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ABSTRACT

Objective: With growing availability of digital health data and technology, health-related studies are increas-

ingly augmented or implemented using real world data (RWD). Recent federal initiatives promote the use of

RWD to make clinical assertions that influence regulatory decision-making. Our objective was to determine

whether traditional real world evidence (RWE) techniques in cardiovascular medicine achieve accuracy suffi-

cient for credible clinical assertions, also known as “regulatory-grade” RWE.

Design: Retrospective observational study using electronic health records (EHR), 2010–2016.

Methods: A predefined set of clinical concepts was extracted from EHR structured (EHR-S) and unstructured

(EHR-U) data using traditional query techniques and artificial intelligence (AI) technologies, respectively. Perfor-

mance was evaluated against manually annotated cohorts using standard metrics. Accuracy was compared to

pre-defined criteria for regulatory-grade. Differences in accuracy were compared using Chi-square test.

Results: The dataset included 10 840 clinical notes. Individual concept occurrence ranged from 194 for coronary

artery bypass graft to 4502 for diabetes mellitus. In EHR-S, average recall and precision were 51.7% and 98.3%,

respectively and 95.5% and 95.3% in EHR-U, respectively. For each clinical concept, EHR-S accuracy was below

regulatory-grade, while EHR-U met or exceeded criteria, with the exception of medications.

Conclusions: Identifying an appropriate RWE approach is dependent on cohorts studied and accuracy required.

In this study, recall varied greatly between EHR-S and EHR-U. Overall, EHR-S did not meet regulatory grade cri-

teria, while EHR-U did. These results suggest that recall should be routinely measured in EHR-based studes

intended for regulatory use. Furthermore, advanced data and technologies may be required to achieve regula-

tory grade results.
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BACKGROUND AND SIGNIFICANCE

With advances in modern medicine, average lifespan has expanded

and patients have become more complex.1 While randomized clini-

cal trials (RCT) provide a foundation for clinical evidence, individ-

ual trials to assess treatment for a broad condition, such as

hypertension or high cholesterol, may be less applicable to typical

patients with multiple comorbidities.2,3 Trials are often performed

in highly controlled environments with narrow inclusion and exclu-

sion criteria, which reduces their generalizability and external valid-

ity.4,5 Highly protocolled care in an RCT may differ substantially

from interventions in routine settings.
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Based on these concerns over trial expense, lack of generalizabil-

ity from selected patients to real world care, and lack of generaliz-

ability from protocolled care to real world care, there is an

increasing drive to augment RCTs with real world data (RWD).

RWD is information on medical interventions gathered from routine

clinical care. These data may better reflect the general population

seeking treatment for a particular condition rather than selective

patients enrolled in an RCT.6,7 RWD, whether claims data or

extracted information from electronic health records (EHR), are of-

ten analyzed to produce real world evidence (RWE), assertions

made using RWD. RWE may be clinical, related to medications,

devices, or other interventions, and intended to guide future studies

or to change practice.

Recognizing a need to reduce trial costs and augment traditional

trials with real world learning, the United States Congress addressed

RWE in the 21st Century Cures Act of 2016. Specifically, the Act re-

quired that the Food and Drug Administration create a pathway to

allow RWE to support new drug indication and post-marketing sur-

veillance starting in 2018.8 In parallel to regulatory use of RWE,

payers are increasingly demanding proof of real world effectiveness.

Thus, insurance companies are increasingly demanding RWE to sup-

port reimbursement decisions.9 Together, regulatory and reimburse-

ment pathways are increasingly incorporating RWE and therefore

the standard of care may soon be influenced by clinical assertions

made using RWD.

The changing landscape of evidence from RCT to RWE has pro-

gressed rapidly. But, there are concerns over validity of clinical

assertions as these data were not collected for research or regulatory

purposes.10,11 Concerns over EHR data accuracy have been

highlighted in primary use applications.12–14 Several companies

have called for rigorous data assessment and setting of standards for

use of RWE in regulatory settings.15,16 Understanding the accuracy,

quality, and availability of the underlying data and technology

becomes critical to healthcare as they begin influence treatment deci-

sions.

