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The authors review the opioid literature for evidence of increased analgesia and reduced adverse side effects by combining mu-
opioid-receptor (MOR) agonists, kappa-opioid-receptor (KOR) agonists, and nonselective low-dose-opioid antagonists (LD-Ant).
We tested fentanyl (MOR agonist) and spiradoline (KOR agonist), singly and combined, against somatic and visceral pain models.
Combined agonists induced additive analgesia in somatic pain and synergistic analgesia in visceral pain. Other investigators report
similar effects and reduced tolerance and dependence with combined MOR agonist and KOR agonist. LD-Ant added to either a
MOR agonist or KOR agonist markedly enhanced analgesia of either agonist. In accordance with other place-conditioning (PC)
studies, our PC investigations showed fentanyl-induced place preference (CPP) and spiradoline-induced place aversion (CPA).
We reduced fentanyl CPP with a low dose of spiradoline and reduced spiradoline CPA with a low dose of fentanyl. We propose
combined MOR agonist, KOR agonist, and LD-Ant to produce superior analgesia with reduced adverse side effects, particularly
for visceral pain.

1. Introduction

This paper supports, with scientific references, the hypoth-
esis of a clinical utility of combinations of moderate doses
of (a) a selective mu opioid receptor (MOR) agonist, (b) a
selective kappa opioid agonist (KOR), and (c) ultralow doses
of a nonselective opioid antagonist. The authors propose this
triple opioid combination to produce a superior analgesic
profile while reducing adverse and possibly lethal side effects
of MOR and KOR agonists. Whereas somatic and neurogenic
pain of short and long terms may be controlled with use
of the proposed combination, the treatment should be most
effective in allaying chronic visceral pain.

2. The Need for Improved Opioid Analgesic
Drug Regimens

MOR agonists such as morphine, methadone, fentanyl, hy-
drocodone, and oxymorphone are very effective analgesics,
and about 23 million prescriptions are dispensed each year

for extended-release and long-acting opioids alone, which
represented about 10 percent of the opioid market in 2009
(April 19, 2011, teleconference with Janet Woodcock, M.D.,
Director, Center for Drug Evaluation and Research, U.S.
Food and Drug Administration). The beneficial effects of
the opioids are frequently compromised by development of
tolerance, dependence, hyperalgesia, addiction, and respi-
ratory, and cardiovascular toxicities, the latter two leading
too often to fatal consequences (White and Irvine [1]; “The
Hill”: Pecquet (4/19/11): “Healthwatch” blog reported, “As a
first step, the FDA sent letters to opioid manufacturers on
Tuesday requiring that they provide a plan for training and
educating patients about the safe use, storage and disposal
of opioids. They have 120 days to respond, setting in place a
regulatory process that officials hope to have in place within
12 months. ‘We have determined that a Medication Guide
Communication plan is not sufficient to mitigate the serious
risks,’ the letters state. ‘Your (strategy) must include tools to
manage these risks.’ The FDA missive was sent to producers
of Dolophine (methadone); ms Contin, Kadian, Avinza,
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Embeda, Oramorph (morphines), Oxycontin (oxycodone);
Exalco (hydromorphone); Duragesic (transdermal fentanyl);
Butrans (buprenorphine); and Opana ER (oxymorphone)”;
Hardman et al. [2]; Smith et al. [3]). Coop, who served for
years as US Surgeon General, and his colleague MacKerell
[4], urged the medical community to devise more effective
and safer drug combinations of opioids. More recently, the
FDA has now imposed new risk evaluation and mitigation
strategy (REMS) requirements on marketers of extended
release and long-acting opioids. This agency interaction thus
supports the need for improvements in the way that opioid
analgesics are prescribed and used.

Smith also called for improved analgesics, indicating that
there were no ideal opioid preparations [5]. He pressed
for the study of combinations to enhance analgesia while
reducing unwanted side effects in 6 categories: (a) to prolong
analgesic duration, (b) to increase analgesic efficacy (syn-
ergy), (c) to diminish or minimize adverse side effects, (d)
to reduce nonbeneficial effects, (e) to reduce tolerance and
development of hyperalgesia, and (f) to decrease dependency
and addiction liability. Piercefield et al. [6] cited many
overdose deaths in the United States that were related
to methadone and other MOR agonists, mainly among
males 35–54 years of age. In addition to significant opioid
abuse, lethal outcomes occur due to provider and patient
unfamiliarity with proper dosing regimens to ameliorate
these problems with opioid dosing. Williamson et al. [7]
indicated that many preventable overdose deaths occurred
with methadone use in Australia, both prescribed and
illegally diverted. Indeed, globally, risk of serious medical
consequences of opioid use has not decreased and there
remain specific therapeutic needs for safer and more effective
opioid preparations.

