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A B S T R A C T   

Objective: The study established a nomogram based on quantitative parameters of spectral 
computed tomography (CT) and clinical characteristics, aiming to evaluate its predictive value for 
preoperative lymphovascular invasion (LVI) in gastric cancer (GC). 
Methods: From December 2019 to December 2021, 171 patients with pathologically confirmed GC 
were retrospectively collected with corresponding clinical data and spectral CT quantitative data. 
Patients were divided into LVI-positive and LVI-negative groups based on their pathological re-
sults. The univariate and multivariate logistic regression analyses were used to identify the risk 
factors and construct a nomogram. The calibration curve and receiver operating characteristic 
(ROC) curve were adopted to evaluate the predictive accuracy of nomogram. 
Results: Four clinical characteristics or spectral CT quantitative parameters, including Borrmann 
classification (P = 0.039), CA724 (P = 0.007), tumor thickness (P = 0.031), and iodine con-
centration in the venous phase (VIC) (P = 0.004) were identified as independent factors for LVI in 
GC patients. The nomogram was established based on the four factors, which had a potent pre-
dictive accuracy in the training, internal validation and external validation cohorts, with the area 
under the ROC curve (AUC) of 0.864 (95% CI, 0.798–0.930), 0.964 (95% CI, 0.903–1.000) and 
0.877 (95% CI, 0.759–0.996), respectively. 
Conclusion: This study constructed a comprehensive nomogram consisting spectral CT quantita-
tive parameters and clinical characteristics of GC, which exhibited a robust efficiency in pre-
dicting LVI in GC patients.   
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1. Introduction 

Gastric cancer (GC) is one of the most common malignant tumors and its mortality ranks fourth among cancers worldwide [1]. 
Surgery is the most important treatment for early and advanced GC; however, 20–30% of patients will have local recurrence or distant 
metastasis after surgery [2]. Lymphovascular invasion (LVI) refers to the invasion of the tumor into lymphatic and/or blood vessels and 
acts as an important route for the local metastasis [3]. Regional LVI is closely associated with the recurrence of GC and the prognosis of 
GC patients, and LVI-positive patients have a higher recurrence rate and a worse 5-year survival rate [4,5]. Currently, GC patients are 
primarily stratified based on the TNM staging. Since LVI is essential for determining treatment regimen and affects the prognosis of GC 
patients, studies recommended that the addition of LVI to the TNM staging system might have a better efficiency for predicting the 
overall survival of GC patients [6,7]. However, LVI status can only be obtained after surgery, which limits its preoperative application 
in predicting the stage. Therefore, it is necessary to find a reliable preoperative predictive method in clinical treatment of GC. 

Computed tomography (CT) is the primary examination method for the diagnosis and staging of GC. However, traditional CT can 
hardly identify tumor metastasis of small lymph nodes with a diameter of less than 5 mm due to the limited resolution. Emerging 
radiomics and deep machine learning algorithms can identify image features that are not easily observed by the naked eye to evaluate 
the biological characteristics of tumor and predict the prognosis of cancer patients [8,9]. However, these findings have limited 
repeatability and require validation by large-scale cohort. 

Spectral CT is an imaging mode based on rapid switching between high-energy and low-energy X-rays, and it can produce multiple 
monoenergetic images and identify material decomposition [10]. Compared with regular CT, it can obtain several additional quan-
titative parameters. Previous studies have confirmed that spectral CT quantitative parameters exhibit superior advantages and broad 
prospects in early screening, preoperative staging, and predicting the prognosis of GC [11–13]. Also, studies have shown that pre-
operative predictive models including spectral CT are promising to assess LVI in GC patients [14,15]. However, there is no clinical 
characteristics of tumor [14] or standardize spectral CT quantitative parameters in their model. Multi-center data for external veri-
fication is requested too. 

Since chronic inflammation is implicated to play a critical role in GC progression [16], the present study incorporated inflammatory 
indicators such as neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), clinical characteristics and diverse 
spectral CT parameters to identify potential predictive markers and establish a predictive model for LVI in GC, which will contribute to 
the preoperative evaluation of the prognosis of GC patients. 

Fig. 1. Flowchart of patient’s recruitment.  
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2. Materials and methods 

The study was approved by the Ethics Committee of the Hospital and exempted from the requirement of informed consent of 
patients. 

