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One of the fundamental questions in neuroscience is how brain activity relates to
conscious experience. Even though self-consciousness is considered an emergent
property of the brain network, a quantum physics-based theory assigns a momentum
of consciousness to the single neuron level. In this work, we present a brain
self theory from an evolutionary biological perspective by analogy with the immune self.
In this scheme, perinatal reactivity to self inputs would guide the selection of neocortical
neurons within the subplate, similarly to T lymphocytes in the thymus. Such self-driven
neuronal selection would enable effective discrimination of external inputs and avoid
harmful “autoreactive” responses. Multiple experimental and clinical evidences for this
model are provided. Based on this self tenet, we outline the postulates of the so-called
autophrenic diseases, to then make the case for schizophrenia, an archetypic disease
with rupture of the self. Implications of this model are discussed, along with potential
experimental verification.

Keywords: neurologic self, immune self, neurogenesis, schizophrenia, autophrenic disease
A JOURNEY FROM CONSCIOUSNESS TO CELL BIOLOGY

Since the philosopher David Chalmers raised “the hard problem of consciousness” (1), referring to
the interrelationship between brain activity and the content of conscious subjective experience,
there have been numerous attempts to explain consciousness from a scientific approach. Innovative
approaches have arisen from neurophenomenology (2), functional neuroimaging tools (3) and from
cognitive and evolutionary psychology (4). Through most of the Western science, consciousness has
been considered as an emergent brain process: the result of the integration of either global neural
synchronization (5, 6), or of many asynchronic microconsciousness (7), whereas a role for the single
neuron unit is left aside. However, based on quantum physics, it has been hypothesized a cell-based
theory that located the momentum of consciousness within the neuron microtubules (8, 9). Yet, it
has been largely unexamined the question of a cell-based consciousness from a biological viewpoint
underlying microcircuitries (10).

Here, we explore the gap between self-consciousness and neural activity from an evolutionary
biological perspective (11). There is a fundamental ontological assumption that the central nervous
system (CNS) evolved along the immune system (IS) by natural selection to better define individuals’
identity and interactions (12–14). We formulated the hypothesis that the distinction of self/nonself
(internal/external) inputs by the brain has a cell basis similar to the immune self. The immune self/
nonself recognition enables immune effective function without jeopardizing tissue integrity (15). We
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inferred this self brain hypothesis by analogy of basic principles
between these two complex network systems, although through
divergent processes and scales. Contemporary systems biology aims
to understand the rules governing dynamic regulatory networks
across different scales (genes, RNA, proteins, cells, systems,
metasystems, organism). Self-organization underlies a generic
property of many complex networks and of gene regulatory
networks in particular, which control cell ontogeny (16, 17).

Comprehensive understanding of immune physiology has
often been anticipated by clinical immunopathology. For
instance, autoimmune diseases in vertebrates are induced by
failure or imbalance in recognition of the tissues of the body
itself. However, autoimmunity or low level self-reactivity is
essential for normal immune response. Within the CNS, an
inappropriate reactivity to self inner signals would risk of an
“horror autotoxicus”1 (18) severely interfering with any cortical
sensory, motor, and cognitive processes and therefore with
consciousness. Inappropriate reactivity to self may characterize
what we have called autophrenic diseases [from Greek aµto-
(auto), “self” and jrήn (phren̄), “mind, brain”], including
epilepsy or schizophrenia (SZ). According to this novel view,
epilepsy may represent excessive reactivity to self2, defined by
sudden firing of a subset of neocortical neurons that causes
unrealistic sensations (visual, olfactory, gustatory, auditory),
involuntary jerking and altered self-consciousness (19). In the
case of SZ, it would occur a dysfunction of subsets of neocortical
neurons that discriminate self body signals as nonself, resulting
in the rupture of the psychoneurological self (20, 21). Indeed,
false fragmented perceptions are lived as a real self/nonself
conflict and severely affect the patient’s awareness. These
pathologies might suggest a role for the self at the brain
subscale microcircuitries or even at the cellular level.

Immune self/nonself discrimination is instructed mainly
during embryogenesis and early in life, through selection
processes resulting in massive cell death that ensures efficient
and highly specific response and eliminate potential highly auto-
reactive lymphocytes. The principles guiding brain cortex
functional organization during embryonic neurogenesis have
not been fully investigated. If, following our argument, that
were the case that a self principle governs brain function, such
instruction in self should be developed during neurogenesis.
Based on theoretical grounds and biological observations, we
hypothesized that self-driven selection processes based on
neuron connectivity occur within the brain cortex (11). In this
article, to translate our hypothesis into a model, we firstly
recapitulate well-established immune principles to hypothesize
similar brain solutions at the system level in a unified
evolutionary account; and secondly, we present a body of
arguments to prove the plausibility of the hypothesis based on
clinical and experimental observations. We then expand the
1Paul Ehrlich proposed the term “horror autotoxicus” to designate the
unwillingness of the organism to the production of autoantibodies
“amboceptors directed against its own tissues”.
2Hereinafter “self” alludes to biologic self (at cell level) although otherwise
specified.
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analogy to outline the postulates for autophrenic diseases by
extrapolating the postulates that define autoimmune diseases.