3. Initial Studies with Mixed Opioid Agonists

The staff at Dr. Rech’s Michigan State University neuropsy-
chopharmacology research laboratory began animal studies
with mixed opioid agonists in the 1980s, seeking an improved
opioid analgesic agent against colorectal distension (CRD)
nociception (visceral pain model) in feline subjects (Sawyer
et al. [8], Sawyer & Rech [9], Sawyer et al. [10]). Feline
subjects react to MOR agonists with a manic-like disori-
ented excitation, having dominant brain excitatory opioid
receptors (Robertson and Taylor [11]). This prompted us
to seek a calmer, sedating analgesic response with KOR-
agonist activity. While these cats reacted to oxymorphone
with agitated excitement, a different behavior was seen
when they received the mixed action MOR/KOR agonist
butorphanol subcutaneously (s.c.). The subjects remained
quiet and even purred when petted over the first postdrug
hour, with a moderate antinociceptive response that showed
a ceiling effect. During the second postdrug hour, as
the butorphanol antinociception waned, the cats became
irritable. They flinched when touched and startled to a sharp
noise. Nalbuphine and pentazocine, agonist-antagonist KOR
agents, had less effective antinociception and exhibited a
second-hour phase of irritation similar to that seen with
butorphanol.

Canine subjects were also tested for butorphanol anti-
nociception in the CRD procedure (Houghton et al. [12];
Sawyer et al. [13]). This species, which possesses dominant
brain inhibitory opioid receptors, was calm and sedated dur-
ing the first hour after butorphanol or oxymorphone injec-
tion. During the second hour butorphanol-treated dogs re-
acted with irritability similar to that phase observed in the
cat. Pain relief was similar to that in feline subjects, but was
accompanied by a slight respiratory depression and reduced
heart rate. Thus, in both species, butorphanol’s MOR agonist
component was evident during the first postdrug hour,
whereas KOR-agonist signs of agitation emerged during the
second postdrug hour.

In a later study, Dr. Briggs et al., as a graduate student,
examined the interactions of butorphanol combined with
oxymorphone in the cat [14]. The combined drugs exhibited
synergistic antinociception in the CRD over the response to
each drug administered separately, but without the initial
phase of excitement seen with oxymorphone alone.

4. Studies of Selective MOR
and KOR Agonist Antinociception,
Alone and Combined

These experiments were performed with Dr. Briggs and
supported her thesis dissertation under Dr. Rech’s men-
torship (Briggs, S.L.: Interactions of mu- and kappa-
opioid agonists, Michigan State University, 1996). In these
experiments, the selective KOR-1 agonists spiradoline and
enadoline, as well as the selective MOR agonist fentanyl,
were tested for antinociception in the cold-water tail-flick
(CWTF) assay (Briggs et al. [15]). The CWTF assay, a
somatic pain nociceptive test, was chosen since Pizziketti
et al. [16] found it to be efficient and sensitive to both
opioid agonists. The opioids tested in these experiments
were shown to be full agonists for maximal antinociception.
Both spiradoline and enadoline were as efficacious, but
less potent analgesics than fentanyl. Furthermore, naloxone
(NLX), a nonselective opioid antagonist, attenuated both
fentanyl antinociception, at 0.1 mg/kg, and KOR-agonists
antinociception, at 0.5 mg/kg. Fentanyl antinociception was
markedly reduced in methadone-tolerant animals, whereas
spiradoline antinociception was unchanged. Spiradoline
antinociception was nullified by pretreatment with nor-
binaltorphimine (n-BNI, KOR-1-specific antagonist). Fen-
tanyl antinociception was abolished by beta-funaltrexamine
(b-FNA, MOR-specific antagonist). And, as expected, b-FNA
pretreatment did not alter spiradoline antinociception, nor
did n-BNI pretreatment alter fentanyl antinociception.

Fentanyl and spiradoline were also tested in rats for pain
relief in the CRD procedure, a visceral pain model, along
with oxymorphone and enadoline (Briggs and Rech [17]).
All showed fully effective antinociception when administered
separately. Combining fentanyl and spiradoline produced
additive (low doses) or supra-additive (high doses) effects.
The supra-additive combination was attenuated by either b-
FNA or n-BNI (greater with the latter). When b-FNA and n-
BNI were tested against the antinociception of single doses in
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CRD, paradoxical effects again occurred: the fentanyl effect
was not antagonized by b-FNA, whereas the spiradoline
effect was. Thus, complex paradoxical interactions took place
in the CRD test, as opposed to the expected results as seen
using the CWTF procedure.

Rech combined fentanyl and spiradoline in the CWTF
(see Briggs et al. [15] above), to test for an additive anti-
nociceptive response in rats (not previously published).
In this last test, respiratory depression to fentanyl alone
(0.008 mg/kg) was reduced when fentanyl (0.004 mg/kg)
and spiradoline (0.56 mg/kg) were combined in ED50 doses
to yield comparable antinociceptive levels for agonists
given singly. This result resembled those respiratory effects
reported by Verborgh et al. in rats [18] and Houghton et
al. in dogs [12], both of which showed reduced respiratory
depression to a MOR agonist by combining it with a KOR
agonist.