2.1. General information 

A total of 171 GC patients between December 2019 and December 2021 were included in this study according to the following 
inclusion criteria: (1) pathologically confirmed GC patients with complete clinical and postoperative pathological data; (2) patients 
with resectable GC who received surgical resection; (3) no local or systemic treatment before surgery; and (4) dual-phase enhanced 
abdominal spectral CT performed within two weeks before the operation. 141 patients form Fujian Medical University Union Hospital, 
were identified as the primary cohort, which were randomly divided into the training cohor (N = 113) and internal validation cohort 
(N = 28) at a ratio of 8:2. The external validation cohort comprised 30 patients who fulfilled the selection criteria from other medical 
center (The First Affiliated Hospital of Zhengzhou University). The recruitment process of the study subjects is shown in Fig. 1. 

2.2. Acquisition of clinical data 

The clinical, serological, and pathological data of the patients were accessed through the electronic medical record system. The 
clinical information included age, gender and body mass index (BMI); the serological data included NLR, PLR, and tumor markers 
carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), CA724; the pathological data included the tumor location, 
differentiation, Lauren subtype, Borrmann classification, and LVI. Additionally, the blood serum was collected within three days before 
the operation. 

Patients were divided into subgroups based on age (≤60 or >60 years), BMI (＜18.5, 18.5–24, or >24), serological variables 
including CEA (≥5.0 or ＜5.0 ng/ml), CA19-9 (≥37.0 or ＜37.0 U/mL), and CA724 (≥6.9 or ＜6.9 U/mL), and tumor differentiation 
(poor or good), where poorly differentiated or undifferentiated tumor was classified as poor differentiation group, well differentiated 
and moderately differentiated tumor was classified as good differentiated group, and the tumor with unclear differentiation were 
classified by pathological consultation. 

2.3. CT scan 

The CT scans from the top of the diaphragm to the upper edge of the pubic symphysis, and the patient was told to take the supine 
position and hold his breath at the end of inspiration before the examination. The 256-slice GE Revolution CT gemstone spectral 
imaging (GSI) was used with a voltage of 80 kV/140 kV, a current of 485 mA, a pitch of 0.992:1, a slice thickness of 5 mm, an interslice 
interval of 5 mm, and a reconstruction slice thickness of 1.25 mm. During contrast-enhanced scanning, 400 mgI/ml of nonionic agent 
was injected at a flow rate of 2.0–2.5 ml/s and a dose of 1.0–1.5 ml/kg. The arterial phase scan was automatically triggered when the 
CT value of the abdominal aorta reached 150 HU, and the venous phase scan was initiated 28 s later to obtain the raw spectral data of 
the arterial and venous phases. 

2.4. CT image analysis and spectral parameter acquisition 

The obtained raw data were analyzed using GE post-processing workstation ADW4.7. Two radiologists (with more than five and ten 
years of working experience, respectively) who were unknown to the pathological results independently review the images in the GSI 
viewer and processed the data. When drawing the region of interest (ROI) along the tumor edge at the largest level of the tumor, the 
necrotic area was avoided. Iodine concentration (IC) in the arterial phase (AIC) and the venous phase (VIC), and 40 Kev and 70 Kev 
single-energy CT values were obtained on the iodine-based and single-energy images. A circular ROI was placed on the abdominal 
aorta at the same scanning level to calculate the normalized iodine concentration (nIC) in the arterial phase (AnIC) and the venous 
phase (VnIC), the slope (K) of the energy spectrum curve in the venous phase (VK), the difference between AIC and VIC (AVIC), and the 
difference between AnIC and VnIC (AVnIC). The ROI was placed in the same size, shape, and position during different phases. To 
obtain the IC and nIC of peritumoral fat in the venous phase (FVIC and FVnIC), the ROI of peritumoral fat was delineated at the largest 
level of the tumor in the venous phase and kept about 2 mm away from the tumor margin. The K was calculated as the ratio of (CT 
40Kev - CT 70kev) to (70-40); the nIC was calculated as the ratio of lesion IC to abdominal aorta IC; the AVIC was calculated as the VIC 
minus the AIC; the AVnIC was calculated as the VnIC minus the AnIC. 