In this study, we aimed to 1) assess the occurrence of a prede-

fined set of clinical concepts in the EHRs; 2) evaluate the accuracy

of AI technologies when applied to clinical concepts in EHR-S and

EHR-U; and 3) compare accuracies between traditional versus AI-

based approaches using EHR structured and unstructured data. Our

objective was to determine whether traditional real world evidence

techniques are sufficiently accurate to support regulatory-grade

EHR-based observational studies in cardiovascular medicine. We

hypothesized that use of traditional query techniques (i.e. Standard

Query Language (SQL)) on EHR structured data may be insufficient

to support clinical assertions compared to more advanced

approaches that leverage unstructured clinical text. Specifically, the

use of problem, procedure, and other lists within the EHR matched

by SQL query to a list of relevant codes may result in insufficient ac-

curacy for some studies. This work can provide the preliminary evi-

dence needed to set standards that will ensure regulatory-grade data

quality and define best practices.

METHODS

In this observational, retrospective study, we assessed 10 840 clini-

cal notes from a large academic medical center in the United States.

This included a combination of outpatient and inpatient records

drawn randomly from a multi-year experience. Criteria for record

use included a problem list with at least one item and narrative text

document length greater than a snippet of 1000 characters.

The dataset included both EHR structured data (EHR-S) from prob-

lem list, medication list, and laboratory list, and EHR unstructured

data (EHR-U) from clinical notes and other narrative text available

in the EHR. The study was deemed exempt from the need for IRB

approval.

Study population and cohorts
Cardiovascular medicine was chosen as a test case because it is an

area of high cost, is the leading cause of death in the industrialized

world, and was believed to represent a proxy for common medical

care. A pre-defined feature list was selected based on common rele-

vant conditions in cardiovascular medicine studies: Hyperlipidemia,

hypercholesterolemia, coronary artery disease, diabetes mellitus,

myocardial infarction, chronic kidney disease, stroke, dementia, cat-

aract, coronary artery bypass graft, atorvastatin, pravastatin, rosu-

vastatin, simvastatin, LDL cholesterol, HDL cholesterol, and total

cholesterol. These features represented a consensus list of important

inclusion criteria, exclusion criteria, exposures, and outcomes based

on a group of physicians. Of note, some cohorts may be used in dif-

ferent ways in different studies. For example, myocardial infarction

may be used as inclusion criterion in one study, exclusion criterion

in another study, and an outcome measure in a third study. Cohorts

were selected as representative in cardiovascular medicine to provide

a robust study set.

Study outcomes
The primary outcome was to assess whether the extracted data

was “regulatory-grade”. We define regulatory grade as “data suffi-

ciently accurate to justify the clinical assertion.” For this study, nu-

meric thresholds were required and thus assumptions were made

of how data skewness can lead to erroneous conclusions. A litera-

ture review of cardiovascular medicine found that assertions com-

paring study arms often seek a 10–20% benefit.17,18 This suggests

that a skew of 10% to 20% could result in inaccurate conclusions.

Thus, the recall threshold was set at 85%. Precision is a different

challenge, where inaccurate information is effectively added to the

dataset. In this situation, there is less tolerance for error and a

threshold of 90% was chosen. These criteria are intended as a first

approximation of regulatory grade given that thresholds are highly

dependent on study arm differences and potential skew in missing

or erroneous data.

Precision was calculated as the proportion of patients correctly

identified via the reference standard (see below) divided by the total

number of patients identified in each cohort (true positive/(true posi-

tives þ false positives). Recall was calculated as the proportion of

patients correctly identified via the reference standard in each cohort

(true positive/(true positives þ false negatives). For example, if a pa-

tient is defined to have coronary artery disease in the gold standard,

recall is determined based on whether or not the patient has coro-

nary artery disease in their structured data and separately in their

unstructured data. The F-score was also calculated as the weighted

harmonic mean of the precision and recall. Optimal precision will

lower recall, therefore the f-measure is used as a summary score

across the two accuracy measures, precision and recall.

As additional measured variables, concept and patient occur-

rence were assessed. Concept occurrence is the sum of all occur-

rences of the concept, allowing for multiple occurrences per

document. Patient occurrence is the number of patients that have at

least one occurrence of the concept.