Evolutionary Immune-Based Model for
Brain Memory
The IS comprises at least two inextricably intertwined orders of
recognition and memory that were developed through evolution:
innate and adaptive immunity, the latter initially acquired in
jawed vertebrates. Innate immunity displays a broad and
pseudospecific quick and transitory response to stimuli
(trained memory), essential for the survival of the organism as
it is the only immunity present in invertebrates and plants.
Adaptive immunity serves a highly specific and controlled
response to a given antigen, and accounts for a long-term
memory that, upon an ulterior rendezvous with this antigen is
translated in a more accelerated, focused, and heightened
response (22). Adaptive specificity stems from a bewildering
diversity of unique T and B cell receptors repertoire, representing
thus a huge qualitative jump in fine specificity to a changing
environment by increasing complexity and efficiency of the
response. Interestingly, innate immune cells (antigen
presenting cells) drive antigen-specific memory activation and
clonal selection of T lymphocytes’ pools.

We built on the similarity of this functional organization with
the vertebrate CNS looking side by side innate/implicit and
adaptive/explicit orders of recognition and memory (23).
Through these analogies, our model challenged the traditional
view of the hippocampus only ascribed to the explicit/adaptive
memory by an innate/implicit memory structure and essential
mediator to explicit (declarative) memory. Although the
hippocampus and adjacent structures of the medial temporal
lobe (MTL) share function homology to the mushroom bodies of
invertebrates (such as insects and crustacea) (24–26) and are
evolutionarily ancient brain regions, the involvement of MTL in
short-term associative memory is recent (27, 28). Hence, MTL
bridges both implicit and explicit processes, which is not a new
idea, but in line with kinetic models (29), functional
neuroimaging studies (30, 31), and processing-based models
(32). Explicit/adaptive memory is founded in an overwhelming
diversity of neocortical neurons spatially and dynamically
arranged to cope with extremely precise recognition that
enables high cognitive abilities. Similar to the IS, “innate” brain
regions (MTL) guide the formation of long-term and highly
accurate explicit/adaptive memories through specific synapses
between ensembles of neurons (engrams) within the neocortex
(33). The proposed classification of brain memory based on a
singular immune standpoint opens up a broader evolutionary
insight on the role of the MTL in implicit and explicit memory
strategies of encoding, storage, and retrieval (23). For instance,
the widely studied patient H.M., with extensive bilateral
hippocampal lesion, is an eloquent case supporting that highly
specific (explicit/adaptive) memory resides within the neocortex,
and corroborates the psychological distinction between short-
and long-term memory (34).

Our epistemological approach explores recognition and
memory brain systems by an immune-based analogy to better
align the functional network architecture within an evolutionary
September 2020 | Volume 11 | Article 540676
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context. This standpoint has not been previously undertaken but
to applying IS principles into artificial intelligence computation
(for instance, data encryption and storage, intruders’ detection
and recall algorithms, information rate efficiency, machine
learning, etc.) (35, 36). Depicting similarities in basic biological
principles between the IS and the CNS does not mean
diminishing their gross differences or pretending to tackle the
self, which lies beyond the boundaries of cell biology. In this
essay, we intend to offer a new perspective on how brain
emergent properties may be constrained by cell biology.
3References to the original papers will be made when these provide essential
contribution to the discussion.
Instruction in Self: Thymopoiesis Meets
Neurogenesis
The IS and the CNS constitute two complex network systems in open
exchange that sense and respond to the environment while preserving
the identity and integrity of the organism (homeostasis). This
information processing function requires the discrimination
between a dynamic self (internal signals and symbiotic interactions)
and nonself (i.e. the outer world and the other), property shaped
through evolution up to a degree of high specificity (37). In addition
to higher specificity and specialization, evolution has led to an ever-
increasing complexity at genetic, molecular and cellular regulatory
interactions (complementarity, positive and negative feed-forward
and feed-back loops) to determine overall response within each
system. It can be asserted that the specificity of T lymphocytes and
neocortical neurons as a whole delineate our identity (immunological
and cognitive) as individuals, which is mostly acquired during
embryogenesis and shortly after birth. Hence, each one of us is
equipped with a unique repertoire of T lymphocytes and neocortical
neurons (38, 39) to face the external world early in life. These cells will
be thereafter selected by novel stimuli from the external world
through connections with innate cells/structures, triggering
activation of cells ensembles; and the repertoire of lymphocytes and
neurons will be then shaped according to external experience (40).
The whole process underpins the extraordinary plasticity of these
systems and the concept of individual history. Dealing with the
notion of time is indeed an intricate issue of the IS and the CNS,
which has equally fascinated physicists, biologists, and philosophers
approaching the brain in particular. To put this temporal relationship
in plain terms, these paradoxical “anticipatory” specific cells (T
lymphocytes, neocortical neurons) can be selected at any given
moment by external cues to become “past” memory cells
ensembles and then travel forward to “the present” -now- during
recall, while being key to modifying the “future” behaviour of the
organism (definition of cognition).

