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Abstract: Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the
dystrophin gene on chromosome Xp21. Disruption of the dystrophin–glycoprotein complex (DGC)
on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial
dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In
addition to the function of dystrophin in the structural integrity of myofibers, a novel function of
asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has
been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but
rather that the phenotype might be caused by multiple factors, including stem cell and myofiber
functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular
communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular
mechanism of DMD pathogenesis—circulating RNA molecules—has been revealed through the
study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3
(nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for
DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore,
the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of
DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus,
we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.

Keywords: adeno-associated virus; Duchenne muscular dystrophy; extracellular vesicle; extracellular
vesicle-capsulated adeno-associated virus vector; microRNAs; myofiber degeneration; nSMase2/Smpd3;
satellite cell

1. Introduction

Duchenne muscular dystrophy (DMD) is a severe and progressive muscular disorder,
which mainly manifests as degeneration and regeneration in skeletal and cardiac muscles
and, finally, leads to myofiber necrosis, fibrosis, and muscle weakness, through membrane
fragility and disrupted cell signaling [1–5]. The incidence of DMD is estimated to be
approximately 1 in 3500 to 10,000 newborn and adolescent males, with a prevalence of less
than 10 cases per 100,000 males, which does not differ between regions [5–11]. Typically,
the clinical symptoms of this disease are first recognized by muscular weakness, with
difficulties in climbing stairs, a waddling gait, and frequent falls under five years of
age, subsequently progressing into the loss of ability of independent ambulation, with
wheelchair dependency around 10 years of age, eventually leading to premature death,
due to respiratory and cardiac failure at approximately 20–40 years of age [5,12–15].
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In DMD patients, sensitive damage and degeneration of muscle fibers, through sar-
colemma destabilization and progressive loss of muscular repair ability via stem cells, con-
comitantly increase inflammation and fibrosis in muscular tissues, due to loss-of-function
with frameshifting or nonsense mutations in the dystrophin gene on chromosome Xp21,
which codes for the protein dystrophin, a myofiber membrane protein [1,16–23]. In a study
of thousands of different mutations in DMD patients, the categories of each mutation were
deletions, duplications, and point mutations, including small deletions and insertions, com-
prise of approximately 60–70%, 5–15%, and 20%, respectively [5,24,25]. In addition, two
hotspot regions of these deletion and duplication clusters in the DMD patients are located at
exons 45–55 (approximately 47%) and exons 3–9 (approximately 7%), respectively [5,26,27].
In addition, de novo germline mutations were observed in one-third of DMD patients; in
these cases, the mothers were not somatic carriers of DMD mutations but had children
with DMD [5,28,29]. The frequency of germline mutations in oocytes and sperms varies
per individual but appears to be up to 14% [5,30].

The full functional dystrophin protein forms a complex known as the dystrophin-
associated protein complexes (DAPCs), with ten kinds of proteins, including the dystro-
glycan subcomplex (α-dystroglycan and β-dystroglycan), the sarcoglycan subcomplex
(α-sarcoglycan, β-sarcoglycan, γ-sarcoglycan, and δ-sarcoglycan), sarcospan, syntrophin,
dystrobrevin, and neuronal nitric oxide synthase (nNOS) [5,31–38]. These differences are
dependent not only on the type of tissues or cell but also on the different regions of the
same myocyte on the cell membrane. It is critical for maintaining structural stability and
integrity of the muscle sarcolemma by connecting the internal cytoskeletal F-actin of a
muscle fiber to the surrounding extracellular matrix via its N- and C-terminal domains and
transmission of forces within the muscle [5,31–38]. In DMD, DAPC disassembly is caused
by dystrophin deficiency, resulting in the loss of the interaction between F-actin and the
extracellular matrix, and, finally, wide-ranging dysfunction in muscle cells, resulting in high
susceptibility to contraction damage [5]. The mislocation of nNOS from the sarcolemma
to the sarcoplasm leads to a reduction in the total cellular level of nNOS, which decreases
the production and secretion of nitric oxide to the surrounding vasculature and results in
ischemic damage to muscle [5,39]. This mechanism, in which loss of sarcolemmal nNOS
increases intracellular calcium concentrations via Ryanodibe receptor 1 (RyR1) leakage or
nicotinamide adenine dinucleotide phosphate oxidases (NOX)-derived cytosolic reactive
oxygen species (ROS) production, is supported by sarcolemmal tears (delta lesions) and
rupture, which can be detected by passive leakage of muscle enzymes and microRNAs
from muscles into the bloodstream [32,39–41].