1190 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 11



Reference standard
Manual annotation was used to create a gold standard to validate

automated assertion extraction from EHR-S and EHR-U. Two

annotators manually labelled each concept and relevant meta-data

for that concept. Each concept could include a single term (e.g.

“hypertension”) or a string of terms (e.g. “high blood pressure“).

Meta-data included attributes that would change meaning for a clin-

ical concept, such as negation and attribution to a subject other than

the patient. Each annotator was a clinician, with a degree in medi-

cine, nursing, or pharmacy and at least 5 years of clinical practice

and at least one year of experience in clinical annotation.

For inter-operator reliability, an automated process was used to

compare manual annotation between annotators on a daily basis

early in the project and on a weekly basis later in the project. Any

case where the two independent annotations did not agree was

flagged as disagreement. In these cases, the disagreement was noted

and the annotators brought together to discuss the cases and come

to common agreement. For any cases where the two annotators dis-

agree after discussion, a third annotator was engaged as a tie-

breaker.

AI technologies
Artificial intelligence (AI) technologies were provided by Verantos,

Inc. These included natural language processing (NLP) and machine

learned inference.

The core of the AI is a deterministic NLP layer. This layer is built

on top of the GATE NLP architecture.19 The GATE architecture is

used to construct a flexible pipeline for processing incoming text

against English language syntactical rules augmented with a lexicon

based on a clinical vocabulary. This pipeline is visually represented

below and described in further detail below (Figure 1).

Text extraction

This stage of the NLP pipeline is responsible for extracting natural

language text from various sources. For this study, text was

extracted from fragments of narrative text in Clinical Document Ar-

chitecture (CDA) XML documents which appear in HTML form.

The open source Apache Tika library was deployed for this purpose.

Section detection

Attributing clinical text to the correct narrative section is important

to add context in clinical concept interpretation. For example, a

clinical concept appearing in a medical history section may indicate

a past condition instead of an ongoing one. Section information is

useful in disambiguation of abbreviations and acronyms. For exam-

ple, the abbreviation CP in a past medical history section may favor

cerebral palsy over chest pain depending on other features. Section

detection was augmented using the techniques and vocabulary of

SecTag.20

Information extraction and tagging

The steps in this stage are built using an infrastructure called AN-

NIE (A Nearly-New Information Extraction), which is part of the

GATE NLP pipeline. Steps include: removal of special characters;

tokenization; sentence splitter; POS tagger (tags tokens with part of

speech tags such as adjectives, proper nouns, etc.); named entity rec-

ognition (matches tokens against an internal map of entities); and

negation and subject tagging using the ConText library.21

Concept assignment

Phrases are matched against an internal database of clinical concepts

to normalize identified information to known concepts. Mapping in

this study included SNOMED-CT. RxNorm, and LOINC. Matching

is done in multiple layers from deterministic for well-known text to

probabilistic for inexact matches. Fuzzy matching, where required,

is performed using approximate dictionary matching.

NLP output is fed into a machine learning system to identify clin-

ically relevant patterns. A key component of the higher-level artifi-

cial intelligence is association rule mining. This is used for data-

driven discovery of strong associations between clinical concepts.

The noise filtering was achieved by measuring the support of con-

cepts found in a clinical and measured against concept statistical

attributes in the complete data set and filtering out or giving lower

priority to concepts which were below a threshold. This results in a

system that seeks patterns throughout the longitudinal patient re-

cord suggestive of a specific clinical concept, also known as clinical

phenotyping.22 For example, patterns such as chest pain, EKG

changes, and troponin elevation may endorse a concept such as

myocardial infarction when the content within the sentence bound-

ary may simply state “evaluation for MI”.

Statistical analyses
For the manual annotation, concordance between the annotators

was assessed by the Kappa statistic. Kappa is a standard measure of

concordance that controls for chance agreement. It pools all dis-

agreements and may be affected by the frequency of cases. Kappas

above .75 are considered excellent. Chi-square comparison of pro-

portions between structured and unstructured data were used to

identify significant differences between accuracy of EHR-S versus

EHR-U datasets.