The anticipatory repertoire of T lymphocyte receptors (TCR) is
generated by combinatorial gene rearrangement within the thymus
(thymopoiesis). T-lymphocytes subsequently undergo a multi-step
process of selection in response to self (41–43). Those T
lymphocytes that weakly respond to self stimulus (antigen)
happen to survive, while those that do not react with self die,
(positive selection), and those that react too strongly with self are
most of them eliminated (negative selection) or preserved as
regulatory T lymphocytes (44, 45). Thus, the self principle
governing thymopoiesis determines the future immune response.
As Janeway’s proverbial assertion dictates, “the immune system
Frontiers in Psychiatry | www.frontiersin.org 3
evolved to discriminate infectious non-self from noninfectious self”
(43). Thus, autoimmunity (low level autoreactivity) is an inherent
constituent of immune homeostasis, meaning that all peripheral T
cells are self-reactive (46). The process described above is greatly
simplified to focus on general mechanisms, and even if TCRs are
highly specific, restriction of antigen presentation by the major
histocompatibility complex (MHC) further increases the
diversification of the individual response and is subjected to
relative degeneracy.

How does the exquisite brain organization contribute to
effective self/nonself recognition? And moreover, can we infer
that there is a role for cognitive self at the neuron (engram) level?
The underlying principles and mechanisms generating the
functional specificity and diversity of neocortical neurons are
far from being well known.

In a recent work, we suggested proceeding from an immune
angle to address these questions and testing its validity or
refutability. From this standpoint, we positioned the self as the
axis of cortical neurogenesis (11), which would allow normal
brain functioning and prevent costly autoreactivity. In parallel
with the immune “logic”, we sustained that the brain evolved to
discriminate perceptible non-self from non-perceptible self.
Neocortical neurons selection would be guided according to
the degree of self recognition, by which too low and too high
self-reactive neurons would undergo programmed cell death.
Such self-driven neuronal selection would remove neurons
exhibiting none or excessive reactivity to self signals. As a
result of this selection process, neurons exhibiting low self-
reactivity would discriminate any novel external stimulus,
fundamental for effective neuronal response, and tolerance
induction in the neocortex (11). This would also mean that all
neocortical neurons are somehow self-reactive. Interestingly,
neocortical neurons are not only “perceptive” of the outer
world but highly interconnected via associational projections
to fulfil the needs of the organism by using internal and
external information.

Neurogenesis is written in chemical and electromagnetic
language, whose code has been explored from multiple
perspectives. We present below a body of arguments to test the
presented hypothesis based on experimental and clinical
observations, notwithstanding the obvious limitations derived
from current gaps in knowledge and to methodological barriers3.

i. Internal cues during neocortical neurogenesis primarily
instruct neuronal selection:

-The most prevailing model for the development of neural
circuits (Hebbian plasticity) states that synaptic connections are
strengthened by correlated activity between pre- and post-
synaptic neurons, while weakened by uncorrelated activity or
lack of activity. Neural activity-dependent regulation is involved
in cell type specification, dendritic branching, synaptic
maturation and learning and memory through a complex
program of gene regulation (47). However, this theory does
not explain to date whether and how activity-dependent
September 2020 | Volume 11 | Article 540676
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mechanisms sort out neurons during neurogenesis. Two
sequential waves of programmed cell death (PCD) regulated
each by two distinct gene programs occur at the cortex subplate
during embryogenesis and early postnatal life: a first wave at
ventricular (VZ) and subventricular zones (SVZ) that purges up
to 70% of progenitor cells showing spontaneous voltage-
dependent activity evolving to synchronized small networks;
and a second wave that further selects around ≈30% of mature
neurons at postmitotic zones once coherent neural circuits with
thalamocortical and cortico-cortical connections have been
established [reviewed in (48)]. According to our model, to
delete neurons by internal (self)-reactivity criteria, which goes
beyond neuron-quality control, the whole process evokes
striking similarity with the two independent PCD waves of
positive and negative selection of lymphocytes during
thymopoiesis in: developmental timing (embryonic and
postnatal); stepwise functional segregation according to cell
activity (primarily of inactive progenitor cells and of
synaptically-driven maturing neurons afterwards); cell
specification and migration-maturation gradient; balanced
specific excitatory and inhibitory cell subsets (49–52). We
suggest that PCD purges primarily those neurons that do not
show a reaction to internal self-signals and afterwards
eliminates those that overreact to these internal signals (11).

-In vitro and in vivo findings support that endogenous
spontaneous firing rates at the neocortex may guide PCD
waves during neurogenesis (53, 54). It remains unclear
whether this neural activity functions in an instructive or
in a permissive way, that is, if there are specific patterns of
neural activity leading the neuronal fate; or in the contrary, it
is that the mere presence of neural activity is sufficient for the
neuronal survival. In fact, it has been described a rich
repertoire of organized spontaneous activity patterns
within the neocortex intra utero and perinatally, whereby
depolarization of transmembrane voltage potentials above a
certain threshold affects neurons survival and network
organization (52, 55–57). By analogy to the presentation of
the wide array of body self antigens (ectopically) to
lymphocytes during thymopoiesis for self instruction, we
hypothesize that the neurogenesis harbors the huge cast of
self electrical signals that will instruct and select by PCD the
repertoire of neocortical neurons. If this is so, the search of
promiscuous gene expression within the cortex of those self
electrical signals to promote self tolerance—the equivalent to
the autoimmune regulator (AIRE) gene by thymus stroma—
would be of great interest. We have not found experiments
addressing specific-spike series or specific molecules within
the SVZ/subplate in relation with differential neuronal
sorting and circuit formation that may explain specific
pattern-dependent regulation in neuronal segregation.