An article by Negus et al. [19], which described results
somewhat similar to the CRD and CWTF studies in rats by
Briggs and Rech [17] and Briggs et al. [15], is reviewed here
for comparison and contrast. Negus et al. tested fentanyl and
U69593 (KOR-1 agonist) interactions in monkeys in three
behavioral assays: (a) schedule-controlled responding for
food (fixed ratio 30), (b) thermal nociception (50◦C) for tail-
withdrawal latencies (somatic pain model), and (c) schedule-
controlled self-administration of both agonists, alone and
combined. In the food assay both agents reduced rate
of responding, and combined drugs produced subadditive
effects. Both drugs alone induced dose-dependent antinoci-
ception, and combined drugs yielded additive antinocicep-
tion. In the self-administration assay, fentanyl maintained
responding for the drug, whereas U69593 did not. Combined
drugs caused reduced self-administration levels with increas-
ing fixed-ratio values. Thus, activation of both mu and kappa
receptors with combined drugs appeared to reduce addiction
liability while maintaining the additive decrease in pain.

A conventional wisdom indicating that combined MOR
and KOR opioids had no role in pain relief is likely to have
been related to interactions with the early KOR agonist-
antagonists, pentazocine, and nalbuphine. After develop-
ment of selective KOR-1 agonists by The Upjohn Com-
pany, some studies that were performed by non-Upjohn
researchers with U-50,488H continued to report antagonism
of MOR-agonist antinociception by U-50,488H, as follows.
Pan et al. [20], Pan [21], Bie and Pan [22], and Tershner et
al. [23] studied microinjections of the agents into brainstem
nuclei. They showed KOR agonists to antagonize MOR-
agonist antinociception using a somatic pain (tail-flick) test.
The same group (Meng et al., [24]) tested rats with U69593
microinjected into the brain stem-rostral-ventromedial
medulla (RVM), using tail-flick latency and RVM activity.
The KOR agonist was proposed to be either pronociceptive
(direct effect on “OFF cells”) or antianalgesic by presynaptic
and postsynaptic inhibition of glutamate inputs to RVM OFF
cells.

In 2002, McNally and Akil authored a book chapter
[25] on opioid pain modulation, emphasizing that KOR
agonists antagonized MOR-agonist analgesia. In contrast to
that emphasis on antagonism of MOR-agonist activity by

KOR agonists, there are many references (presented below)
which support the utility of combined MOR- and KOR-
agonists for synergistic action in the relief of pain. But
prior to presentation of this listing, a review of the role of
ultralow-doses of nonselective opioid antagonists is provided
below. Ultralow doses of nonselective opioid antagonists, in
combination with MOR and KOR agonists, are proposed
here as representing a potentially superior clinical treatment
to reduce pain, especially of the visceral type.

5. Ultralow-Dose Effects of
Nonselective Opioid Antagonists

Naloxone (NLX) and naltrexone (NTX), in doses 50 to
150 times less than those used to antagonize antinocicep-
tion of MOR and KOR agonists, have induced surprising
effects in experimental models. Shen and Crain found
these doses of antagonists to markedly enhance mu-opioid
agonists’ antinociception. Tolerance, physical dependence,
and opioid-induced hyperalgesia were reversed to marked
analgesia, along with reduced side effects [26–30]. These
paradoxical results were defined more fully by Angst and
Clark in a review [31], presenting the concept of competing
opioid excitatory and inhibitory receptors in mammalian
nervous systems, expressing the activation of excitatory mu
receptors as opioid-induced hyperalgesia (OIH).

Tilson et al. [32] originally described hyperalgesia in rats
following 3 days of s.c. morphine administration, followed
by withdrawal. The morphine antinociceptive threshold
in an electrical nociceptive tail-flick test was found to
be reduced to 30 percent below the control (saline s.c.)
nociceptive response. The authors offered the results as a
measure of the intensity of morphine withdrawal. Low-dose
nonselective antagonist effects on MOR excitatory opioid
receptor mechanisms have been reported by many other
researchers (see Christrup [33], Chu et al. [34], Field et
al. [35], Powell et al. [36], Juni et al. [37], Abul-Husn et
al. [38], McNaull et al. [39], and Tsai et al. [40]). Similar
interactions between low-dose antagonists and KOR agonists
occur, though less dramatically, in enhanced KOR-1-agonist
effects on excitatory KOR opioid receptors. Examples are
reports by Clemens and Mikes [41], Largent-Milnes et al.
[42], Sloan and Hamann [43], and Webster et al. [44].

6. Other Antinociceptive Interactions of
KOR Agonists in Animals

Bhargava et al. [45] determined that KOR activation by
U-50,488H did not modify the development of antinoci-
ceptive tolerance to morphine in rats. However, Bie and
Pan [22], cited earlier, found KOR agonists injected into
the brain stem nucleus raphé magnus to attenuate MOR-
agonist antinociception (to tail-flick, somatic pain model).
Withdrawal-induced hyperalgesia, presumably by inhibition
of glutamate transmission, was also suppressed. Black and
Trevethick [46] proposed that KOR activation was especially
effective in suppressing visceral pain (also see Yaksh [47]).
Disrupting the KOR gene in mice impaired KOR-agonist
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antinociception of visceral pain and attenuated morphine
withdrawal (Simonin et al. [48]).