To assess a match between study arms and gold standard, each

gold standard annotation was expanded to include the SNOMED-

CT ontological “neighborhood” or module, which allowed the

match to be closer to a clinical archetype instead of a specific

SNOMED concept. For example, if the tested cohort was myocar-

dial infarction and EHR-S contained ST elevation myocardial infarc-

tion (STEMI), EHR-S would be tested against the myocardial

infarction SNOMED module. This would return a positive match

since STEMI exists within the myocardial infarction SNOMED

module. In this way, cohort matches were accurately identified de-

spite discrepancies in granularity.

RESULTS

The records were drawn from an academic hospital. Patient demo-

graphics were representative of the US population. Table 1 shows

results from the ten diseases of interest and the procedure of interest.

Concept-level occurrence ranged from 194 for coronary artery

Figure 1. High-level NLP pipeline for clinical documentation.
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bypass graft to 4502 for diabetes mellitus. Patient-level occurrence

for these concepts ranged from 73 for coronary artery bypass graft

to 1377 for diabetes mellitus. In EHR-S, the minimum recall was

29.8% for myocardial infarction and the maximum was 80.6% for

diabetes mellitus with respective F1-scores of 44.2 and 88.4. For

EHR-U, the minimum recall was 90.4% for both myocardial infarc-

tion and hypercholesterolemia and the maximum was 98.2% for hy-

perlipidemia, F1-scores were 82.9, 94.4, and 98.8, respectively. All

comparisons of proportions between EHR-S and EHR-U data were

significant at P < .0001, with AI technologies applied to EHR-U

outperforming traditional query techniques on EHR-S for each con-

cept. We calculated the Cohen’s kappa score between each pair of

clinicians. The average of this score was 0.93.

Medications of interest also varied by data source (Table 2).

Concept-level occurrence ranged from 586 for pravastatin to 2173

for rosuvastatin and patient-level occurrence ranged from 230 for

pravastatin and 849 for rosuvastatin). In EHR-S, the minimum re-

call was 85.3% for both atorvastatin and simvastatin and the maxi-

mum was 94.1% for pravastatin with respective F1-scores of 92.0,

92.0, and 96.6. Similarly, for EHR-U the minimum recall was

97.9% for both atorvastatin and simvastatin and the maximum was

99.2% for rosuvastatin with respective F1-scores of 98.5, 98.5, and

99.3. All comparisons of proportions between EHR-S and EHR-U

data were significant at P < .0001, again with AI technologies ap-

plied to EHR-U outperforming traditional query techniques on

EHR-S for each concept.

Laboratory studies were not available for EHR-S. However, in-

formation regarding concept and patient occurrence as well as per-

formance metrics for EHR-U are available in Table 3. The accuracy

results are similar to disease and procedure concepts for EHR-U.

DISCUSSION

The goal of this study was to perform a rigorous quality assessment

of RWD to understand the potential and limitations of RWE in reg-

ulatory decision-making. Using cardiovascular medicine as a test

case, cohort identification in EHR-S data using traditional query

techniques did not meet our definition of regulatory-grade. Recall,

the ability to accurately identify all true cases, consistently fell below

our set standard of 85% for disease and procedure identification.

However, by applying AI technologies to EHR-U, cohort identifica-

tion exceeded set standards for disease, procedure, medication, and

laboratory studies. To our knowledge, this work provides the first

evidence related to data standards and quality of RWE that is neces-

sary to achieve regulatory-grade studies.

Defining regulatory-grade
In acknowledgement of increasing use of RWE to influence the stan-

dard of care, we define regulatory grade as “data sufficiently accu-

rate to justify the clinical assertion.” To support objective

measurement, we proposed objective measurable criteria, specifi-

cally recall > 85% and precision > 90%. This definition is not

intended to be a set standard for all types of study questions, but

rather a starting benchmark to initiate discussion. A key point is

that both missingness reflected by recall and errors reflected by pre-

cision are important when considering accuracy.