The myofiber-specific genetic ablation of dystroglycan in mice does not result in
dystrophy-like muscle degeneration; however, mice with muscle stem cells (also called
satellite cells, SCs) exhibit specific loss of dystroglycan, with markedly delayed muscle
regeneration [42]. In addition, SCs lacking dystrophin markedly increase the number of
abnormal nonpolarized mitotic divisions and reduced asymmetric cell divisions, exacer-
bating dystrophic pathology [43,44]. These reports suggest that SC dysfunction is mainly
involved in muscular dystrophy. In addition, it has been suggested that myofiber instability,
leading to disruption of the dystrophin protein lining inside the cell membrane, is not
the only cause of dystrophic degeneration but rather that the phenotype might be caused
by multiple factors, including stem cell and myofiber functions. Thus, we review novel
therapeutic strategy for DMD.

2. Therapy Strategy of DMD

To date, there are mainly two of treatment strategies for DMD have been explored:
(1) the treatment for actual cause of DMD–dystrophin deficiency (dystriphin-targeted
therapies), such as adeno-associated virus (AAV)-mediated micro/minidystrophin gene
delivery, synthetic antisense oligonucleotides for exon skipping, nonsense readthrough,
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated
protein 9)-mediated genome editing, protein replacement therapies, and primarily utropin;
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(2) the therapy of downstream pathological changes, such as transplantation of muscular
stem cells, corticosteroids (prednisolone or deflazacort) with highly effective in therapy of
concomitant destructive processes (namely inflammation) and an improvement in calcium
homeostasis, leading to a decrease in oxidative stress in muscle tissue, and in mitochondrial
function and biogenesis [45–55] (Figure 1). Currently, gene editing is attracting attention
as a therapeutic strategy for DMD because of the restoration of the dystrophin reading
frame in more than 40% of all patients with DMD [56–63]. However, it has been reported
that clinical trials with this strategy have to be discontinued because of off-target effects
that cause chromosomal abnormalities. In addition, the desired mutation may not be
introduced in all cells, resulting in a somatic mosaic mutation, where it is difficult to undo
edited parts of the genome. Additionally, as no trace of genome editing remains, it is
difficult to investigate the cause of an adverse event. Therefore, the development of an
additive gene therapy, as a safe protein supplementation, should be prioritized.
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Figure 1. Therapeutic strategy in DMD. EV-encapsulated AAV or miRNAs improve dystrophic
pathology, such as inflammation, fibrosis, oxidative stress, and mitochondrial dysfunction, etc., via
direct rescue of dystrophin mutant by exon-skipping, nonsense readthrough, genome editing, protein
replacement, or indirect recovery of dystrophin functions by improvement of the downstream targets.

AAV vectors are derived from non-pathogenic viruses and capable of transferring
genes into non-dividing cells. Moreover, because gene expression in target cells is sustain-
able for a long period of time, it is also excellent, in terms of safety and efficacy. Therefore,
it is attracting attention as a clinically applied vector for gene therapy in DMD. Dysfunc-
tions in skeletal and cardiac muscles of DMD model mdx mice are significantly attenuated
by partial restoration of dystrophin protein using the micro-dystrophin protein, which
delivers a part of the cDNA copy of dystrophin to the affected tissues, based on internally
deleted dystrophins [64–79]. However, there are some problems with the administration
of AAV vectors into the skeletal muscle of canine X-linked muscular dystrophy model in
Japan (CXMDj), which shows severe dystrophic phenotypes without immunosuppression,
resulting in insufficient transgene expression with potent innate immune responses [80,81].
Furthermore, the AAV vector has a limited carrying capacity of ~4.7 kb or less, because it
is a vector derived from a small virus, whereas the muscle isoform of dystrophin, Dp427,
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is encoded by ~11.4 kb cDNA [82]. The time to reach the gene expression peak was long
because of the single-stranded DNA genome. The gene transfer efficiency was reduced
by the neutralizing antibody against the viral capsid of the AAV vector. The cost for
large-scale production of AAV vectors is expensive, and large-scale protocols have not yet
been established. In addition, deaths, carcinogenicity, hepatotoxicity, neurotoxicity, and
thrombotic microangiopathy have been reported in clinical trials with high doses of AAV
vectors, including micro-dystrophin [82–85].