U-50,488H antagonized respiratory depression of
DAMGO (MOR-agonist peptide) and morphine, the effects
being reversed by the antagonist n-BNI (Dosaka-Akita et al.
[49]). Field et al. found enadoline (KOR-1 agonist) to reverse
hyperalgesia and allodynia in a rat model of surgically
induced pain [35]. The KOR agonist peptide Dynorphin
A-(2–17) reduced morphine tolerance in mice (He and Lee
[50]). KOR-agonist activity in rat periaqueductal gray was
found to attenuate morphine tolerance and dependence
(Herra’ez-Baranda et al. [51]). Jang et al. [52] used nalbu-
phine to block morphine tolerance and dependence in rats.
Khotib et al. [53] injected U-50,488H s.c. for 7 days in mice,
upregulating morphine receptor function and enhancing
antinociception. Ko et al. [54] injected U-50,488H into mon-
keys to reduce morphine-provoked pruritis, while main-
taining or enhancing the antinociception effect of morphine.

As described in a series of articles, Sutters et al. [55],
Miaskowski et al. [56, 57], and Miaskowski and Levine [58]
microinjected DAMGO and U-50,488H intracerebroventric-
ularly (i.c.v.) and intrathecally (i.t.) to test antinociceptive
interactions against mechanical nociception (visceral pain).
They obtained antagonistic or enhanced effects, the latter
with reduced side effects of both agonists. Most combi-
nations resulted in synergistic antinociception, the greatest
with i.c.v. DAMGO and i.t. U-50,488H. Mechanisms were
proposed involving multiple brain-spinal ascending and
descending neuronal loops, with mu and kappa receptors
at junctions of shared components. Background evidence
relating to these concepts was presented by Yaksh [47] and
his colleague, Schmauss [59]. They had mapped MOR and
KOR receptor sites with microinjections into brain stem and
spinal-dorsal-horn sites, microinjecting agonists and testing
for somatic (thermal tail-flick) and visceral antinociception
(writhing). These studies demonstrated that somatic and
visceral pain, along with their suppression, are mediated by
distinctly different pathways.

Ren et al. [60] administered i.t. subanalgesic doses of
morphine and dynorphin A (1–13) in combination, which
resulted in marked antinociceptive synergy, assessed by tail-
flick latency in rats. However, when dynorphin A (1–13)
was injected i.c.v., the pain relief from i.c.v. morphine
was markedly antagonized. Therefore, combined MOR- and
KOR-agonist effects greatly depend upon sites of administra-
tion. Ross and Smith [61] and Nielsen et al. [62] determined
that acute oxycodone antinociception was attenuated by
pretreatment with n-BNI, and that oxycodone and morphine
had distinctly different profiles of action, convincingly
proving oxycodone to be a KOR agonist. With chronic use,
however, oxymorphone, the major metabolite of oxycodone,
accumulates, adding a MOR-type antinociception to the
effects of oxycodone. In humans, however, oxycodone is
metabolized to oxymorphone in too low amounts (10%) to
affect pain relief (Chinalore et al. [63], Tompkins et al. [64],
and Zwisler et al. [65]). However, Ross et al. [66] combined a
low dose of oxycodone with morphine in rats, i.c.v., i.p, and
s.c., to cause synergistic antinociception, along with reduced
central nervous side effects.

Schepers et al. [67] described results of Harley and
Hammond using acute microinjections of MOR and KOR
agonists into rat brain-stem rostral-ventromedial medulla
(RVM) to yield a thermal antinociception that was potenti-
ated in the presence of an inflammatory condition. Schepers’
group extended those studies by injecting rats with complete
Freund’s adjuvant (cFA) into a paw plantar region to
promote inflammation (a chronic visceral pain process). Two
weeks later antinociception was induced by infusion into
RVM of U69593 or DAMGO over 4 hours. Paw withdrawals
were assessed by Hargreave’s method. Mechanical thresholds
with von Frey and Randall-Sellito methods were obtained,
after which infusion of each drug produced prominent
antinociception. Millan [68] tested U-50,488H and U69593
in rats subjected to noxious pressure (visceral pain), thermal
and electrical stimuli. Prominent antinociception occurred
to pressure, a weak response was seen to thermal stimuli, and
the agonists were inactive to electrical shock (somatic pain).

Vonvoigtlander and Lewis [69] attenuated U-50,488H
antinociception in rats by pretreatment with reserpine and
p-CPA (brain 5-HT depletors). Spiradoline (U-62,0676)
antinociception, however, was little affected by the pre-
treatments. Ho and Takemori [70] determined that U-
50,488H pain relief in rodents was also blocked by pre-
treatment with 5-HT antagonists. These results suggest
that some U-50,488H effects may differ from those of
spiradoline and other arylacetamide KOR-1 agonists. U-
50,488H (3.2−10 mg/kg pretreatment) completely blocked
development of tolerance to chronic morphine in rats
(Yamamoto et al. [71]). U-50,488H (10 mg/kg) also restored
antinociception in morphine-tolerant animals. Other KOR
agonists (enadoline, dynorphin A-(2–17), and nalbuphine)
also reversed or blocked morphine tolerance, hyperalgesia,
and allodynia (see [35, 50–52] above). These results clearly
support the combined treatment with chronic MOR and
KOR agonists to maintain and enhance a persistent analgesia
as compared to effects of chronic MOR-agonist treatment
alone.