2.5. Statistical analysis 

IBM SPSS Statistics 28.0, Python 3.8.8, and R 4.0.3 were used for data analysis and visualization. For continuous variables, 
Kolmogorov-Smirnov test was used for the normality hypothesis test. They were presented as mean ± standard deviation (SD) and 
were compared using the student’s t or Mann-Whitney U test. The categorical variables were compared using the χ2 or Fisher’s exact 
test. The univariate logistic regression analysis was used to screen independent variables that were associated with LVI of GC, and 
those significant ones were subjected to the multivariate regression analysis. The least absolute shrinkage and selection operator 
(LASSO) algorithm was used to process the collinearity of the spectrum CT quantitative parameters. The nomogram predictive model 
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was established consisting of obtained independent factors of LVI. The performance of the nomogram was evaluated using the cali-
bration curve and the area under the receiver operating characteristic (ROC) curve (AUC). The nomogram, AUC, and calibration curve 
were drawn by the “RMS” R package. A two-sided P value < 0.05 suggested a statistically significant difference. 

3. Results 

3.1. Clinical and pathological characteristics of patients 

A total of 171 GC patients were enrolled according to the inclusion criteria, including 119 males and 52 females. Their age ranged 
from 28 to 80 (62.33 ± 8.76) years. The clinical characteristics of the training, internal validation and external validation cohorts are 
shown in Table 1. The positive rate of LVI was 53.9%, 57.1% and 60.0% in the training, internal and external validation cohort, 
respectively. Also, clinical characteristics were comparable among the three groups. Of these patients, 95 were positive for LVI and 76 
were negative. The clinical characteristics of LVI-positive and LVI-negative groups in the training, internal and external validation 
cohorts are shown in Table 2. In the LVI-positive group of training, internal and external validation cohorts, there were more patients 
with poor differentiation and Borrmann type III-IV GC, but fewer patients had the Lauren intestinal subtype. Additionally, CA724, 
CA19-9, NLR, and PLR levels were significantly higher in the LVI-positive group than those in the LVI-negative group. After that, 
univariate logistic regression analysis identified that among the above clinical characteristics, tumor differentiation, Lauren subtype, 
Borrmann classification, NLR, PLR, CA19-9, and CA724 level were significantly correlated with LVI (P < 0.05). 

3.2. Spectral CT parameters 

The spectral CT quantitative parameters are shown in Table 3. In training, internal and external validation cohorts, the tumor 
thickness and spectral CT quantitative parameters were significantly higher in the LVI-positive group (Fig. 2:A-D) than those in the LVI- 
negative group (Fig. 3:A-D) (P < 0.05). The heatmap of correlation analysis showed notable collinearity among the spectral CT 
quantitative parameters (Fig. 4). Therefore, the LASSO algorithm was adopted to exclude parameters with collinearity and identify 
that AnIC, VIC, FVIC, and AVIC were highly correlated with LVI (Fig. 5:A-B). 

3.3. Construction of the predictive model 

Then, those crucial clinical characteristics and spectral CT quantitative parameters were subjected to the multivariate logistic 
regression analysis to construct a predictive model. The result showed that Borrmann classification (P = 0.039), CA724 (P = 0.007), 

Table 1 
Clinical characteristics of the training and validation cohorts.  

Characteristics Training cohort (n = 113) Internal validation cohort (n = 28) External validation cohort (n = 30) 

Sex male 79 (69.9%) 19 (67.9%) 21 (70.0%) 
female 34 (30.1%) 9 (32.1%) 9 (30.0%) 

Age (years) ≤60 42 (37.2%) 9 (32.1%) 11 (36.7%) 
＞60 71 (62.8%) 19 (67.9%) 19 (63.3%) 

BMI ＜18.5 4 (3.5%) 1 (3.6%) 0 (0%) 
18.5–24 58 (51.3%) 14 (50.0%) 16 (53.3%) 
＞24 51 (45.2%) 13 (46.4%) 14 (46.7%) 

CEA (ng/mL) ≥5.0 22 (19.5%) 9 (32.2%) 6 (20.0%) 
＜5.0 91 (80.5%) 19 (67.8%) 24 (80.0%) 