-Experimental models of cortical neurons xenotransplantation
may shed light on the issue of a potential host self brain instruction.
After single human pluripotent-stem cells (PSC)-derived cortical
neurons xenotransplanted to the neonatal (P0/P1) mouse brain
into the subplate, neurons integrated in the mouse cortex. Around
17% of transplanted single neurons matured and displayed
Frontiers in Psychiatry | www.frontiersin.org 4
responses to sensory stimuli that resembled those of the host
neurons, stressing the specific nature of the circuitry. The authors
suggested that the host brain provided not only permissive
environment but also instructive cues regulating precise circuit
formation (58). The host self instruction in human neurons
seemed to be restricted during maturation at subplate by
presynaptic partners (thalamus or cortex). The experiment was
performed in neonatal mice, showing ulterior fine-tuning to
external stimuli. By contrast, very limited synaptic integration
results when the PSC-derived human cortical neurons were
transplanted in bulk into the mouse cortex, which are less
accesible to receive inputs from the host brain (59).

ii. The presence of specific excitatory (E) and inhibitory (I)
neuron subsets within the neocortex assures homeostasis and
functionality.

-A cortical organoids model from induced-PSC generates E
and I neurons, i.e. glutamate and gamma-aminobutyric acid
(GABA) neurons, respectively, which account for the generation
and maintenance of oscillatory activity and synchronization of
the network. Small-scale functional electrophysiological networks
by these neurons subsets coordinate information flow resembling
preterm neonatal brain activity (60). Inhibitory neurons act as a
necessary “self-check” for excessive or prolonged responses by
which the cortex precisely regulates functional effective
connectivity. Impaired E/I balance is associated with several
diseases, such as epilepsy and SZ.

-Stimulus-specific E and I assemblies have been described in
the ferret primary visual cortex (61) and posterior parietal
cortex of mice (62), pointing to selective inhibition by
GABAergic neurons, similarly to antigen-specific regulatory T
cells, controlling excessive responses and maintaining
homeostasis and tolerance to self.

Recent work has shown that positive selection of I neurons
(early postnatally) occurs and is coordinated by activity-
dependent connections to E neurons (63, 64). The
generation of the combinatorial code of unique neuron-tag
molecules, such as protocadherins (65), seems to regulate a
critical window of PCD of cortical interneurons (66).
Adequate balanced networks of I and E neurons is adjusted
by consecutive waves of PCD (48, 63)-. This phenomenon
further supports the concept of neuron-specific selection by
self E neurons, providing an evolutionary advantage for
the rapid increase in pyramidal neurons in the primate
lineage (63).

iii. Lesion studies can yield valuable information about the
putative contributions of neural selection in utero to cortex
functionality.

-Malformations of the cortical development (MCD) may
be due to a broad array of disorders that disrupt the tightly
spatiotemporally orchestrated process of neurogenesis
(proliferation, migration, differentiation, synaptogenesis,
apoptosis, synaptic pruning). MCD may affect the neuronal
pool and connectivity of specific circuits, causing a wide
spectrum of cognitive deficits, seizure disorders or
neurospychiatric diseases, such as schizophrenia or autism (67).
Depending on the time and degree of the neurodevelopmental
September 2020 | Volume 11 | Article 540676
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insult, clinical onset can be delayed (latency) thanks to
compensation mechanisms through E-I interactions or other
plasticity mechanisms, or to the time lapse to acquire a task
that relies upon the specific neurobiologic substrate. A main
feature is thus the fine regional and functional specificity of the
affected neocortical neurons, which translates into
hyperexcitability (anti-self) interfering their related circuits.

-The self brain hypothesis can be fully integrated into the
programmed changes described for differentiation
and maturation sequences of cortical neurons during
neurogenesis and also provides a new dimension to the whole
biological process. Defects or interferences in these
developmental changes would result in excess of specific
autoreactive E neurons, contributing to the hyperexcitability
and ultimately in epilepsy. The view we present here might add
conceptually important elements to the understanding of
epileptogenesis. Accumulative or dysbalanced action potential
firing of individual autoreactive neurons may disrupt the
ensemble of specific circuits. The earlier the insult, the more
severe or intractable the disorder, with persistent deleterious
effects despite the high plasticity of the immature brain (68, 69).
Subtle alterations on electrical activity during neurogenesis
affect neuronal segregation and connectivity, and can cause
many forms of epilepsy. These observations may suggest that
specific features of neural activity (rather than just the presence
of neural activity) are important for the neuronal selection
during neurogenesis, pointing to the hypothesis that
endogenous specific neural activity is instructive for neuronal
selection within the neocortex. This fact may also reflect the
purging function of non-reactive or highly self-reactive
neurons. Our theory may also provide the basis for
therapeutically significant avenues of development. Currently
available pharmacological treatments of epilepsy are mainly
symptomatic, none is curative or preventive. Moreover,
anticonvulsivants show suboptimal effectiveness with long-
term detrimental neurologic effects. New functional tools
based on specific cellular resolution biomarkers to identify the
hyper-reactive E neurons populations may favour new
therapeutical interventions to selectively block these circuits.
Also, these neuronal resolution biomarkers could propel the
dissection of specific circuits and hopefully the development of
new drugs based on pathophysiological mechanisms.