In gene therapy using an exon skipping agent, the low efficiency of introduction
into cardiomyocytes has become an issue [86,87]. In addition, it is impossible to treat all
mutations in the dystrophin gene at present because the drug corresponds only to mutations
in a limited exon region [88–90]. Besides, corticosteroid treatment of patients with DMD
commonly showed adverse effects, such as a higher risk of developing respiratory and
circulatory dysfunctions earlier, rather than later [91]. Thus, there is currently no complete
and radical cure, and the establishment of new therapies is eagerly awaited.

3. Satellite and Immune Cells

A single intravenous dose of cardiac stromal cells, termed cardiosphere-derived cells
(CDCs), which are cardiac progenitor/stromal cells with anti-inflammatory, antioxidant,
antifibrotic, and cardiomyogenic properties [92,93], directly into the muscles of mdx mice
improves the dystrophic phenotype via augmentation of cardiac and skeletal muscles [94].
Furthermore, extracellular vesicles (EVs), which are membrane microvesicles, approxi-
mately 30–100 nm in size, that are generated from multivesicular bodies of the terminal
endosomal pathway, recapitulate the therapeutic benefits of the CDCs because the blockage
of EV biogenesis fails to improve cardiac and skeletal muscles in vivo [93]. Both CDC and
EV treatment in mdx partially reverse heart damage by attenuating fibrosis, as well as by
decreasing nuclear factor-kappa B, NF-κB phosphorylation, and macrophage infiltration.
Moreover, these treatments enhance cardiomyogenesis, normalize mitochondrial protein
deficits, and improve the pathology of skeletal muscles by increasing force and promoting
skeletal myogenesis with the activation of SCs, which proliferate and differentiate into
myoblasts to form myotubes with reduced interstitial fibrosis [94].

