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Abstract: MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic
regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated
during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review,
we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including
non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology
or pathology of satellite cells will contribute to the development of cell therapy and drug discovery
for muscle-related diseases.
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1. Introduction

The skeletal muscle accounts for 40% of the total body weight, and the metabolism
and motor functions of skeletal muscles are essential for human life. Loss of skeletal
muscle mass leads to various negative effects, including obesity, insulin resistance, diabetes,
decreased quality of life that may require dependence on others and hospital stays, and
mortality [1]. As the number of elderly people in society is increasing, it is important to
establish strategies for improving skeletal muscle mass and function in aged individuals.
Therefore, understanding the physiology and pathology of satellite cells, such as skeletal
muscle stem cells, is essential.

During skeletal muscle generation, known as myogenesis, myoblasts fuse with my-
ofibers. Myogenesis is divided into two distinct phases [2]. In the embryonic stage, the
structures derived from the mesoderm generate body muscle fibers; these fibers act as
a template for the generation of additional fibers [3,4]. In the perinatal stage, myogenic
progenitors residing in muscles initially proliferate extensively. Subsequently, the num-
ber of myonuclei reaches a steady state, and the protein synthesis in myofibers reaches
a peak [5,6]. Once the muscle matures, these progenitors enter a period of quiescence
and exist between the muscle fibers and basal lamina as satellite cells. In the adult stage,
myogenesis depends on satellite cells to maintain tissue homeostasis, similar to in other
organs that undergo renewal [7–9].

MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic reg-
ulatory factors (MRFs), which act as master transcription factors that are upregulated during
myogenesis and influence stem cells to differentiate into myogenic lineage cells [10–13].
MRFs regulate myogenesis by modulating the expression of both myogenic and non-
myogenic genes. However, the mechanisms by which MRFs regulate non-myogenic genes
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remain unknown. Although signaling molecules mediate myogenesis and MRFs, these
signaling mechanisms are not completely understood. In this review, we summarize MRFs
and focus on their regulatory factors, such as transducin-like enhancer of Split3 (TLE3),
nuclear factor-kappa B (NF-κB), and MRF target genes, including non-myogenic genes
such as taste receptors.

2. Muscle Stem Cells and MyoD

Satellite cells are typically quiescent during the cell cycle; however, when these are
activated by stimulation, such as by muscle injury, the expression of MRFs is upregulated
and satellite cell progenitors commit to the myoblast lineage and proliferate rapidly [14,15].
Satellite cells are abundant during muscle regeneration and postnatal muscle growth [16].
In addition to satellite cells, mesangioblasts [17], Pw1+/Pax7+ interstitial cells [18], and
TWIST2+ progenitors [19] are present in the population of muscle stem cells and can
be directly converted to myogenic lineage cells. Although these cell classifications do
not conform to the current characterization and many of these cells have overlapping
markers and functions, the expression of MyoD is upregulated in all of these cells during
myogenesis [20–22]. MyoD was first identified by the Harold M. Weintraub group. MyoD
was cloned during a functional analysis of muscle fiber formation, and the expression of
cDNA for the mouse MyoD protein converted murine embryonic fibroblast C3H10T1/2
into myogenic cells [22]. Ectopic expression of MyoD can also induce human induced
pluripotent stem (iPS) cells or murine embryonic stem cells to differentiate into myogenic
cells [23–27]. Therefore, introducing MyoD into iPS cells shows potential as a safe and
effective approach for regenerative medicine applications in the muscle.