-Gene lesions associated to control of apoptosis during
neurogenesis underlie several types of MCD, resulting in
epileptogenesis when not to perinatal lethality (70). Given
that genes and epigenetic modifications regulating the
survival of specific populations of neurons are now
beginning to be elucidated, advances within the field will
foster progress in understanding cortical neuron segregation
and neural circuits during neurogenesis (48, 71).

-Murine models of MCD, in which targeted chemical and
physical insults during early development within the SVZ
induce pronounced cortical hyperexcitability and reproduce
the pathological and clinical findings of congenital forms of
epilepsy [reviewed in (72)]. Timing and location (region and
layer) of the induced lesion are key to the MCD clinical
Frontiers in Psychiatry | www.frontiersin.org 5
expression, suggesting that specific alteration of neuronal
seggregation processes lead to hyperexcitability and altered
connectivity.

iv. Our hypothesis challenges the currently accepted alternative
hypothesis of “instruction from external inputs”:

-In the auditory system, the selection and wiring of
neocortical neurons within central sensory areas precedes
the formation and priming of sensory receptors, circuits that
will be refined later on by external inputs (73, 74). Before
hearing onset, the precise temporal pattern of spontaneous
pre-hearing activity is crucial for the formation of precise
tonotopy in the central auditory pathway, supporting the
role of self-instruction orchestrated development.

-Extreme examples or experiments of nature, such as
complete unimodal sensory deprivation or anophthalmia
(bilateral congenital absence of eyes) may give relevant insight
into this issue. The connections patterns of organization in the
cortex visual areas in the absence of retinal waves and visual
experience of anophthalmic patients are not significantly
different from normal sighted individuals (75–77). This
finding may suggest that the visual retinotopic architecture of
the neocortex does not primarily depend on external sensory
instruction, but that in utero neural activity primarily shapes
functional properties of cortical networks (75, 77).

Therefore, from many directions we find support for the
working hypothesis that self/nonself discrimination is the result of
a biological process primarily instructed from early neurogenesis by
host self signals, to build an extensive repertoire of neocortical
neurons. In both the IS and the CNS, each post-selection repertoire
would thus represent, respectively, a mirror image of the immune
and neurological reality that we are able to sense and with which we
can constantly interact (Figure 1). This primary neuronal repertoire
and neural circuits will be secondarily refined by external inputs
during development, an activity-dependent process that is plastic.
The entire process would endow the brain with a cell basis for
consciousness and hence self-consciousness.
CONCEPTUAL, CLINICAL AND
EXPERIMENTAL ARGUMENTS OF
AUTOPHRENIC DISEASE. REVISITING
SCHIZOPHRENIA

In order to formulate a general scheme and a case example, we
will firstly take advantage of the well-established criteria defining
autoimmune disease (AD) (78) to draw the principles of
autophrenic disease in order to evaluate the self model in brain
pathology (Table 1). Secondly, we will apply these principles to
predict SZ pathophysiology. ADs are multifactorial conditions
that result from the complex interplay of risk and protective
factors, in which autoreactive T lymphocytes induce specific
tissue damage or dysfunction. Intrinsic (genetic, epigenetic,
endocrine, and psychoneurological), extrinsic (environmental),
and stochastic factors induce cumulative effects that eventually
September 2020 | Volume 11 | Article 540676
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lead from health to illness, with a waving course. A key
pathophysiological role of innate immunity in AD has been
unveiled (98). An interesting phenomenon is how disparate AD
share immune mediators (autoimmune tautology) (99), while
differ in the target tissue or organ, highlighting that specificity is
given by the antigen-specific autoreactive T lymphocytes. A pro-
inflammatory/anti-inflammatory cytokine imbalance favours
differentiation and amplification of these target-specific
autoreactive T lymphocytes.

On the basis of this proposed neurobiological self model,
the nomenclature autophrenic disease designates complex
multifactorial diseases in genetically susceptible individuals,
modulated by endocrine and immunological factors, as well as
psychological events in life (11). They define excessive or aberrant
responses of autoreactive excitatory cortical neurons to specific
endogenous neural inputs and/or defective inhibitory neurons,
which disrupt certain cortical brain structures and functions
(Figure 2). Similarly to autoimmune tautology, a cortical E-to-I
neurotransmitter imbalance characterizes autophrenic diseases. By
analogy with autoimmune pathogenesis, evolutionarily ancient
brain structures (in particular the limbic system) would be
expected to play a primary role. To complicate the scenario even
further, autophrenic disease may be triggered by autoimmunity, as
autoreactive T lymphocytes can target specific neurons’ subsets
(92, 93).