Systemic morphine and spiradoline were compared in
hot-plate, tail-flick, and acetic acid writhing in mice by
Kunihara et al. [72]. Spiradoline was more potent than
morphine, and tolerance developed to either agonist on
chronic treatment. Spiradoline pretreatment did not inhibit
the morphine antinociception in any test. Terner et al. [73]
pretreated rats with an ultralow dose of NTX before injecting
morphine in a thermal tail-flick paradigm. These studies
demonstrated that the morphine antinociceptive response is
enhanced after low-dose NTX pretreatment versus morphine
control antinociceptive scores. Furthermore, they indicate
that NTX reverses the development of tolerance to chronic
morphine treatment.

Sounvoravong et al. [74] compared morphine and U-
50,488H for tail-pinch antinociception in a neuropathic pain
model (sciatic nerve ligation). The morphine response was
weak, while the U-50,488H response was similar to that in
control mice. In a dynamic allodynia test, only U-50,488H
produced antinociception and a decreased hyperalgesia.
These findings suggest that KOR agonists are superior to
MOR agonists for control of these types of pain.
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7. Antinociceptive Interactions of
KOR Agonists in Human Subjects

Staahl et al. [75] also found that visceral pain in humans
was often difficult to control with MOR agonists. They
reported that oxycodone was superior to morphine for
treatment of some types of visceral pain. Gear et al. [76]
reported that nalbuphine increased postoperative dental pain
in male patients, but not in females. Pretreatment with
a subanalgesic dose of morphine reversed this response
to analgesia by antagonizing this nalbuphine antianalgesic
response in males.

8. Rewarding and Aversive Effects of
Opioids and Other Drugs Reflecting
Motivational (Mood) Influences

Early studies in motivational opioid effects were aggressively
pursued by Shippenberg and colleagues. Shippenberg et al.
[77] tested morphine and fentanyl for development of toler-
ance and cross-tolerance, and interaction with U69593 toler-
ance, in a place conditioning (PC) procedure. Noncontingent
morphine for 4 days induced tolerance to the development
of conditioned place preference (CPP) on training rats in
an unbiased multicompartment PC maze. Cross-tolerance
to fentanyl was also established. Noncontingent injection
of U69593 produced tolerance to the subsequent attempt
to train subjects to the KOR agonist for conditioned place
aversion (CPA). Pretreatment with non-contingent U69593
did not result in tolerance when morphine was subsequently
trained for CPP, however. Shippenberg et al. [78] treated rats
with complete Freund’s adjuvant (cFA) for 7 days to provoke
inflammation in a hind limb. Subjects were then trained for
U69593 aversion (CPA), which failed to develop. Therefore,
prolonged noxious inflammation by cFA interfered with the
development of a CPA response to the KOR-1 agonist. These
results were suggested as indicating potential clinical utility
of the agonist for management of chronic pain states.

Bals-Kubik et al. [79, 80] determined that aversive effects
of MOR antagonists and KOR agonists using PC were
centrally mediated. NLX (nonselective opioid antagonist)
and CTOP (MOR-selective antagonist) produced CPA after
s.c. or i.c.v. injections in rats. n-BNI i.c.v. did not induce
CPA, but U50,488H and E-2078 (a dynorphin derivative)
did. The opioids showing CPA were active in much lower
doses i.c.v. than with s.c. doses. The mechanism for drug-
induced aversion appears to be a blockade of brain mu
responses. Shippenberg et al. [81] sought more detailed
neurochemical bases for these motivational effects, thought
to involve mesolimbic DA neurons. The neurotoxin 6-OHDA
was microinjected bilaterally into the NAcc to abolish both
morphine CPP and U69593 CPA. Lesions with 6-OHDA
in some other mesolimbic nuclei did not affect the PC
scores. Microinjection of the D-1 DA antagonist SCH-23390
into NAcc attenuated the PC of both agonists. A D-2 DA
antagonist (sulpiride) was without effect.

To continue their studies of aversive opioid mechanisms,
Shippenberg and Bals-Kubik [82] microinjected NLX or

CTOP into either the ventral tegmental area (VTA) or
NAcc of rats to induce CPA. Lesions of NAcc with 6-
OHDA nullified the aversion from intra-VTA CTOP, without
modifying aversions from intra-NAcc CTOP or systemic
NLX. The authors submitted that aversive effects caused
by systemically administered opioid receptor antagonists
do not depend upon mesolimbic DA neurons. Compulsive
drug use, even after prolonged abstinence, involves 80–90%
relapse rates (Shippenberg et al. [83]). This suggests that
repeated drug use induces long-term alterations involving
reactions of brain motivational systems to support the
compulsion. Brain KOR functions, interacting with central
MOR sites, play an essential role in driving opposing mood
states. Central neurochemical changes with repeated drug
use underscore vulnerabilities for addiction to opioids,
cocaine and amphetamines, and alcohol, as well as to
their combinations. Potential drug therapies targeting these
altered systems are suggested treatment for these addictions.