Furthermore, adult skeletal muscles have a self-repair capacity, modulated by SCs
and immune cells [95]. Macrophages modify myoblast proliferation and their commitment
to differentiated myocytes, as well as the formation of mature myotubes. This is done
by enhancing muscle growth through the interaction of differentially activated myogenic
precursor cells (MPCs) with anti-inflammatory macrophages that may exert deleterious
effects, due to the resolution of damaged tissues by removal of necrotic cells [89–92]. In
general, macrophage infiltration in acutely injured muscle must terminate clearing of its
damaged tissues, so as to prevent the destruction of the adjacent undamaged tissues. How-
ever, in chronic inflammatory conditions of DMD, macrophages persistently accumulate
and contribute to disease progression by disturbing myogenesis, with SCs coordinated by
macrophage polarization [94,96–109]. In particular, loss of the Kruppel-like factor 2 (KLF2)
gene, in myeloid-derived cells, enhances the inflammatory immune response to muscle in-
jury through the recruitment of greater numbers of inflammatory Ly6C-positive monocytes,
which provide monocyte-derived mature Ly6C-, CD11b-, and F4/80-positive macrophages
in circulation and enable regeneration via the activation of SCs and myogenesis [103].
During muscle regeneration, the normal transition from the pro- to anti-inflammatory
phase, which is mainly controlled by macrophages, is required for spatiotemporal regu-
lation of SC differentiation, angiogenesis, and matrix remodeling [104]. The initiation of
the inflammatory response induces extravasation of leukocytes, of which Ly6C-positive,
Ccr2-positive, and Cx3cr1-low circulating monocytes in the bloodstream cross the endothe-
lium because of increased vascular permeability. Subsequently, the monocytes enter the
damaged muscular tissues, and neutrophils mount the proinflammatory response to attract
Ly6C-positive monocytes, mainly through the Ccl2-Ccr2 axis, thus clearing the surrounding
debris via efferocytosis and removing the apoptotic cells via phagocytic cells [110–114]. In
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contrast, Ly6C-positive, Ccr2-positive, and Cx3cr1-high monocytes patrol to survey vessel
wall integrity [110,113]. After the debris of muscular tissue is cleansed by phagocytosis,
proliferated macrophages exhibit an anti-inflammatory/restorative response, which is char-
acterized by myogenesis, growth of new myofibers, angiogenesis, and matrix remodeling,
through interactions of the macrophages with surrounding cells, as in accordance with the
shift of Ly6C-positive into Ly6C-negative within the damaged tissue [98,106,115–120]. The
shift in macrophage status from pro- to anti-inflammatory was regulated by mediators of
the resolution of inflammation, such as annexin A1 (AnxA1), developmental endothelial
locus-1 (DEL-1), glucocorticoid-induced leucine zipper (GILZ), and secretory leukocyte
peptidase inhibitor (SLPI), by which recognition and engulfment of dead cells triggers
the transcription of anti-inflammatory effectors, such as transforming growth factor-β
(TGF-β), interleukin (IL)-10, and specialized pro-resolving mediators, concomitant with
the downregulation of inflammatory cytokines [110,121,122].

Furthermore, the resolution of inflammation during skeletal muscle regeneration
in vivo is controlled by several molecular pathways that regulate macrophage conversion,
including AMP-activated protein kinase, alpha 1 (AMPKα1), BTB and CNC homology 1,
basic leucine zipper transcription factor 1 (Bach1), insulin growth factor-1 (IGF-1), mitogen-
activated protein kinase phosphatase 1/dual specificity phosphatase 1 (Mkp-1/Dusp1),
peroxisome proliferator activated receptor gamma (Ppar-γ), and scavenger receptor class B,
member 1 (SRBI) [99,108,109,116,123–125]. Among them, loss of the Bach1 gene in myeloiod
cells enhances the muscular regeneration process during acute muscular damage through
the conversion of inflammatory Ly-6C-high and F4/80-high marcorphages to repair Ly-6C-
low and F4/80-high macrophages. This conversion is mediated by the induced expression
of heme oxygenase 1 (HO-1) and regulation of many key inflammatory and repair-related
genes, such as IGF-1, solute carrier family 40 member 1 (Slc40a1), IL-6, IL-10, growth
differentiation factor 3 (Gdf3), Ppar-γ, Dusp1, and CCAAT/enhancer binding protein
(C/EBP), beta (Cebpb) [117]. In addition, phagocytosis of muscle debris participates in
macrophage skewing: M1 macrophages are decreased upon the phagocytosis of necrotic
and apoptotic muscular precursor cells, with decreased tumor necrosis factor-α (TNF-α)
secretion, whereas M2 macrophages increased, in accordance with TGF-β secretion [99]. In
contrast, the phagocytosis of macrophages in loss-of-function, myeloid-specific AMPKα1
was impaired, leading to a defect in their phenotypic transition into M2 macrophages, in
which the impaired fusion ability and abnormal proliferation of myogenic precursor cells by
M2a/c macrophages finally resulted in a delay of skeletal muscle regeneration [109]. How-
ever, these deficiencies were partially rescued by the transplantation of the bone marrow of
the wild-type variant [109]. In addition, monocyte/macrophage-derived IGF-I coordinates
macrophage polarization and myogenesis during muscle regeneration [94,108]. Moreover,
Pparγ in macrophages regulates skeletal muscle regeneration via myoblast proliferation
and differentiation by transactivation and secretion of Gdf3 [116]. However, the role of
Pparγ in M2 polarization remains controversial. On the one hand, Pparγ activation in
adipose tissues promotes M2 polarization [126]. On the other hand, the activation of Pparγ
suppresses M2 polarization via the inactivation of cytotoxic T lymphocytes [127]. In addi-
tion, the conditional deletion of the Cebpb gene in muscle fibers shows normal regeneration,
but the loss of the Cebpb gene in macrophages leads to defective M2 poralization, increased
inflammation, and reduced ability of muscular regeneration [99].

