of this gene, but TFs X and Y become less
and less important in activation of this gene in both cells B
and C (Fig. 3) in which this gene’s expression is regulated
by additional TFs, including ubiquitous TFs that have no
role in regulating this gene in cell A (Fig. 3), due to more
open chromatin structure in cells B and C. Chromatin
structure analysis will also allow us to identify the set of TFs
that are potentially associated with these newly activated
enhancers, using motif analysis.
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Core PromoterSub-element A 

Sub-element B 
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Figure 3. Hypothetical representation of chromatin structure determines the functional importance of
TFs
TFs X and Y play a critical role in expression of this gene in cell A by binding to sub-element A. But a more
“open” chromatin structure, allowing other TFs to bind to the regulatory elements of this gene, diminishes the
contribution of TFs X and Y in expression of this gene in cells B and C.
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Determine the identities and function of the TFs that
are associated with the genes involved in persistently
activated cell phenotypes of PH vascular cells. TFs play
an indispensible role in the control of chromatin structure,
gene expression, response to specific signals and thus
disease initiation. Due to alterations of the endogenous as
well as extracellular microenvironment between normal
and diseased tissues/organs, the set of TFs active in
normal cells and diseased cells often only partially over-
lap. Even though the expression and activity of a specific
TF may be maintained in established disease, global
changes in chromatin accessibility may reprogramme the
TF binding profile, thus its function. Further, TF binding
to DNA often depends on its partner(s), thus changes in
expression/activity of TF binding partners may also alter
the function of a specific TF in established disease. TFs
can be broadly divided into two types. One is pioneer
TFs or lineage-specific TFs that are important in creating
and maintaining cell identity as well as cellular functional
phenotypes (Adam et al. 2015). Another type of TF are
stress TFs such as HIF, STAT3, NF-κB and activator protein
1 (Ap-1) that are activated in response to specific signals.
Pioneer and stress TFs often work together to regulate gene
expression in which pioneer TFs establish the competency
for stress TFs to further activate gene expression. TF
expression and their activities in diseased cells are rarely
studied, due to the misconception that epigenetic changes
that are introduced in disease progression are sufficient
to maintain gene expression. In fact, studies have shown
that the maintenance of chromatin structure and gene

expression patterns requires participation of both TF
activity and epigenetic regulators (Spitz & Furlong, 2012).
Thus, it is critical to determine the set of TFs that
function in PH vascular cells to increase our understanding
of PH-activated phenotypes and to provide potential
therapeutic targets for PH disease (Bhagwat & Vakoc,
2015). TFs that are critically important for control and
PH vascular cells can be profiled by checking their gene
expression (using RNA-Seq) and their binding profile in
genomic DNA (using ChIP-Seq of TF). The functions of
TF can be determined using TF specific inhibitors and/or
siRNA-mediated knockdown or CRISPR/cas9-mediated
gene knockout in PH vascular cells. We must emphasize
the importance of studying the function of TF in all of the
PH vascular cells involved in the disease process. It is well
accepted that enhancer landscape is often unique to each
cell type, suggesting that different enhancers (Fig. 4), and
thus different TFs, could be utilized in different cell types
for the same gene.

Determine the identities and the function of the
epigenetic regulators that are associated with the genes
involved in persistently activated cell phenotypes of
PH vascular cells. Besides chromatin structure and TFs,
a third component that is critically important in
gene regulation is epigenetic regulators. Several groups
including ours have reported the potential for HDAC
inhibitors (HDACi) to reverse hypoxic PH and to have
beneficial effects on cardiac fibrosis (Cavasin et al. 2012;
Zhao et al. 2012; De Raaf et al. 2014; Williams et al. 2014).