Precision versus recall
Measuring accuracy is labor intensive, but provides a true assess-

ment of cohort precision and recall. In general, when accuracy is

measured in studies today, precision is emphasized rather than re-

call. This is not because precision is more statistically relevant than

recall, but rather because precision is easier to assess.23 For example,

in a study evaluating patients taking a cholesterol lowering drug af-

ter heart attack, a data scientist may pull all patients that meet these

criteria in the structured data set (problem and medications lists).

This may result in the identification of 300 patients from a cohort of

one million patients. The data scientist next reviews the charts for

the 300 patients and confirms that the correct conditions are refer-

enced in the clinical narrative. This scenario will assess precision

and ignore recall. However, recall is where the inaccuracy typically

lies.

Although recall is frequently used in academic publications, it is

rarely implemented in RWE studies because it is resource intensive.

Continuing with the myocardial infarction example, it would be far

more difficult to sample a portion of a million records to calculate

false negatives for “myocardial infarction” than to confirm that out

of 300 records the occurrence of “myocardial infarction” correlated

with the patient having had a heart attack. For this reason, pharma-

ceutical companies and contract research organizations performing

RWE studies often report precision and rarely assess recall. But, im-

portant clinical bias exists in the missed cases. Specifically, a patient

with a mild heart attack may only have one clinical encounter with

a physician. This may or may not result in “myocardial infarction”

being added to the problem list. However, a patient with a severe

heart attack will have multiple physicians and encounters during an

Table 1. Cohort identification of diseases and procedures stratified by EHR-S and EHR-U dataa

Cohort Occurrence EHR-S EHR-U

Concept Patient Recall (%) Precision (%) F1-score (%) Recall (%) Precision (%) F1-score (%)

Hyperlipidemia 2471 837 65.2 99.3 78.7 98.2 99.4 98.8

Hypercholesterolemia 1899 478 55.1 98.0 70.5 90.4 98.8 94.4

Coronary artery disease 1427 465 67.5 99.4 80.4 94.6 96.2 95.4

Diabetes mellitus 4502 1377 80.6 97.9 88.4 97.0 92.6 94.8

Myocardial infarction 523 282 29.8 86.2 44.2 90.4 76.5 82.9

Chronic kidney disease 640 101 40.8 97.6 57.6 92.9 97.9 95.3

Stroke 693 307 36.5 97.2 53.0 95.7 79.6 87.0

Dementia 317 103 62.1 100.0 76.6 93.1 90.0 91.5

Cataract 240 85 28.6 100.0 44.4 96.1 94.9 95.5

CABGb 194 73 32.2 100.0 48.7 96.6 95.0 95.8

aAll comparisons were significant at P <. 0001.
bCoronary artery bypass graft.
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extended inpatient stay. The chance that “myocardial infarction” is

added to the problem list is far higher for this patient than the pa-

tient with a mild attack and brief episode of care. Thus, if only preci-

sion is measured while recall is ignored, accuracy has not truly been

tested and bias is likely. To assure that accuracy is properly mea-

sured, clinical research often focuses on the F1-score to harmonize

recall and precision. The right balance depends on the clinical ques-

tion being asked, i.e. more focused (higher precision) or broader

(higher recall) searches.

EHR structured data vs EHR unstructured data
Similar to previous work, this study demonstrated that cohort iden-

tification from EHR structured data using standard query technolo-

gies may be insufficient for regulatory use. In addition, our study

quantified the differences in accuracy between standard query tech-

nologies and more advanced methodologies. We found that the

identification of concepts used for inclusion criteria, exclusion crite-

ria, and outcomes differed significantly between EHR structured

and unstructured data, with the exception of medication data which

had comparable cohort identification accuracy between EHR-S and

EHR-U data. Similarly, other studies have shown that integrating

EHR structured and unstructured data improves clinical phenotyp-

ing, suggesting that advanced methodologies using unstructured

data are necessary to improve performance impact. This limitation

of EHR-S is concerning since data accuracy is rarely measured. In

common datasets available today, including claims data and EHR

structured data, the narrative text which allows accuracy assessment

or data augmentation is often missing. Thus, there is no measure of

cohort accuracy nor is there any way to independently assess accu-

racy as the underlying data are missing.