3. Structure and Function of MRFs

MyoD is an MRF transcription factor, along with Myf5 [10], myogenin [11], and
MRF4 [12,13]. Despite variations in their lengths and amino acid sequences, each MRF
is composed of three domain structures, including a highly conserved basic helix-loop-
helix (bHLH) domain with myogenic potential [28]. This bHLH domain is flanked by an
N-terminal region with a C/H domain and C-terminal region with a helix 3 domain that
mediates the transcriptional region [29]. Phylogenetic analyses of the amino acid sequences
of murine MRFs showed that the similarity between MyoD and Myf5 is 53%. The similari-
ties between myogenin and MyoD and Myf5 are 38% and 40%, respectively. The similarities
of MRF4 with MyoD and Myf5 are 43% and 40%, respectively (Figure 1) [30]. MRFs ex-
hibit functional redundancy. Each MRF can induce myogenesis and is anthropogenically
expressed in various non-myogenic cells such as fibroblasts, adipose, nerve, and liver cells,
indicating a functional overlap in establishing the muscle cell lineage [31]. Experiments
using MRF-null mice revealed hierarchical relations and overlapping functions as features
of the regulatory network of MRFs [32]. Moreover, newborn mice null for both MyoD and
Myf5 were completely deficient in myoblasts and myofibers. MyoD and Myf5 are essential
for myogenic lineage cell commitment and act upstream of MRF4 and myogenin [12,33,34].
Further experiments focusing on these differences are required to understand the detailed
functions of each MRF.
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Figure 1. Protein structure of myogenic regulatory factors. 
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bers after birth, whereas Pax3 is not. Chromatin immunoprecipitation (ChIP) sequencing 
of primary myoblasts revealed that although Pax3 and Pax7 recognize the same DNA mo-
tifs, Pax3 binds with a lower affinity compared to that of Pax7. Pax3 binds to a subset of 
Pax7 target genes that mainly regulate embryonic function and maintain undifferentiated 
satellite cells. In contrast, Pax7 activates the expression of genes involved in maintaining 
the postnatal satellite cell phenotype by regulating proliferation and inhibiting differenti-
ation [36]. Satellite cells are typically quiescent, meaning that they are normally arrested 
in the G0 phase of the cell cycle [37]. During this phase, the cells can be divided into two 
groups, myogenic stem cells (~10%, Pax7+/Myf5−) [38] and myogenic precursor cells (~90%, 
Pax7+/Myf5+) [39], based on their self-renewal ability (Figure 2) [40]. When satellite cells 
are activated by stimuli such as muscle injury, the expression of Pax7 [21] and Pax3 [41] 
gradually decreases in most satellite cells. In contrast, muscle satellite cells begin to in-
crease MRF expression to ensure a myogenic program [42]. Myogenic stem cells 
(Pax7+/Myf5−) exhibit asymmetric division, during which some daughter cells return to 
myogenic stem cells (Pax7+/Myf5−) to serve as a stem cell reserve. Myogenic precursor cells 
(Pax7+/Myf5+) exhibit symmetrical division, in which every daughter cell is committed to 
the myoblast fate and begins to differentiate [39]. In addition to the expression of Myf5 
and Pax7, satellite cells begin to express MyoD protein during the early stages of activa-
tion [43]. Pax7 is necessary to activate satellite cells by directly binding to the promoter 
and enhancer regions of MyoD and Myf5, respectively [36]. The basal lamina remnants 
guide activated satellite cell progeny that is committed to myogenesis to migrate and pro-
liferate. Increased MyoD expression with MRF4 and myogenin expression stimulates the 
differentiation of these cells. Terminally differentiated satellite cells may fuse into either 
newly formed myofibers or pre-existing myofibers (Figure 2) [40]. The main function of 
MyoD is to withdraw cells from the cell cycle by enhancing the expression of myogenin 
and p21. p21 inhibits cyclin-dependent kinases, which inhibit MyoD. Therefore, MyoD 
expression enhances MyoD activity in satellite cells in a feedback and/or feedforward 
manner. Continuous expression of MyoD is required to sustain muscle-related gene ex-
pression [44] and is a critical effector of the fast-twitch muscle fiber phenotype (type IIA, 
IIB, and IIX) [45,46]. 
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4. Role of MRFs during Myogenesis after Birth

Paired box gene 3 (Pax3) and paired box gene 7 (Pax7) are transcription factors. In
postnatal muscle cells, Pax3 and Pax7 are markers of muscle stem cells that reside be-
neath the basal lamina of mature myofibers [35]. Pax7 is expressed in all satellite cells
of myofibers after birth, whereas Pax3 is not. Chromatin immunoprecipitation (ChIP)
sequencing of primary myoblasts revealed that although Pax3 and Pax7 recognize the same
DNA motifs, Pax3 binds with a lower affinity compared to that of Pax7. Pax3 binds to a
subset of Pax7 target genes that mainly regulate embryonic function and maintain undif-
ferentiated satellite cells. In contrast, Pax7 activates the expression of genes involved in
maintaining the postnatal satellite cell phenotype by regulating proliferation and inhibiting
differentiation [36]. Satellite cells are typically quiescent, meaning that they are normally
arrested in the G0 phase of the cell cycle [37]. During this phase, the cells can be divided
into two groups, myogenic stem cells (~10%, Pax7+/Myf5−) [38] and myogenic precursor
cells (~90%, Pax7+/Myf5+) [39], based on their self-renewal ability (Figure 2) [40]. When
satellite cells are activated by stimuli such as muscle injury, the expression of Pax7 [21]
and Pax3 [41] gradually decreases in most satellite cells. In contrast, muscle satellite cells
begin to increase MRF expression to ensure a myogenic program [42]. Myogenic stem cells
(Pax7+/Myf5−) exhibit asymmetric division, during which some daughter cells return to
myogenic stem cells (Pax7+/Myf5−) to serve as a stem cell reserve. Myogenic precursor
cells (Pax7+/Myf5+) exhibit symmetrical division, in which every daughter cell is com-
mitted to the myoblast fate and begins to differentiate [39]. In addition to the expression
of Myf5 and Pax7, satellite cells begin to express MyoD protein during the early stages
of activation [43]. Pax7 is necessary to activate satellite cells by directly binding to the
promoter and enhancer regions of MyoD and Myf5, respectively [36]. The basal lamina
remnants guide activated satellite cell progeny that is committed to myogenesis to migrate
and proliferate. Increased MyoD expression with MRF4 and myogenin expression stim-
ulates the differentiation of these cells. Terminally differentiated satellite cells may fuse
into either newly formed myofibers or pre-existing myofibers (Figure 2) [40]. The main
function of MyoD is to withdraw cells from the cell cycle by enhancing the expression of
myogenin and p21. p21 inhibits cyclin-dependent kinases, which inhibit MyoD. Therefore,
MyoD expression enhances MyoD activity in satellite cells in a feedback and/or feedfor-
ward manner. Continuous expression of MyoD is required to sustain muscle-related gene
expression [44] and is a critical effector of the fast-twitch muscle fiber phenotype (type IIA,
IIB, and IIX) [45,46].
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Figure 2. Expression of myogenic regulatory factors during different developmental stages of satellite
cells. Cells can divide into two groups, myogenic stem cells (Pax7+/Myf5−) (A) and myogenic
precursor cells (Pax7+/Myf5+) (B). The figures are referred from the review paper by Asfour et al. [40].