CA19-9 (U/mL) ≥37.00 20 (17.7%) 5 (17.9%) 6 (20.0%) 
＜37.00 93 (82.3%) 23 (82.1%) 24 (80.0%) 

CA724 (U/mL) ≥6.90 22 (19.5%) 7 (25.0%) 7 (23.3%) 
＜6.90 91 (80.5%) 21 (75.0%) 23 (76.7%) 

NLR  2.46 ± 1.55 2.45 ± 1.73 2.74 ± 0.26 
PLR  171.82 ± 94.53 160.98 ± 89.69 164.34 ± 59.34 
Tumor location Cardia/Fundus 23 (20.35%) 11 (39.3%) 9 (30.0%) 

Body 44 (38.94%) 7 (25.0%) 8 (26.7%) 
Antrum 34 (30.09%) 6 (21.4%) 9 (30.0%) 
≥2/3 stomach 12 (10.62%) 4 (14.3%) 4 (13.3%) 

Differentiation Good 47 (41.6%) 18 (64.3%) 13 (43.3%) 
Poor 66 (58.4%) 10 (35.7%) 17 (56.7%) 

Lauren subtype Intestinal 55 (48.7%) 17 (60.7%) 13 (43.3%) 
Mixed 22 (19.5%) 5 (17.9%) 9 (30.0%) 
Diffused 36 (31.8%) 6 (21.4%) 8 (26.7%) 

Borrmann classification I-II 60 (53.1%) 14 (50.0%) 16 (53.3%) 
III-IV 53 (46.9%) 14 (50.0%) 14 (46.7%) 

LVI Positive 61 (53.9%) 16 (57.1%) 18 (60.0%) 
Negative 52 (46.1%) 12 (42.9%) 12 (40.0%) 

CEA, Carcinoembryonic antigen; CA19− 9, Carbohydrate antigen 19-9; CA724,Carbohydrate antigen 724; NLR, neutrophil-to-lymphocyte ratio; PLR, 
platelet-to-lymphocyte ratio; LVI, Lymphovascular invasion. 
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Table 2 
Comparison of clinicopathological characteristics of LVI-positive and LVI-negative groups in the training and validation cohorts.  

Characteristics Training cohort Internal validation cohort External validation cohort 

LVI(+) 
(n = 61) 

LVI(− ) 
(n = 52) 

P value LVI(+) 
(n = 16) 

LVI(− ) 
(n = 12) 

P value LVI(+) 
(n = 18) 

LVI(− ) 
(n = 12) 

P value 

Sex male 41 (67.2%) 38 (73.1%) 0.499 11 (68.8%) 8 (66.7%) 0.583 13 (72.2%) 8 (66.7%) 0.599 
female 20 (32.8%) 14 (26.9%)  5 (31.2%) 4 (33.3%)  5 (27.8%) 4 (33.3%)  

Age (years) ≤60 23 (37.7%) 19 (36.5%) 0.898 5 (31.2%) 4 (33.3%) 0.636 6 (33.3%) 5 (41.7%) 0.837 
＞60 38 (62.3%) 33 (63.5%)  11 (68.8%) 8 (66.7%)  12 (66.7%) 7 (58.3%)  

BMI ＜18.5 3 (4.9%) 1 (1.9%) 0.671 0 (0%) 1 (8.3%) 0.051 0 (0%) 0 (0%) 0.082 
18.5–24 30 (49.2%) 28 (53.8%)  8 (50.0%) 6 (50.0%)  10 (55.6%) 6 (50.0%)  
＞24 28 (45.9%) 23 (44.3%)  8 (50.0%) 5 (41.7%)  8 (44.4%) 6 (50.0%)  

CEA (ng/mL) ≥5.0 14 (23.0%) 8 (15.4%) 0.314 8 (50.0%) 1 (8.3%) 0.064 3 (16.7%) 3 (25.0%) 0.311 
＜5.0 47 (77.0%) 44 (84.6%)  8 (50.0%) 11 (91.7%)  15 (83.3%) 9 (75.0%)  

CA19-9 (U/mL) ≥37.00 17 (27.9%) 3 (5.8%) 0.005* 5 (31.2%) 0 (0%) 0.057 4 (22.2%) 2 (16.7%) 0.172 
＜37.00 44 (72.1%) 49 (94.2%)  11 (68.8%) 12 (100%)  14 (77.8%) 10 (83.3%)  