SZ is a prevalent mental disease characterized by a severe and
disabling course in which the rupture of the psychic self is nuclear to
the disease (100). Endocrine factors, such as male predominance,
clinical onset in adolescence or early adulthood, and worsening at
Frontiers in Psychiatry | www.frontiersin.org 6
postpartum may play a part, coincidentally with cognitive
maturation of the prefrontal (PFC) and parietal cortices (101, 102).
Foetal and early childhood immune priming, such as maternal
infection or active brain inflammation, are strongly associated with
susceptibility to disease (103). Cumulative evidence across different
experimental approaches (copy variant numbers, rare and de novo
variants, genome wide association analysis, transcriptome and 3D
genome structures) has restored its original conception as a
neurodevelopmental disease, which stretches the way back to
neurogenesis during embryonic development (88, 104, 105). SZ
shows strong heritability estimated from twin studies of 79% (106,
107), while is highly polygenic with very low individual impact. Main
mutations involve synaptic connectivity and chromatin remodelling
(108). Transcriptome analyses of epigenetic regulated genome have
revealed specific cell-type-dysregulation in the frontal lobe of SZ
patients (109–111). In addition, a role of activated microglia during
neurogenesis that affect neuronal segregation and connectivity has
been hypothesized (112, 113). It is postulated that SZ is a
heterogeneous large scale dysconnectivity syndrome (114).
According to age of onset, SZ has been classified in a rare but
severe childhood form with widespread cognitive impairment; and
an early adult form with predominantly PFC-related verbal and
executive abilities decline (115). Hallucinations and passivity
phenomena (delusions of alien control), with disrupted
discrimination between the external and internal inputs, are
cardinal to SZ. In particular, auditory (audible thoughts, voices
arguing and commenting about the patient in third person), visual
and cenesthesic hallucinations are common (first rank symptoms).
Overactivity in primary and secondary sensory areas seem to be
FIGURE 1 | Scheme of the normal IS and CNS development, maturation and functioning based on self education. During the generation of T lymphocytes in the
thymus, it occurs a multi-step process of selection in which the great majority of highly self-reactive T cells die, leading to an immunocompetent and self-tolerant pool
of naïve T lymphocytes. Clonal deletion is incomplete, as many self-reactive T cells find their way to the periphery where they constitute a constant risk for the
development of autoimmune disease. During neurogenesis, the effective removal of most autoreactive neurons relies on a coordinated multi-step selection, where
most low reactive neurons to self would be able to discriminate external signals. A number of selection mechanisms is of fundamental relevance for neocortical
neuron development, responsiveness to external signals and tolerance induction to internal signals. Matching of electrical signals through sequential layers allows
combinatorial signals with increasing complexity in a unique and extremely precise way.
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involved in aberrant gamma oscillations to endogenous inputs from
pyramidal neurons (83) despite absence of actual external stimuli
(81, 82, 85). Some authors have explained this aberrant neuronal
firing to inner signals in terms of feed-back loops and distant
connectivity involvement with excessive expectation, by which
altered recognition of endogenous signals were misattributed as
coming from an external source (79). Experimental evidence
suggests that SZ patients show similar or even outperform healthy
controls on visual discrimination skills. More difficult is to explain
negative symptoms (e.g., alexithymia) in terms of self, which might
be understood by local and long-scale brain connectivity
disturbances (80, 114).

The E/I imbalance is considered key for SZ pathophysiology
(116). However, the non-uniform distribution of the E/I
imbalance—such as distinct hyper- o hypodopaminergic (117)
Frontiers in Psychiatry | www.frontiersin.org 7
and hyper- or hypogabaergic brain regions and cortex areas
(118)—suggests their secondary role in SZ pathophysiology. This
uneven distribution dampens the therapeutic efficacy of current
drugs. A profound defect in inhibitory GABAergic interneurons
has long been established as the most common finding (119).
GABAergic defect is region-specific, with decreased expression
of the neurotransmitter GABA, decreased ability to generate
gamma oscillations, decreased GABA receptors and low
inhibitory neuron markers at the basal ganglia, the visual
cortex and in the cerebrospinal fluid (120). In contrast, GABA
is increased at PFC in unmedicated patients (188, 121). Excessive
dopamine and glutamate (due to hypofunctioning N-methyl-D-
aspartate receptors) within the hippocampus and striatum (79,
122), account for overactivity of the primary and secondary
sensory areas that induce misperceptions, while both
TABLE 1 | Model of autoimmune disease criteria proposed by Rose and Bona based on 1957 Witebsky’s postulates (78).

AUTOIMMMUNE DISEASE AUTOPHRENIC DISEASE

Concept - Excessive or inappropriate adaptive immune response
against the antigens of the body itself (autoAg)
- Loss of tolerance to autoAg
- Tissue damage and/or dysfunction, chronic inflammation

- Excessive or inappropriate specific excitability against the neural signals of the body
itself
- Loss of tolerance (inhibition) to self-signals
- Alteration of specific cortical region architecture and function (local and distant)

Direct
evidence

- Activation of autoreactive T lymphocytes or autoAb
targeting Ag-specific tissues or organs

- Disease-specific highly autoreactive excitatory cortical neurons and engrams at
specific brain regions (hyperactivity of sensory cortices during hallucinations) inducing
disrupted connectivity and cortical dysfunction (79–83)
- Cortico-subcortical hyperconnectivity within sensorymotor areas, while reduced PFC-
thalamic connectivity (84)