Pfeiffer et al. [84] indicated that KOR agonists are free
of the undesirable side effects of MOR agonists, including
euphoria. Dysphoric actions to KOR agonists were thought
to be mediated via sigma/phencyclidine receptors. However,
the benzomorphan KOR agonist MR 2033 was inactive at
sigma/phencyclidine receptors. They studied MR 2033 in
human males, finding that the drug elicited dose-dependent
dysphoria and psychotomimetic effects that were antago-
nized by NLX. Thus, MR 2033 appears to exert these aversive
effects by way of kappa receptors, implying the existence of
opposing MOR/KOR motivational systems in mammalian
brains.

Another article by Shippenberg’s group is that by Acri et
al. [85]. Along with a host of other investigators, they studied
interactions between cocaine and KOR agonists. U69593, in
repeated doses, was described as downregulating pre- and
postsynaptic DA D-2 receptors in rat brain striatum. This
effect led to the prevention of cocaine-induced behavioral
sensitization, which may have clinical relevance for the
treatment of cocaine addiction.

Olmstead and Burns [86] used PC to test the hypothesis
that ultralow doses of NTX coadministered with MOR or
KOR agonists would alter their rewarding or withdrawal-
induced aversive effects. NTX doses (0.03–30 ng/kg) were
tested against oxycodone CPP in female rats (more sen-
sitive than males for PC). NTX, 5 ng/kg, blocked CPP of
morphine, 5 mg/kg, as well as the CPA to withdrawal from
chronic morphine, 5 mg/kg for 7 days. Coadministering
NTX, 20 pg/kg, also blocked the CPA to withdrawal from
chronic oxycodone (KOR agonist), 3 mg/kg for 7 days.
NTX effects on CPP to oxycodone, 3 mg/kg, produced an
altered dose response. The lowest doses of NTX (0.03 and
0.3 ng/kg) blocked the CPP, the middle dose (3 ng/kg) had
no effect, and the highest dose (30 ng/kg) combined with
oxycodone trended toward a CPP. Therefore, ultralow NTX
blocked acute reward of morphine or oxycodone, in addition
to blocking withdrawal-induced aversion by chronic treat-
ment with each agonist. (Authors’ comment: Low-dose NTX
appears to act selectively on excitatory opioid receptors
to mediate these motivational effects of interactions of
the agonists.)
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Bowen et al., [87] found that mixed MOR/KOR agonists
decreased cocaine i.v. intake better than selective KOR
agonists in rhesus monkeys. U-50,488H and spiradoline i. p.
decreased morphine and cocaine intake in rats, these effects
lasting for 5-6 days in some subjects (Glick et al. [88]). The
KOR effects were reversed by s.c. n-BNI. Kim et al. [89]
determined that rats, when first injected with cocaine,
showed an enhanced CPP to morphine and CPA to U69593.
The CPA was delayed and more persistent than the CPP.
Both of these effects were blocked by microinjecting MK-
801 (NMDA receptor antagonist) bilaterally into the VTA,
just before cocaine injection. Thus, both opioids acted
upon the VTA to induce CPP or CPA. Kuzmin et al. [90]
administered U-50,488H to reduce cocaine and morphine
self-administration. An inverted U-shaped dose-response
curve was observed for the KOR agonist, low doses enhanc-
ing self-administration, and higher doses decreasing self-
administration of both morphine and cocaine.

Negus et al. [91] described decreased cocaine self-
administration by chronic administration of EKC and U-
50,488H in rhesus monkeys. Cocaine self-administration
interactions were also studied in rhesus monkeys by Mello
and Negus [92]. Eight KOR agonists were involved, each
infused over 10 days. Dose-dependent sustained reductions
in cocaine self-administration were noted for EKC, Mr2033,
bremazocine, U-50,488H, and enadoline, along with some
decrease in food intake. Cyclazocine, PD117302, and spi-
radoline did not alter cocaine self-administration. EKC and
U-50,488H effects were antagonized by n-BNI and NLX.
Negus et al.’s [19] of testing fentanyl and spiradoline self-
administration interactions was reviewed in page 4.

Soderman and Unterwald [93] reported that cocaine CPP
was attenuated by a MOR antagonist microinjected into
NAcc or caudal VTA, suggesting that cocaine reward was
mediated through activation of MOR receptors in either of
these two brain nuclei. Additional investigation of cocaine
and opioid interactions was authored by Valdez et al. [94]
and Thompson et al. [95]. Valdez et al. indicated that KOR-
agonist treatment in squirrel monkeys reinstated effects of
cocaine, which was then attenuated by pretreating with
naltrexone but not by n-BNI, suggesting a subpopulation
of KOR receptors activating stress mechanisms. Thompson
et al. (Shippenberg’s group) described repeated dosing with
U69593 to modulate DA uptake in the NAcc of rats in a
manner opposite to that of cocaine, whereas acute U69593
transiently increased DA uptake. The KOR agonist also
altered the activity of the DA transporter function.