CA724 (U/mL) ≥6.90 21 (34.4%) 1 (1.9%) 0.002* 6 (37.5%) 1 (8.3%) 0.046* 6 (33.3%) 1 (8.3%) 0.033* 
＜6.90 40 (65.6%) 51 (98.1%)  10 (62.5%) 11 (91.7%)  12 (66.7%) 11 (91.7%)  

NLR  2.83 ±
2.15 

2.09 ±
0.95 

0.037* 2.81 ±
1.92 

2.09 ±
1.47 

0.024* 2.74 ±
3.69 

2.22 ±
2.85 

0.047* 

PLR  189.68 ±
89.97 

153.95 ±
98.52 

0.049* 198.24 ±
105.92 

122.97 ±
30.22 

0.032* 173.75 ±
94.67 

149.85 ±
103.17 

0.029* 

Tumor location Cardia/ 
Fundus 

11 (18.0%) 12 (23.1%) 0.751 8 (50.0%) 3 (25.0%) 0.057 5 (27.8%) 4 (33.3%) 0.833 

Body 23 (37.7%) 21 (40.4%)  3 (18.8%) 4 (33.3%)  5 (27.8%) 3 (25.0%)  
Antrum 19 (31.1%) 15 (28.8%)  3 (18.8%) 3 (25.0%)  6 (33.3%) 3 (25.0%)  
≥2/3 
stomach 

8 (13.2%) 4 (7.7%)  2 (12.4%) 2 (16.7%)  2 (11.1%) 2 (16.7%)  

Differentiation Good 17 (27.9%) 30 (57.7%) 0.002* 8 (50.0%) 10 (83.3%) 0.035* 8 (44.4%) 5 (41.7%) 0.051 
Poor 44 (72.1%) 22 (42.3%)  8 (50.0%) 2 (16.7%)  10 (55.6%) 7 (58.3%)  

Lauren subtype Intestinal 22 (36.1%) 33 (63.5%) 0.016* 6 (37.6%) 11 (91.7%) ＜ 
0.001* 

5 (27.8%) 8 (66.6%) 0.037* 

Mixed 15 (24.6%) 7 (13.4%)  5 (31.2%) 0  7 (38.9%) 2 (16.7%)  
Diffused 24 (39.3%) 12 (23.1%)  5 (31.2%) 1 (8.3%)  6 (33.3%) 2 (16.7%)  

Borrmann 
classification 

I-II 23 (37.7%) 37 (71.2%) ＜ 
0.001* 

3 (18.8%) 11 (91.7%) ＜ 
0.001* 

7 (38.9%) 9 (75.0%) ＜ 
0.001* 

III-IV 38 (62.3%) 15 (28.8%)  13 (81.2%) 1 (8.3%)  11 (61.1%) 3 (25.0%)  

LVI, Lymphovascular invasion; CEA, Carcinoembryonic antigen; CA19− 9, Carbohydrate antigen 19-9; CA724, Carbohydrate antigen 724; NLR, 
neutrophil-to-lymphocyte ratio. 
PLR, platelet-to-lymphocyte ratio. 

Table 3 
Comparison of spectral CT quantitative parameters of LVI-positive and LVI-negative groups in the training and validation cohorts.  

Parameters Training cohort Internal validation cohort External validation cohort 

LVI(+) 
(n = 61) 

LVI(− ) 
(n = 52) 

P value LVI(+) 
(n = 16) 

LVI(− ) 
(n = 12) 

P value LVI(+) 
(n = 18) 

LVI(− ) 
(n = 12) 

P value 

Tumor thickness 
(mm) 

15.44 ± 4.84 11.15 ± 4.54 <0.001 16.06 ±
0.64 

10.17 ± 2.86 <0.001 17.01 ± 0.31 13.58 ± 1.63 <0.001 

AIC (100 μg/ml) 18.23 ± 5.90 15.87 ± 5.66 0.038 21.04 ±
5.21 

16.25 ± 4.83 0.033 19.17 ± 4.06 14.33 ± 5.02 0.021 

AnIC 0.17 ± 0.07 0.14 ± 0.05 0.046 0.20 ± 0.07 0.15 ± 0.04 0.041 0.18 ± 1.01 0.14 ± 0.81 0.039 
VIC (100 μg/ml) 23.52 ± 5.73 18.15 ± 5.04 <0.001 24.89 ±