- Disease-specific autoAb inducing dysfunction (cell
damage, binding to inhibitory or stimulatory receptor or
enzyme or hormone)
- Replication of disease by passive transfer of pathogenic
autoAb/autoreactive T lymphocytes

- Replication by disinhibitory action of NMDAR antagonists (i.e. ketamine) through
blockade of E-to-I synapses

- Proliferation of T lymphocytes in vitro in response to
autoAg

- Hyperactivation of neurons in response to self-produced sensory stimuli (85)

- Induction of disease by xenotransplantation of human
target tissue plus sensitized T lymphocyte to severe
combined immunodeficient mice
- In vitro cytotoxicity of T lymphocytes towards cells of the
target organ
- Desensitization with low dose and repeated exposition to
autoAg

- Beneficial effects of non-invasive brain stimulation, such as slow rTMS (86) and direct
stimulation on auditory hallucinations and negative symptoms refractory to
antipsychotics to reduce brain excitability (87)

Indirect
evidence

- Genetically induced disease models
- Experimental immunization or animal models of
spontaneous autoimmunity

- Genetically induced disease models: abnormal patterns of oscillatory activity and firing
in PFC (88), but not HP in DISC1 knock-down mice (89)
- Experimental SZ by somatostatin interneuron dysfunction at PFC (90)
- 3D neural tissue model organoids 15q11.2 microdeletions (91)
- AutoAb targeting neuronal antigens that disrupt synapsis and cause functional
dysconnectivity in a subgroup of SZ (92, 93).

- AutoAb located at the site of lesion (as well as immune
complexes)

- Aberrant anti-self-firing synapses at affected regions (disturbed gamma band
synchrony) (94)

- Adoptive regulatory T cell therapy in autoimmune diseases
(95)

- Grafting of GABA-ergic progenitors can reduce seizures and psychosis (96)

Circumstantial
evidence

- Association with other autoimmune diseases.
- Shared mediators (AD tautology)

- Association with other autophrenic diseases: epilepsy (9% to 52%) (97), depression,
autism (30%), etc.
- Shared mediators among different neuropsychiatric diseases.

- High risk and protective HLA haplotypes, thymogenesis
and other immune-related genes

- Main neuron-specific genetic signatures (neuronal connectivity and synaptic plasticity).
- Protective HLA haplotypes

- Lymphocytic infiltration of the organ,
especially if there is a restriction in V gene usage

- Neuron-type-specific and cortical region-specific epigenetic linking genetic expression
signature.

- Favorable response to immunomodulation and
immunosuppression.

- Favorable response to neurotransmitters’ inhibitors, anti-epileptic medications, lithium,
electrostimulation (rTMS and transcranial direct or alternating current stimulation) and
electroconvulsive therapy.
Ab, antibody; Ag, antigen, DISC1, disrupted in schizophrenia; HLA, human leukocyte antigen; E-to-I, Excitatory-to-Inhibitory; HP, hippocampus; NMDA-R, N-Methyl-D-Aspartate
receptors; PCF, prefrontal cortex; rTMS, repetitive transcranial magnetic stimulation.
Autoimmune diseases in strict sense must fulfil at least three criteria of direct evidence and most of those of indirect and circumstantial evidence. We show autophrenic disease postulates
in parallel and specifics applied to the case of schizophrenia.
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neurotransmitters are decreased at brain cortex. Conventional
therapies have been directed to modulate the E/I balance, with
partial effectiveness and potentially severe side-effects.

We suggest that E/I imbalance arises from dysregulation
between self-specific excitatory and inhibitory neurons (or
synapses) at circumscribed cortical areas. Involvement of the
cortical areas responsible for specific recognition and explicit
memory (primary and secondary sensory areas) might
underscore a perceptual basis of self-consciousness. Thus, the
dysregulation between self/nonself-reactive neurons would be the
key event in the autophrenic disease, with subsequent local E/I
imbalance and altered connectivity processing and metacognition.
In this context, our theory advocates for the identification through
single-cell resolution biomarkers of specific hyper-reactive neurons
and the ensemble of their circuits as a new means for better
understanding these diseases and for the exploitation of more
specific blocking strategies. Alternativelly, targeting specifically
GABA inhibitory neurons at the former circuits might be
effective to control hyperexcitability. Promising strategies
targeting specific cell types are being advanced by calcium
imaging (123). Selective optogenetic activation of individual
cortical neurons can trigger relevant ensembles and modify
behavioural responses in mice, supporting a causal link between
the cortical neuron (self-reactive neuron in our view) and learned
behavior (124, 125). In other order of strategy, a psychodynamic
approach would be interpreted as a means to “desensibilize”
Frontiers in Psychiatry | www.frontiersin.org 8
autoreactive neurons by modifying the context of presentation of
the input from MTL or basal ganglia.
DISCUSSION AND FUTURE
PERSPECTIVES