Core Promoter Proximal Enhancer

GTFs/Pol II

Core PromoterEnhancer A
Specific for cell type A

Enhancer B
Specific for cell type B

Core Promoter Proximal Enhancer

GTFs/Pol II

Core Promoter

Cell type A

Cell type B

Figure 4. Enhancers are often cell type specific
Enhancer A is important in controlling this gene in cell type A while enhancer B is critical in regulating the same
gene in cell type B. Thus, the TFs that regulate the same gene could be totally different between cell type A and
cell type B. This hypothetical model suggests that targeting a specific TF that is effective in reducing a specific gene
in one cell type may have no role in reducing the same gene in another cell type.
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Recently, the Bonnet group has presented evidence for
increased BRD4 levels in the SMCs not only in remodelled
pulmonary arteries but also in the coronary artery
vasculature (Meloche et al. 2015, 2017). Importantly,
these investigators demonstrated that the BRD inhibitor
(BRDi) JQ1 could not only mitigate the hyper-proliferative
pulmonary hypertensive SMC phenotype in vitro but
could reverse the vascular remodelling observed in the
Sugen/hypoxia model (Meloche et al. 2015). However,
most HDACi and BRDi studies have not addressed the
downstream target(s) of the inhibitors. Progressing to
clinical trials without understanding the downstream
effectors of these inhibitors is premature as we need
more information on their prospective gene targets in
different cells and at different disease stages (Andrieu
et al. 2016). Thus, determining the binding profile and
function of epigenetic regulators such as HATs (p300),
BRDs (BRD4) and HDACs in controlling the persistently
activated phenotypes of PH cells such as SMCs, fibroblasts
(Fibs), ECs and macrophages is essential. Our preliminary
data indicate that inhibitors for epigenetic regulators
produce more potent effects on all phenotypes in all PH
vascular cells than does inhibition of a single transcription
factor, due to their common requirement for gene
transcription, independent of the signal types, TFs and cell
types. Proteins such as BRDs are particularly interesting,
because different from histone modifying enzymes such
as HDAC, HAT, methyl-transferase and demethylase, BRD
proteins are only involved in gene transcription while the
histone-modifying enzymes also regulate the activities of
non-histone proteins (Choudhary et al. 2009; Spange et al.
2009), which have functions beyond gene transcription
and make it challenging to understand the downstream
targets of these enzymes.

Conclusion

A root problem in the vascular remodelling observed in
chronic PH is the presence of “persistently activated”
cell phenotypes with aberrant gene expression. It is
likely that currently approved treatments do not directly
target this problem. In this review we raise the
possibility that one factor that contributes to these failures
is that factors/pathways important in PH initiation and
development may or may not be good treatment targets
later in the disease, due to alterations of chromatin
structure in “persistently activated” PH cells. These
changes in chromatin can result in distinctly different
functional responses to a signalling pathway or TF in
normal or early PH cells versus cells in chronic PH. We
provide evidence that another approach to uncover novel
therapeutic targets for established PH is to determine the
molecular mechanism(s) controlling gene expression in
chronic established PH. Our central hypothesis is that

high expression of genes involved in the persistently
activated phenotype of PH vascular cells are maintained
by an open chromatin structure and multiple TFs via the
recruitment and maintenance of high levels of epigenetic
regulators such as histone acetylases P300/CBP, histone
acetylation readers including BRDs, Mediator complex
and positive transcription elongation factor (Abstract
figure). The evidence provided for this hypothesis comes
at present largely from studies in the cancer field. The
data shown regarding how aberrant gene expression is
controlled by chromatin structure, TFs and epigenetic
regulators may provide potential therapeutic targets for
PH treatment. We emphasize that in PH it is not easy
to extrapolate the findings from one cell type to other
disease-involved cell types or findings from one pathway
to other pathways. Thus, we believe effective treatments for
PH must target the phenotypes of excessive proliferation,
apoptosis-resistance, pro-inflammation, in all or at least
most cell types of PH vascular cells such as SMCs, Fibs, ECs
and inflammatory cells. Thus, studies of “transcriptional
addiction” in PH vascular cells should be performed in
all the aforementioned cells and in their most “activated”
phenotypic state. Due to cross-talk among PH vascular
cell types, at least some of the studies will need to
be performed in co-culture systems to integrate protein
and metabolic cross-talk. There is reason for excitement
regarding potential new treatment options but more
knowledge is needed before we proceed.
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