4.49 
17.96 ± 4.86 <0.001 23.51 ± 2.57 17.99 ± 3.92 <0.001 

VnIC 0.56 ± 0.14 0.47 ± 0.13 0.002 0.58 ± 0.11 0.45 ± 0.11 0.028 0.55 ± 0.60 0.46 ± 0.51 0.007 
VK 4.45 ± 1.09 3.44 ± 0.96 <0.001 4.63 ± 0.84 3.36 ± 0.95 <0.001 4.36 ± 1.42 2.99 ± 1.17 <0.001 
AVIC (100 μg/ml) 5.26 ± 6.49 2.28 ± 4.02 0.008 3.85 ± 7.14 1.86 ± 2.28 0.014 5.02 ± 4.99 2.05 ± 0.02 0.031 
AVnIC 0.39 ± 0.15 0.33 ± 0.11 0.018 0.38 ± 0.12 0.30 ± 0.09 0.023 0.33 ± 0.48 0.23 ± 0.55 0.002 
FVIC (100 μg/ml) − 3.84 ±

5.71 
− 7.56 ±
4.36 

<0.001 0.55 ± 6.00 − 5.38 ±
4.82 

<0.001 − 2.26 ±
3.61 

− 6.62 ±
3.09 

<0.001 

FVnIC − 0.10 ±
0.15 

− 0.20 ±
0.12 

<0.001 0.02 ± 0.14 − 0.14 ±
0.13 

<0.001 0.00 ± 0.26 − 0.28 ±
0.37 

<0.001 

LVI, Lymphovascular invasion; AIC, Iodine concentration in the arterial phase; AnIC, normalized iodine concentration in the arterial phase; VIC, 
Iodine concentration in the venous phase; VnIC, normalized iodine concentration in the venous phase; VK, the slope (K) of the energy spectrum curve 
in the venous phase; AVIC, the difference between AIC and VIC; AVnIC, the difference between AnIC and VnIC; FVIC, Iodine concentration peri-
tumoral fat in the venous phase; FVnIC, normalized iodine concentration of peritumoral fat in the venous. 
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tumor thickness (P = 0.031), and VIC (P = 0.004) were independent factors for LVI in GC patients (Table 4). A nomogram composed of 
the four factors was further established (Fig. 6). 

3.4. Efficiency of the predictive model 

The AUC and calibration curve were used to evaluate the performance of the nomogram model. The AUC of nomogram model to 
identify LVI in the training, internal and external validation cohorts was 0.864 (95% CI, 0.798–0.930), 0.964 (95% CI, 0.903–1.000) 
and 0.877 (95% CI, 0.759–0.996), respectively, indicating that the model had a potent discriminatory ability (Fig. 7:A-C). The cali-
bration curve for the nomogram model in the training, internal and external validation cohorts was shown in (Fig. 8:A-C). The cali-
bration curve basically aligned with the ideal curve with a high degree of calibration, indicating that the model had a high feasibility in 
predicting LVI in GC patients. 

4. Discussion 

The present study constructed a preoperative nomogram model for predicting LVI of GC patients based on spectral CT quantitative 
parameters and clinical characteristics. The model contained four independent predictors, including Borrmann classification, CA724, 
tumor thickness, and VIC, which provided a simple and effective method for predicting LVI and the prognosis of GC patients. 

Among enrolled 171 GC patients, the incidence of LVI was 55.6%, which was consistent with previous research [17]. The 
connection between the tumor and surrounding vessels, lymphatics, and nerves plays a vital role in tumor occurrence and develop-
ment. Tumor can metastasize to distant organs through blood vessels or lymphatics. Therefore, GC cases with a higher tumor thickness 
and Borrmann invasive type are more likely to develop LVI. Numerous studies have shown that the tumor thickness and Borrmann 
classification are significantly different between LVI-positive and LVI-negative groups in GC patients [2,18,19]. Consistent with 
previous finding, our study revealed that the probability of LVI increased by 2.804-fold with invasive type of Borrmann classification 
and higher tumor thickness. Moreover, a Japanese study showed that tumor differentiation was associated with lymph node metastasis 
[20], which was consistent with our finding that tumor differentiation was associated with LVI of GC. However, this finding was 
discrepant with that of Li et al. [14], which might be due to the different grouping strategy. Li et al. divided the tumor differentiation 
into good, moderate, and poor differentiation, whereas our study only divided it into good and poor differentiation. 