Under hypoxic culture conditions, CDCs secrete EVs encapsulated with a high abun-
dance of a microRNA, termed miR-148, which promotes the regeneration effects of EVs
through differentiation of myogenic precursor [94]. The recruited Ly6C-positive mono-
cytes/macrophages with pro-inflammatory profiles activate SCs by disrupting the quies-
cence of their niche during the expansion phase, leading to the formation of new functional
myofibers, owing to the commitment of many progenitor cells to undergo myogenic differ-
entiation and self-renewal of a subset to return to quiescence [101,121,128,129].
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4. Non-Invasive Biomarkers

Non-invasive biomarkers that evaluate the progress of DMD pathology, following
therapeutic interventions, are limited. Among potential biomarkers, such as proteins,
nucleic acids, metabolites, polymorphisms, mutations, RNA splicing, and epigenetics, mi-
croRNAs (miRNAs), have been intensively studied. The RNA comprises of a class of small
non-coding RNA molecules, 22 nucleotides in length, that can regulate gene expression
at the post-transcriptional level by destabilizing mRNA and translation silencing. They
have been selected because of their: (1) high content in body fluids, including serum,
plasma, tear, lymph, breast milk, urine, semen, saliva, and sweat; (2) high-stability in the
blood and outside the body, due to capsulation into EVs and formation of complex with
RNA-binding proteins; (3) unique expression profile, correlated with pathology progres-
sion for monitoring the initial stage of the pathological condition, such as immediately
before or after the onset; (4) high-sensitivity and specificity to suppress false positives and
negatives; and (5) high-throughput and cost-reduction for evaluation systems of disease
levels [130,131]. As for miRNAs in DMD as biomarkers, the levels of three myomiRs,
namely miR-1, miR-133a, and miR-206, which are abundant miRNAs in muscles, were
increased in the sera of patients and animal models of muscular dystrophy with restored
levels, due to expression of functional dystrophin protein, which was shown to be inversely
correlated with disease severity in DMD patients [132–136]. In addition, miR-1 and miR-
133 are expressed in cardiac and skeletal muscles and involved in the proliferation and
differentiation processes [137–141]. Moreover, mir-206 is a skeletal muscle-specific miRNA,
expressed in SCs, involved in muscle development and regeneration [142]. In addition,
in the muscle of mdx mice, miR-1 and miR-133a levels were shown to be downregulated,
whereas miR-206 level was upregulated, recovering to wild-type levels by restoration of
the dystrophin protein [133–136].