5. Transcriptional Mechanism of MRFs

MRFs dimerize with other HLH-containing proteins through HLH–HLH interac-
tions [47]. MRFs also form heterodimers with E proteins, including E47 and E12, through
the bHLH domain and can bind to the E-box sequence motif containing the nucleotide
CANNTG. Therefore, heterodimer formation activates transcription at the promoters of
muscle-specific genes [48]. MRFs are thought to bind to hundreds of muscle-related gene
promoters to result in stem cell myogenesis. Differences in the functions of MRF are re-
lated to their ability to induce different programs of gene expression. Studies are needed
to understand how MRFs bind to the genome during skeletal muscle regeneration and
development. The binding dynamics of MyoD have been extensively studied using cul-
tured cells with high-throughput technologies, including DNA ChIP sequencing [49–52].
In vitro experiments using C2C12 cells revealed the MyoD-binding site during myoblast
differentiation [53].

In addition to the regulatory elements of genes that are upregulated or downregulated
during myoblast differentiation, MyoD recognizes and binds to a large number of E-box
sites that are not related to myogenesis. Cao et al. compared the number of binding
sites in myoblasts and myotubes and identified 23,000 and 26,000 MyoD binding sites in
myoblasts and myotubes, respectively; they also showed that MyoD binding is more stable
after differentiation. MyoD binding is correlated with regional histone acetylation rather
than with local histone acetylation [53]. The biological importance and functions of these
sites remain unclear because most of these sites are inactive when functional enhancer
tests are performed in vitro. Mousavi et al. confirmed that the amount of bound MyoD
in myotubes is higher than that in myoblasts (39,700 and 18,142, respectively) [54]. Both
analyses revealed a discrepancy in the number of binding sites [53,54]. These differences
are likely related to differences in the methods used to identify the peaks and boundaries
of compartmentalization reading in the experiments. Using RNA-sequencing analysis,
Mousavi et al. revealed that both MyoD and myogenin share most of the 35,000 binding
sites [54]. In myotubes, these sites are also bound by polymerase II and are marked by
H3K27Ac and H3K4me1 [54]. A total of 1053 Myf5 sites were identified in myoblasts, and
9300 and 1428 MyoD binding sites were identified in myotubes and myoblasts, respectively.
The overlap between the binding sites in myoblasts is 30% [52].

To evaluate the dramatic differences in the number of MyoD-binding sites between
myotubes and myoblasts, we focused on transcriptional repressors targeting the same
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DNA-binding motif as HLH proteins, including MRFs. Snail1 and Snail2 are expressed in
myoblast lineage cells and repress transcription by recruiting histone deacetylases 1 and
2 [55–57]. Snail1 binds to E-boxes containing a G/C-rich nucleotide associated with genes
expressed almost exclusively in myotubes. In contrast, Snail2 does not bind to E-boxes with
A/T-rich nucleotides associated with gene expression in myoblasts, suggesting that Snail
must be removed for MyoD to access the genes expressed in the myotube. The expression of
Snail is also regulated by MRFs. MRFs induce the expression of miRNA-30 and miRNA-206,
which suppress Snail1/2 expression in myotubes. Taken together, downregulation of
Snail1/2 allows MyoD to access its binding sites [52].