Studies have proposed several serological indicators that are associated with the metastasis and prognosis of GC. The present study 
included NLR, PLR, CA19-9, and CA724 and showed that all serological indicators except for CEA were the potential predictors of LVI. 
Although previous studies suggested a correlation between CEA and LVI in GC patients [15,17], which was inconsistent with our 
findings, it should be noted that CEA was widely expressed in the body and its level was easily affected by factors other than tumors. 
Chronic inflammation is implicated to play a critical role in GC development and NLR and PLR are inflammatory indicators [21]. 
Inflammation produces a variety of cytokines including vascular endothelial growth factor (VEGF) and interluckeukin-8 (IL-8) which 
promote tumor angiogenesis and distant metastasis [22]. Herein, our study showed that NLR and PLR had a strong correlation with 

Fig. 2. A 70 years old female patient with pathologically confirmed gastric adenocarcinoma, staging of pT4aN3aM0, LVI positive. The tumor 
thickness was 21 mm, Borrmann classification of III. (A) Iodine map at arterial phase, IC value was 21.17 (100 mg/ml); (B) Iodine map at venous 
phase, IC value was 30.68 (100 mg/ml); (C) Iodine map of peritumoral fat at venous phase, IC value was 2.80 (100 mg/ml); (D) The histopathology 
(HE, magnification: × 200) showed adenocarcinomas cells infiltrate into lymphovascular structure (arrow). 

Fig. 3. A 68 years old male patient with pathologically confirmed gastric adenocarcinoma, staging of pT3N0M0, LVI negative. The tumor thickness 
was 20.8 mm, Borrmann classification of II. (A) Iodine map at arterial phase, IC value was 22.01 (100 mg/ml); (B) Iodine map at venous phase, IC 
value was 30.53 (100 mg/ml); (C) Iodine map of peritumoral fat at venous phase, IC value was 1.78 (100 mg/ml); (D) The histopathology (HE, 
magnification: × 200) showed normal lymphovascular structure (arrow). 
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Fig. 4. Correlation coefficient heatmap. Abscissa and ordinate for each spectrum parameter, the deeper the color represents the correlation co-
efficient is larger. 

Fig. 5. (A) CV cartogram. The x-coordinate is the log of the penalty function; The y-coordinate is the MSE (mean squared error); When the mean 
square error reaches the minimum, the penalty function is the optimal solution. (B)Parameter weight bar chart. The x-coordinate is the parameter 
after lasso; The y-coordinate is the weight of parameter. 
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Table 4 
Risk factors for lymphovascular invasion in gastric cancer.  

Variable Nomogram 

β SE Wald ×2 OR 95%CI P value 

Borrmann classification 1.031 0.500 4.247 2.804 1.052–7.478 0.039 
Tumor thickness 0.116 0.054 4.643 1.123 1.001–1.248 0.031 
CA724 2.895 1.081 7.170 18.092 2.173–150.640 0.007 
VIC 0.153 0.052 8.508 1.165 1.051–1.291 0.004 

CA724,Carbohydrate antigen 724; VIC, Iodine concentration in the venous phase. 

Fig. 6. The Clinical-spectral CT model for predicting LVI of GC patients. A nomogram scaled by the coefficient of each factor.  

Fig. 7. The receiver operation characteristic curve for predicting LVI of GC patients in the training cohort(A), internal validation cohort (B) and 
external validation cohort(C). 