5. Neutral Sphingomyelinase 2/Sphingomyelin Phosphodiesterase 3 (nSMase2/Smpd3)
and DMD

DMD exhibits inflammatory responses as a common feature, during which, after mus-
cle injury, inflammatory macrophages are recruited to secrete inflammatory cytokines and
miRNAs, due to repair and regeneration [143]. In particular, these myomiRs, encapsulated
within EVs, which are produced by the biogenesis of ceramide from sphingomyelin, are
released from cells into circulation and controlled by the nSMase2/Smpd3-regulated secre-
tory machinery of EVs [144–149]. Thus, to elucidate the relationship between the release
of myomiRs via EV and DMD pathogenesis, GW4869 (an inhibitor of nSMase2/Smpd3)
was administered to mdx mice. It has been shown that the inhibition of nSMase2/Smpd3
enzymatic activity ameliorates skeletal muscles of muscular dystrophy in mdx mice, in turn,
inhibits ceramide synthesis [150]. However, there are problems with the GW4869 inhibitor,
in that it has effects on other nSMase2/Smpd3 family members and relatively short-term
inhibitory effects. Therefore, to investigate the effects of nSMase2/Smpd3 on dystrophic
pathology, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double
knockout [DKO] mice) [151]. Deletion of the nSMase2/Smpd3 gene in mdx mice reduces
inflammation in dystrophic muscles, as indicated by a reduction in the infiltration of excess
inflammatory cells and decrease in inflammatory cytokine expression levels, such as TNF-α,
CD68, CD45, chemokine (C-C motif) receptor 5 (Ccr5), IL-1 receptor antagonist (IL-1ra), and
IL-6 [151]. In addition, disruption of the nSMase2/Smpd3 gene attenuated muscle membrane
permeability in dystrophic mdx mice initially but exacerbated it later on. Serum creatine
kinase (CK) levels were significantly lower in 6- to 12-week-old mdx:Smpd3 DKO mice
than in mdx mice. However, at 28 weeks, moderately or significantly higher serum CK
levels were observed in mdx:Smpd3 DKO mice than in mdx mice. Furthermore, at 12 weeks
of age, there were significantly fewer Evans blue dye (EBD: degree marker of myofiber
damage)-positive muscle fibers in the tibialis anterior (TA) muscle of mdx:Smpd3 DKO mice
than in that of mdx mice. However, at 20 weeks of age, the number of EBD-positive muscle
fibers in the TA of some mdx:Smpd3 DKO mice was higher than that in mdx mice.
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It has been reported that nSMase2/Smpd3 inhibition reduces inflammatory responses
via nuclear factor (erythroid derived 2)-like 2 activation. This activation then induces
antioxidant response element-controlled genes and decreases the expression of inflamma-
tory genes, including vascular cell adhesion molecule 1, intercellular adhesion molecule 1,
monocyte chemoattractant protein-1, IL-1β, IL-6, and TNF-α, by inhibiting NF-κB acti-
vation in macrophages and endothelial cells, ultimately leading to suppression of the
recruitment of monocytes to the endothelium and macrophage M1 differentiation [152].
Furthermore, nSMase2/Smpd3 acts upstream of mitogen-activated protein kinase and
NF-κB signaling pathways of TNF-α mediated inflammatory responses in monocytic
cells/macrophages [153].

Furthermore, the systemic administration of EVs, particularly myotube-derived EVs,
induced phenotypic rescue and mitigated pathological progression in dystrophic mice. This
was due to improved membrane integrity, accompanied by the inhibition of intracellular
influx and calcium-dependent calpain activation, which prevents the degradation of the
destabilized dystrophin-associated protein complex [154]. These results suggest that, early
in life, nSMase2/Smpd3 ablation may have beneficial effects, with respect to excess inflam-
matory responses and myofiber membrane degeneration in mdx mice but that it may have
adverse effects later on. In addition, genetic ablation of nSMase2/Smpd3 improves muscle
performance in mice with dystrophic phenotypes. The grip strength test demonstrated that,
at 12 weeks of age, the muscle strength of mdx mice was significantly lower than that of
wild-type mice, yet the muscle strength of mdx:Smpd3 DKO mice significantly recovered.
In addition, in an inclined treadmill running test, mdx:Smpd3 DKO mice ran significantly
longer than mdx mice at 16 and 60 weeks of age.

In addition to muscle degeneration in DMD, the loss of dystrophin in the brain has
often been associated with nonprogressive cognitive deficits, behavioral disabilities, and
enhanced fearfulness [155–157]. Thus, to investigate anxiety, emotionality, and the adaptive
stress response to a novel environment in mdx:Smpd3 DKO mice, the hole-board test was
performed [151]. The results exhibited a loss of the Smpd3 gene modulates anxiety behavior
and stress responses, as well as the recovery of brain-derived neurotrophic factor (BDNF)
expression, through exosomal miRNA in the hippocampus [151]. These findings suggest
that DMD is not only a muscular disease but also a circulatory RNA disease, through
intracellular communication. Furthermore, the signaling pathways modulated by the
nSMase2/Smpd3 protein might be novel therapeutic targets for DMD via the regulation of
the expression levels of exosomal miRNAs using this nSMase2/Smpd3 protein.