Narita et al. published a series of articles dealing with
rewarding and anxiety interactions of MOR and KOR
agonists in rodents (see Narita et al. [96, 97]). A chronic
inflammatory state by formalin injection into rats suppressed
morphine-induced reward. Pretreatment with n-BNI (KOR-
1-selective antagonist) almost completely reversed this effect.
Also, the morphine-induced increase in limbic forebrain DA
turnover was attenuated by the inflammation, this effect
being reversed by n-BNI. Therefore, inflammation may have
induced a sustained activation of endogenous kappa opioid
receptors in NAcc. In mice, injection of cFA or sciatic nerve
ligation (SNL, neuropathic pain) produced an anxiogenic

effect 4 weeks after injection or surgery. DAMGO-(MOR
agonist) stimulated [35S]GTPgammaS binding in the amyg-
dala was suppressed by cFA or SNL. The cFA group showed
an increase in [35S]GTPgammaS binding in membranes of
the amygdala after injection of the KOR agonist ICI199,441,
suggesting an increase in receptor activation of G proteins.
The authors proposed that these states of chronic pain pro-
duce anxiogenic effects and suppress MOR-agonist reward in
rodents.

Ultralow doses of NTX (1, 10, 100 pg/kg/i. v. infusion)
and oxycodone interactions were examined in rats by Leri
and Burns [98]. Only the lowest dose enhanced oxy-
codone self-administration (0.1 mg/kg/infusion), suggesting
a reduced rewarding potency of the opioid agonist. During
tests of reinstatement in an extinction phase, all NTX doses
decreased drug seeking induced by priming injections of oxy-
codone (0.25 mg/kg, s.c.) or foot-shock stress. During self-
administration on a progressive ratio schedule, the agonist
(0.1 mg/kg/infusion) plus NTX (1 pg/kg/infusion) reached
a break-point sooner compared to self-administration of
oxycodone alone. Adding a NTX dose, 10 mg/kg s.c.,
enhanced acute stimulatory effects of the agonist (1 mg/kg,
s.c.), along with increased locomotor activity by oxycodone,
7 × 1 mg/kg, s.c. So the ultralow dose NTX cotreatment
augmented oxycodone locomotor activity and opioid anal-
gesia, but reduced the agonist’s rewarding potency and
vulnerability to relapse. (Authors’ comment: The latter two
effects may have occurred through a blockade of brain
excitatory opioid receptors by the ultra-low-dose NTX.)

Funada et al. [99] blocked morphine CPP with a low
dose of U-50,488H or E-2078 (KOR agonists). CPA was
seen with PC using higher doses of the KOR agonists, but
not with the lower doses. Pretreatment with U-50,488H or
E-2078 abolished CPA due to morphine withdrawal, and
this effect was reversed by pretreatment with n-BNI. U-
50,488H was inactive in altering the CPP of apomorphine
(DA agonist). Similar interactions of MOR and KOR agonists
were reported by Tao et al. [100], Tsuji et al. [101], and
Bolanos et al. [102].

The main deterrent to the clinical application of KOR
agonists as analgesics for control of chronic pain in human
subjects is the disturbing side effect of dysphoria (Walker et
al. [103].

Sante et al. [104] observed a CPP in rats by microin-
jecting morphine into the brainstem dorsal periaqueductal
gray. Microinjections of the peptide CTOP (selective MOR
antagonist) or U-50,488H into dorsal periaqueductal gray
induced a CPA. These results once more demonstrate
mutually opposing motivational effects of brain MOR and
KOR activations in specific brain nuclei (see also Koob and
Le Moal [105]).

A study of PC interactions of fentanyl (Fn) and spirado-
line (Sd) in our laboratory was prompted by the hypothesis
that combined s.c. MOR and KOR agonists would reduce
both CPP of the MOR agonist and CPA of the KOR agonist
(Rech et al. [106]). Four groups of rats, 6 in each group (A, B,
C, D) were trained over five 7-day sessions in a PC procedure
to saline (control group A), or dose-response levels (L =
low, M = medium, and H = high) of Fn and Sd (groups B,
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C, and D). Shuttle responses of subjects between the two
compartments were recorded by an automated recording
system, avoiding potential subjective errors by an observer
tabulating the subjects’ movements.

A dose-dependent CPP was formed in animals treated
with fentanyl. Medium and low doses of fentanyl (0.003 and
0.006 mg/kg) were also associated with CPP, while in the
same group of animals low and medium doses of Sd were
capable of producing a CPA. Interestingly, a low dose of Sd
reduced the CPP of a high dose of fentanyl. In addition, a
medium dose of fentanyl produced a reduction in the CPA
produced by a medium dose of Sd. Thus, the hypothesis in
question was confirmed, that is, the KOR agonist aversion
was reversed by a low dose of the MOR agonist (see also
[99]). Since a low dose of KOR agonist also reduced MOR
agonist reward, our results support a reciprocal interaction
between drug-induced preferential and aversive motivational
states. To assure that the sedative effects of both drugs were
not compromising this study, we also analyzed the number
of shuttles per 15 min trial for each subject as an index of
locomotor activity. There was no correlation between these
shuttle results and the PC data.

Morales et al. [107] compared PC effects of morphine
and U-50,488H in either a two- or three-compartment
device. Morphine CPP was similar in the two instruments,
but the U-50,488H CPA was better developed in the two-
compartment device. They also employed an automatic
recording system.