Fig. 8. The calibration curve demonstrating predictions from the model to the actual observed probability in the training cohort (A), internal 
validation cohort (B) and external validation cohort(C). 
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LVI. At present, several tumor markers, such as CEA, CA19-9 and CA724 have been widely used in the diagnosis, prognosis evaluation, 
and efficacy testing of patients with GC [23,24]. Moreover, CA724 had the highest diagnostic efficiency and it is associated with tumor 
biological behavior such as tumor size, depth of invasion, stage and lymph node involvement [25]. Therefore, CA724 level are effective 
in evaluating the presence of LVI in GC, and was included in the nomogram model. Ren et al. proposed that CA125 was an independent 
factor for LVI in GC [15], but in our study, it was not included in the nomogram model. Therefore, more comprehensive data and 
multiple indicators were required to construct the predictive model with the optimal diagnostic efficiency. It is widely known that 
spectral CT quantitative parameters can predict lymph node metastasis in GC [26,27], which was consistent with our finding that some 
spectral quantitative parameters were highly correlated with LVI. As a result, VIC was an independent risk factor of LVI increased the 
probability of LVI by 1.165-fold for every unit increase in its value, which was consistent with the previous study [2]. LVI was primarily 
caused by tumor-induced angiogenesis and incomplete wall of new blood vessels, which allowed cancer cells to easily invade into the 
blood vessels. The iodine contrast agent can penetrate and temporarily reside in the blood vessels during the arterial phase; at the 
venous phase, the level of iodine in the tumor vessels is at a balanced status. Since the excretion rate of the iodine contrast agent slows 
down during the venous phase, more contrast agents will exist in the tumor stroma through the incomplete blood vessel walls, 
therefore, the VIC can portend the tumor neovascularization [28,29]. However, Jing et al. indicated that IC in the delayed phase (ICDP) 
was the best predictor for LVI [14], primarily due to different administration strategies of contrast enhancement. They adopt a 
three-phase enhancement scheme, whereas our study used a two-phase one, which was consistent with most previous studies [15,30]. 
Additionally, some studies have proposed that VnIC could reduce the impact of individual circulatory differences and exhibited better 
sensitivity and specificity than VIC [31–33], which was inconsistent with our findings, possibly due to different scanning methods. The 
arterial phase scanning was triggered by detecting the CT value of the abdominal aorta, so that the nIC was able to reduce the impact of 
individual circulatory differences. However, the iodine contrast agent in the abdominal aorta remained high during the venous phase, 
which might affect the calculation of nIC and led to a wrong value of nIC, as previously reported [34]. Therefore, the calculation 
method and application of the nIC should be carefully evaluated in further studies. 

The FVIC was rarely included in previous models. Our results indicated that it had a significant impact on GC development. The 
contact surface between the tumor and the perigastric lymphatic vessels will increase if GC penetrates the serosal membrane, which 
increase the possibility of LVI. Nevertheless, GC is frequently accompanied by serosal inflammatory reactions, which exhibits unclear 
boundaries and blurred fat space on CT scanning, which may be mistaken for the involvement of the serosal membrane by tumor. Zhou 
et al. proposed that iodine contrast agent could enter the adipose tissue when the membrane of thymic tumors was destroyed, resulting 
in an increased IC in peritumoral fat. Therefore, measuring IC in peritumoral fat could predict lymph node metastasis and vascular 
tumor thrombus [35]. Our study also conveyed a strong association between the FVIC and LVI in GC. 

Compared with Ren et al.’s model [14], our model appears simple, quantitative and easy to use, it is superior to any other model 
with relatively high AUCs of 0.864 and 0.964 in primary and validation dataset. These findings support the selection of variables for 
model development is reasonable and feasible. Furthermore, the predictive efficacy of the nomoram was externally validated in a 
prospective cohort, with relatively high AUCs of 0.877, suggestive of its good generalization. 

The study had some limitations. First, the sample size was relatively small, and more patients should be recruited to confirm the 
findings in this study. Second, the lack of TNM staging system data and some clinical data such as helicobacter pylori (HP) and CA125 
and the truncation of some indicators could result in a selection bias, which might affect the predictive potency of the nomogram 
model. Additional studies incorporating more comprehensive factors are needed to better predict the LVI in GC. Finally, the GC lesion 
enhancement may be affected by the volume and rate of the contrast agent administration, which may affect the experimental results. 

In summary, the present study identified spectral CT quantitative parameters and clinical characteristics that were associated with 
LVI and constructed a corresponding predictive model, which exhibited a potent efficiency in discriminating LVI. Our model would 
provide a potential strategy for predicting LVI in GC patients. 
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