6. Adeno-Associated Virus (AAV)-Encapsulating EVs

Several clinical trials for DMD, using AAV vectors with various promoters, have
been performed and are currently undergoing practical application ([15,48,66,82,158–171],
Table 1). However, the risk of immune response from large doses of the AAV vector by
systemic single administration to DMD patients was unresolved [172,173]. Thus, several
strategies have been reported to suppress the immune response related to AAV vector
administration. The first is the use of immunosuppressants, which are transduced into
long-term skeletal muscles in non-human primates [174]. Second, examination of congeni-
tal and acquired immune tolerance induction methods showed that AAV vector-mediated
microdystrophin, which is part of the full-length dystrophin gene, improved canine DMD
pathology by the induction of immune tolerance. Moreover, systemic injection of the AAV9
vector with MSCs, which is a novel solution for treating DMD, into CXMDj of severe dys-
trophic phenotypes improves gene transfer and dystrophic phenotypes in skeletal muscle
and heart functions by immune modulation [81,175]. Finally, vectors can be developed to
avoid immune system attacks [81].
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Table 1. AAV vector serotypes used in Clinical trials for DMD.

Serotypes Transgene Promoter Phase Company Dose/Route Clinical
Trials ID Annotation

AAV2.5 Mini-Dys CMV I

Asklepios
Biopharmaceutical,

Nationeide
Chilren's
Hospital

2 cohorts NCT00428935

AAV9 Mini-Dys
human
muscle
specific

Ib

Pfizer, PF-06939926
2 cohorts,

single i.v. inj.

NCT03362502

III NCT04281485

Muscle
weakness,

myocarditis⇒
hold

AAVrh74 µDys MHCK7

I Sarepta (SRP9001),
Roche,

Nationwide
Children’s
Hospital

2 × 1014 vg/kg,
i.v.

NCT04626674
Stable dose of
corticosteroids

throughout
trial

II NCT03769116

I/II NCT03375164

III NCT05096221

AAV9 µDys CK8 I/II Solid Biosci.,
SGT-001

2 dose, single
i.v. NCT03368742

Once hold,
protocol
changed
(C5/C1

inhibitor use)

AAV9 U7-snRNA
(ACCA) I/IIa

Audentes
Therapeutics,
Nationwide
Children’s
Hospital

Cohort 1,
minimal

effective dose,
peripheral limb

vein inj.