Our results suggest that EHR-U data analyzed with advanced

technologies are needed to achieve regulatory-grade when using

RWE. However, if only structured data are available or feasible to

use, it is important to note the percent error in defining patient

cohorts and understand the types of questions that can be feasibly

answered with these data. Similarly, statistical models and predictive

analytics should account for this classification error when determin-

ing confidence intervals and standard errors for predictive models.

Therefore, both technology and expertise are critical in achieving

high accuracy cohort extraction for regulatory decision making.

Review of specific concepts
Some results were surprising, even recognizing known inaccuracy in

clinical documentation. Myocardial infarction notably had a recall of

29.8%. This was found to be due to a low rate of physicians placing

heart attack on the problem list if the patient had experienced it in the

past. A typical record would include “h/o MI” in the narrative text,

but no suggestion of prior heart attack in the problem list. This high-

lights the discrepancy between clinical use of the problem list, where

primarily new issues are highlighted, versus study use of the problem

list, where any past heart attack may be a reasonable exclusion crite-

rion. This discrepancy is extremely important when identifying

patients with specific inclusion and exclusion criteria for secondary

analyses, such as pragmatic clinical trials. Another surprise was medi-

cation recall below 100% for structured data. When evaluated after

study completion, this was believed to be due to physicians treating

patients in outpatient settings where the medication may have been

prescribed by another physician who was not tracked within the same

EHR. This is a common issue stemming from a lack of interoperabil-

ity between healthcare settings and likely more common for tertiary

care centers, where a patient may not receive their primary care and

hence common medications for chronic diseases.

Limitations
This study has several limitations. The results are from a single health-

care system, which may not be generalizable to other settings. How-

ever, our cohort identification results are consistent with previous

literature in other clinical domains.12,13 The approach, including man-

ual gold standard and definition of both precision and recall, was labor

intensive and may not be repeatable across RWE needs. This study re-

quired expertise across multiple fields, drawn from academia, pharma,

and technology. Expertise may become a gating factor in regulatory

grade studies. This study assessed cohorts relevant to cardiovascular

medicine and may not be generalizable to other clinical domains.

CONCLUSIONS

In summary, we document differences in obtained accuracy between

EHR structured and unstructured data for clinical phenotyping in

cardiovascular medicine. The clear learning from this study is that

accuracy is heavily influenced by data and technology choices. These

Table 2. Cohort identification of medications stratified by EHR-S and EHR-U dataa

Cohort Occurrence EHR-S EHR-U

Concept Patient Recall (%) Precision (%) F1-score (%) Recall (%) Precision (%) F1-score (%)

Atorvastatin 1439 449 85.3 100.0 92.0 97.9 99.1 98.5

Pravastatin 586 230 94.1 99.1 96.6 99.2 98.3 98.8

Rosuvastatin 2173 849 91.4 99.5 95.3 99.2 99.4 99.3

Simvastatin 1439 449 85.3 100.0 92.0 97.9 99.1 98.5

aAll comparisons were significant at P < .0001.

Table 3. Cohort identification of laboratory studies stratified by EHR-S and EHR-U data

Cohort Occurrence EHR-S EHR-U

Concept Patient Recall (%) Precision (%) F1-score (%) Recall (%) Precision (%) F1-score (%)

LDL cholesterol 475 243 NA NA NA 94.7% 100.0% 97.3%

HDL cholesterol 278 139 NA NA NA 95.7% 100.0% 97.8%

Total cholesterol 227 165 NA NA NA 94.0% 100.0% 96.9%
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authors recommend that all real world evidence studies that may in-

fluence the standard of care, e.g. regulatory and reimbursement sub-

missions, should include a data accuracy assessment of all key

cohorts, including inclusion criteria, exclusion criteria, exposures,

and outcomes. Expectations for both precision and recall for these

cohorts should be defined within the study protocol in advance of col-

lecting and evaluating data and these expectations for data accuracy

should be consistent with anticipated effect size. In order to maintain

credibility and advance science, pharma, academia, and vendors must

not shy away from the hard work required to ensure data accuracy.

As payers and regulatory agencies move forward with real world evi-

dence to overcome cost and generalizability issues, understanding the

benefits and limitations of different data and technologies is essential.
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