PC was also used by Hirakawa et al. [108] in rats, to
study affective responses to combined methoxamine (alpha-
1-adrenergic agonist) and U69593 microinjected into RVM.
Methoxamine, 0.05 mg, plus U69593, 0.178 micrograms,
produced hyperalgesia in the tail-flick assay as well as CPA.
Adjusted single drug doses caused CPA, no PC effect, or
CPP. PC effects and spinal nociceptive reactivity showed no
correlation.

MOR- and KOR-agonist and antagonist subjective inter-
actions in human volunteers were studied by Preston and
Bigelow [109]. They administered hydromorphone (MOR
agonist) and pentazocine (mixed MOR/KOR agonist) fol-
lowed by NTX, 25 mg or 12.5 mg. Before NTX hydro-
morphone caused typical MOR effects (“liking”, calming).
Pentazocine showed less intense effects of this type, along
with some restlessness. The high dose of NTX blocked the
effects of both agents. The 12.5 mg of NTX also blocked
hydromorphone effects, but uncovered more irritability and
psychotomimetic effects (typical KOR-agonist responses) as
pretreatment before pentazocine. Thus, the MOR activity of
pentazocine in the absence of NTX appeared to keep the
drug’s KOR agonist actions in check. The lower dose of NTX,
selectively blocking MOR receptors, allowed for the KOR
agonist influences to emerge.

9. Conclusions

Combining moderate doses of a MOR agonist (fentanyl,
methadone, oxymorphone, and hydromorphone) with low
doses of a KOR agonist (spiradoline, enadoline, U69593,
oxycodone) produced the following:

(i) additive analgesia in somatic pain assays and supra-
additive analgesia in visceral pain paradigms, along with
a reduction in adverse side effects such as respiratory
depression, and tolerance, dependence and hyperalgesia
from chronic MOR agonist treatment was attenuated by
pretreatment with a KOR agonist ([14, 15, 17–19, 50, 53, 55–
58], see also [67]);

(ii) analgesia of oxycodone, a KOR agonist, was superior
to morphine in visceral pain states, in both animal and
human subjects [41, 61–66, 75].

Combining ultralow doses of NLX or NTX with MOR
and KOR agonists resulted in

(i) enhanced analgesia, reduced tolerance, and depen-
dence for both agonists, and decreased hyperalgesia after
chronic MOR agonists [26–29, 31, 34–36, 39–44];

(ii) MOR CPP, KOR CPA, and self-administration was
altered by

(a) reduced rewarding potency and relapse vulnerability
of oxycodone [88, 90, 98, 99];

(b) a KOR-agonist dose too low to cause CPA (n.s. trend),
which attenuated a high-dose MOR-agonist CPP
and self-administration (reducing addiction liability
[102, 104, 106]);

(c) a MOR-agonist causing modest CPP, which attenu-
ated a high-dose KOR-agonist CPA (reducing KOR-
agonist aversion), and combined medium doses of
MOR and KOR agonists that resulted in mutually
abolished CPP and CPA, respectively (n.s. compared
to saline [106]);

(d) three prolonged inflammatory pain states, two with
cFA [67] and [78], that abolished KOR-agonist
CPA only, and the other with formalin [96], that
suppressed both MOR CPP and KOR CPA.

It is tempting to speculate on the driving force for
development and persistence of opposing neural MOR and
KOR systems in mammalian speciation. MOR- and KOR-
agonist combinations, both agents producing analgesia while
provoking opposite-type side effects, may have survival
value in controlling severe pain. Opposing endogenous
MOR and KOR motivational/mood states in healthy subjects
appear to modulate an effective balance of responses to
environmental challenges [100, 103, 106, 109]. Impairments
in these balances may be effectively treated by adding a
low-dose antagonist (NLX, NTX) to modulate activation or
suppression of inhibitory or excitatory opioid receptors.

Abbreviations

b-FNA: Beta-funaltrexamine
CPA: Conditioned place aversion
CPP: Conditioned place preference
CRD: Colorectal distension
CWTF: Cold-water tail-flick
DAMGO: MOR agonist peptide
EKC: Ethylketocyclazocine
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i.v.: Intravenous
i.c.v.: Intracerebroventricular
KOR: Kappa opioid receptor
MOR: mu opioid receptor
NAcc: Nucleus accumbens, midbrain nucleus
NLX: Naloxone
NTX: Naltrexone
PC: Place conditioning
s.c.: Subcutaneous injection
s.s.: Self-stimulation via brain electrodes
U69593: Selective KOR-1 agonist
cFA: Complete Freund’s adjuvant
VTA: Ventral tegmental area
CTOP: MOR selective antagonist
DA: Dopamine
Dynorphin A: MOR agonist peptide
5-HT: 5-Hydroxytryptamine
i.p.: Intraperitoneal
i.t.: Intrathecal
KOR-1: Subtype of KOR-receptor
MR2033: KOR agonist
n-BNI: Norbinaltorphimine
n.s.: Nonsignificant
OIH: Opioid-induced hyperalgesia
RVM: Rostral-ventromedial medulla
U-50,488H: Selective KOR-1 agonist
SNL: Sciatic nerve ligation
VTA: Ventral tegmental nucleus.
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