The IS and the CNS are genuine self-referential systems. The
analogies between the two systems for cell recognition and
memory strategies may support that general principles are
operating. In the IS, discrimination between self and nonself is
based on certain criteria of reactivity to self (46). Autoimmunity is
an implicit constituent of cell immune homeostasis. Its deregulation
may lead to autoimmune disease. In this work, we present a cell
brain self theory from an evolutionary biological perspective by
analogy with the immune self. At the cell level, we postulate that the
extreme precision of recognition and association that enables the
brain to perceive, memorize, anticipate, and to act is primarily
instructed by reactivity to self during early life, when main
neocortical structures and circuitries are organized. The implicit
assumption of the biologic brain self theory is that autophrenity is
consubstantial to brain physiology and homeostasis. Early life
individual environmental exposure is key to refine the functional
structure by means of a trade-off between chance (contingency) and
necessity (adaptation). As for autoimmunity, the concept of
autophrenity extends to self-regulation within the network.
FIGURE 2 | Imbalanced self/non-self education and discrimination. The research on monogenic autoimmune syndromes has shown the relevance of mutations
harbored by defined proteins of thymic selection processes and the development and activation of regulatory T cells. Environmental factors operating in a genetically
susceptible host may trigger or exacerbate the pathological autoimmune process, induce mutations in genes coding for immunoregulatory factors, or modify immune
tolerance or regulatory and immune effector pathways. Autoimmune diseases can affect any site and any organ system in the body. In parallel, monogenic
autophrenic diseases are related to protein mutations involved in cortical neurogenesis, synaptic plasticity and connectivity, and chromatin remodelling in specific
cortical areas or functions, which can affect any body’s function. The neocortex shows an extremely fine topography and plays essential functions of sensory, motor,
and cognitive processes. The autophrenic diseases so conceived may provide a better understanding of the complex neurobiology of neurodevelopmental disorders.
Although the autoimmune/autophrenic diseases affect specifically adaptive/explicit recognition, the pathophysiology is induced by alteration in evolutionarily more
ancient cells constraining adaptive response (i.e. antigen presenting cells and the limbic system, respectively).
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The actual role of the immune self/nonself principle to
determine the outcome of the immune response is finely tuned to
a spatio-temporal dimension. The response will depend not only in
the antigen per se but in anatomic location (site-specific) and
contextualization of the immune challenge (126). To illustrate the
point made, if any antigen is delivered, how this antigen will be seen
by the IS will be tuned by intrinsic (quantity, duration of exposition,
location, etc.) and extrinsic factors that will differentially impact the
response (effector against tolerant). Among the intrinsic factors, the
valence, perceived at the system level as danger/reward or as
discontinuity (surprise)/continuity (127), is key to the outcome
and mainly driven by innate immunity. Likewise, the response of
the CNS is not only determined by the stimulus per se but strongly
conditioned by the context of presentation through innate
structures (mainly the limbic system) as a danger/reward valence,
by evolutionarily more sophisticated feelings (128) and by previous
experience (129). This valence modulation has impressive
therapeutic potential and is being exploited in strategies as, for
instance, desensitization therapies in allergic diseases and by
cognitive-behavioural psychotherapies (130), respectively.

The structure of cognition is metaphorical, built on pattern
recognition at different scales (13). We endeavoured to explore the
neurologic self as a metaphor of the immune self at the cellular level,
which provides grounds for understanding complexity from another
biological system logic. Through this immune analogy, our
hypothesis provides a potential guiding principle, which may add
both biologically and, likely, therapeutically significant avenues
for development. The exploration by this approach of
cortical neurogenesis might offer a bottom-up explanation of the
system functioning as a whole, and a new insight into some
neuropsychiatric diseases.

The present work addresses the autophrenic disease by analogy
with autoimmune disease. Other approaches, such as computational
phylogenetic analysis of homologue genes, which code for the
receptor pathways of neocortical neurons across species, could
add complementary experimental verification of the theory, which
could trace the plausible evolutionary sequence. This theory
constitutes the basis for current ongoing work.

SZ semiotics is already shifting to link mental phenomena with
underlying neurobiological mechanisms (131, 132) given the
overlap among psychiatric manifestations and diseases. As long
as current theories about etiologically complex illnesses like SZ
remain open, we hope our theory will help to change SZ
understanding. Following this reasoning, our theory points at
Frontiers in Psychiatry | www.frontiersin.org 9
aberrant anti-self neuronal responses behind anti-self
neuropsychiatric disorders in a more meaningful dimension
from a biological point of view. The brain self theory opens a
new conceptual reflection on the gap between biological and
conscious self. In his incompleteness theorem, Kurt Gödel
decried the incapability for any formal system to be proven or
disproven from within the system. Given the inherent limitations
to consistently approach the functioning of the brain from brain
logic, our inferential perspective from an immune metaphor
would argue for its consistency. The brain self theory is beheld
by a number of biological, experimental, and clinical findings in SZ
that deserve further investigation. Typical positive SZ symptoms
like hallucinations may help to better understand how excessive
self-reactive excitatory neuronal activity of the neocortex may
compromise the discrimination between the external world and
internal experience and so alter the structure and connectivity of
affected areas and distant circuits.

We expect that an understanding of neurobiology in terms of
self at a wide-system functioning will open new targeted
therapeutic strategies in disparate anti-self brain diseases and
hopefully inspire further investigation.
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