NCT04240314

AAV3b U7-snRNA-E53 I/II Genethon, Institute
of Myology NCT01385917

AAV-mediated
Exon53

skipping

AAV8 µDys spC5-12 I/II/III Genethon, Sarepta

In addition, MSCs have been shown to improve pulmonary, cardiac, and distal skele-
tal muscle functions by their ability to fuse with dystrophic muscle, anti-inflammatory
activities, and trophic factors that augment the activity of endogenous repair cells [176,177].
Furthermore, systemic administration of continuous IL-10 expressing MSCs by AAV vector
into the CXMDj model indicated improvement of running capacity and recovery of tetanic
force [178]. These findings showed the possibility of reducing the AAV administration
dose in DMD patients to approximately 1/100 dose, with multiple administrations. How-
ever, some problems associated with gene therapy using AAV vectors remain. First, the
systemic administration of AAV vectors carries a risk of carcinogenicity, hepatotoxicity,
neurotoxicity, and thrombotic microangiopathy [172,173]. In addition, modification of the
AAV capsid for construction of novel AAV vectors has unpredictable immunotoxicity and
can damage non-target organs or exhibit unknown cross-reactivity of neutralizing antibody
reaction for the AAV capsid in humans, with possible decreased productivity of the AAV
vectors [179–182]. In addition to gene therapy, which is a treatment method for supplying
or adding the genome editing strategy, which repairs mutations in abnormal genes or
causes a loss of function of specific genes, has been explored [183–185]. Although the low
efficiency of modifying target genes for the development of new in vivo technologies has
been overcome, undesired effects have also increased, including the following: (1) off-target
effects, (2) side effects with abnormal chromosome cleavege, and (3) carcinogenicity with
suppression effects of p53 by homologous recombination [61,186–188]. In fact, clinical trials
using genome editing have been discontinued because of suspicion of the development
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of chromosomal abnormalities. Therefore, as one of the novel gene therapy strategies,
a drug delivery system for the AAV-encapsulating EV, which contains the AAV vector
within the EV, was reported to be useful in the intervention of various target tissues in
some diseases [189–200]. Furthermore, the effectiveness of gene therapy with AAV vectors
is greatly affected by neutralizing antibodies [81,201–203]. Therefore, the induction of
immune tolerance to AAV vectors has become an important issue for efficient and safe
gene transduction. Nevertheless, it is possible to induce a reduction in immunogenicity to
the AAV vector by encapsulating the AAV vector within EVs, which is naturally present
in the body (as a natural transporter); it is expected that AAV vector transduction is more
efficient than AAV vector administration alone [189,194,204]. In addition, AAV vectors
administrated in vivo are consumed by innate immunity plasmacytoid dendritic cells, as
mediated by Toll-like receptor 9 [205]. Therefore, attempts have been made to suppress
these immune responses [81,174,177]. Furthermore, AAV-encapsulating EVs can also be
introduced into in vivo barrier tissues such as the brain, eyes, and inner ear [189–200].
Therefore, repeated administration of AAV vectors would be possible because of dose
reduction for in vivo administration with immunosuppression and/or EVs.

Although certain AAV serotypes, such as AAV9, efficiently, target muscle fibers, trans-
duction of SCs has less reported. However, it was recently suggested that gene editing
to the dys reading frame in the mdx mice was induced by transduction of AAV vector
into the SCs [206,207]. Also, it was known that AAV vectors show their low immuno-
genicity, leading to persistence and long-term transgene expression of the vector, due to
the reduced ability of AAV vectors to activate antigen-presenting cells [208]. However,
neo-antigens, including viral capsid and the transgene product introduced by AAV in
mdx muscle vectors elicit cellular and humoral immune responses, which can be reduced
using immune modulatory treatments targeting T cells, B cells, and pro-inflammatory
processes [208,209]. It was indicated that treatment with the immune modulatory drugs,
including cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-linked IgG2a, Rituximab,
Prednisolone, and VBP6 enhanced the beneficial effects of AAV-microdystrophin therapy
for force generation [208].

Also, interaction between the SCs and EVs was critical event for myogenesis and
angiogenesis during skeletal muscle regeneration [120,210]. In addition with this reports,
EVs from muscular progenitor cells (MPCs) treated with a histone deacetylase inhibitor
(HDACi), which has been shown to increase muscle regeneration in mdx mice, were en-
riched myoangiogenesis-related miRNAs, such as miR-181a, miR-17, miR-210, miR-107,
miR-19b, Let-7e-5p, miR-26a, and miR-103 compared with EVs from untreated MPCs [211].
Further, EVs released by MSCs such as fibro-adipogenic progenitors (FAPs) transfer miR-
NAs, which cooperatively target therapeutic pathways related with regeneration, fibrosis,
and inflammation, to SCs [211]. Since increase of miR-206 level within the EVs released
by FAPs in muscles indicated the essential roles of the miR-206 for the EV-induced ex-
pansion of MPCs and regeneration of dystrophic muscles [211]. These reports suggest
that miRNA transduction via the EVs into MPCs will be novel therapeutic intervention in
muscular dystrophy.

7. Conclusions

Currently, some therapeutic strategies for DMD have been clinically applied, but
no curative treatment for DMD has been yet established. Although AAV vectors are
considered to be a promising therapeutic strategy for treating DMD, because of their safety
and usefulness, their use still has concerns, such as adverse effects caused by a single
high-dose administration. However, it was clarified that the induction of immune tolerance
by MSCs improved the therapeutic effects by alleviating the action of immune cells on AAV
vectors. Furthermore, AAV-encapsulated EVs could be a novel therapeutic strategy for
DMD because they can escape from neutralizing antibodies.
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