6. Target Genes of MRFs

Taste is a guide and guardian of food intake and is necessary for maintaining human
health [58]. Taste can be divided into five categories: salty, sweet, umami, sour, and bit-
ter [59]. The salty, sweet, and umami tastes encourage the consumption of foods containing
minerals, carbohydrates, and amino or nucleic acids, respectively, whereas sour and bitter
tastes prevent ingestion of strong acids and potentially toxic substances, respectively [59].
The taste 1 receptor (T1R) family belongs to the G-protein-coupled receptor family and is
composed of three members: T1R1, T1R2, and T1R3. These receptors form heterodimers
with each other and recognize different ligands depending on the combination of receptors.
T1R3 forms a dimer with T1R2 to act as the sweet taste receptor that responds to molecules,
such as sugars, whereas T1R3 complexes with T1R1 form the umami taste receptor that
responds to nuclear acids and amino acids [60–63]. Although these functions were origi-
nally thought to occur in the gustatory tissue inside the mouth, the first study showing that
T1Rs and molecules involved in taste signal transduction are present in the stomach and
intestine was reported in the late 1990s [64]. Subsequently, many researchers reported the
expression and functional roles of T1R family members in various tissues and cell types,
including in the adipose tissue [65], pancreatic β-cells [66], central nervous system [67], and
heart [68]. Therefore, despite the name “taste receptor,” these G-protein-coupled receptors
are now recognized as “nutrient sensors” with critical roles in chemoreception for detecting
amino acids and glucose status [69]. We also reported the function of both T1R3 and T1R1,
which are components of the umami receptor in the skeletal muscle [70–72]. The expression
of T1R1 and T1R3 is regulated by MRFs [70–72]. ChIP analysis revealed that both MyoD
and myogenin bind to the promoter region of T1R3 (Figure 3A). We also demonstrated
that MyoD induces the promoter activity of T1R3, as assessed in a luciferase reporter assay.
Comparative genomic analysis revealed that the gathering regions of MyoD-and myogenin-
binding sites are highly conserved across species [70]. These observations are consistent
with the fact that T1R3 expression increases with myogenic differentiation in vitro [70].
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Figure 3. Myogenic regulatory factors regulate the expression levels of T1R1 and T1R3 during
myogenesis. MyoD and myogenin binding the promoter region of T1R3 (A). The heterodimer of
MyoD and Tcf12 interacts with Klf5 and binds to promoter region of T1R1 (B).

MyoD regulates the expression of T1R1 in both myoblasts and myotubes during
myogenesis [50]. We determined the mechanism of the regulation of T1R1 expression
through T1R1. Krüppel-like factor 5 (Klf5), a zinc finger protein, acts as a transcription
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factor [73] that regulates the transactivation of T1R1 during myoblast differentiation in
C2C12 cells as Klf5 binds to the GT box (CCACCC) in the promoter region of T1R1 [71].
Klf5 also directly binds to MyoD and regulates muscle-specific genes associated with
myoblast differentiation [74]. Based on these findings, we assessed the role of Klf5 in the
transactivation of T1R1 in combination with MyoD. We examined the relationship between
Klf5 and MyoD in regulating the gene expression of T1R1 during myoblast differentiation
of C2C12 cells. Our results showed that MyoD binds to the T1R1 promoter region, which
has three E-boxes (E-box 1–3). The heterodimer of MyoD and Tcf12 interacts with Klf5 and
binds to E-box 1, activates transcription, and increases the expression levels of T1R1 during
myoblast differentiation [72] (Figure 3B).

These findings agree with those of studies showing that T1R3 and T1R1 are highly
expressed in the skeletal muscles. Skeletal muscle cells from T1R3-null mice exhibit
impaired mammalian targets of rapamycin complex 1 signaling and an increase in au-
tophagy [69,75,76]. This suggests that T1R3 forms a heterodimer with T1R1 as an umami
receptor and plays a critical role in sensing the nutrient status. The skeletal muscle stores
many amino acids and is an important source of amino acids under conditions of amino
acid deprivation [77]. Signaling starting from the umami receptor (T1R1/T1R3) may be
involved in the physiology of skeletal muscle metabolism and pathology of skeletal muscle
diseases through the regulation of autophagy. Further studies are required to confirm
this relationship.

7. Factors Regulating Myogenesis and Transcription of MRFs

Several signaling pathways play essential roles in the behaviors of skeletal muscle stem
cells. Notch signaling is a major regulatory pathway in muscle progenitor pools. Notch sig-
naling has been shown to inhibit myoblast differentiation in several models [78–88]. Bone
morphogenetic protein (BMP) signaling is also involved in maintaining the proliferative
status of muscle progenitors [89]. Loss- and gain-of-BMP function experiments in the limbs
of fetal chicks showed that activation of BMP signaling leads to an increased number of
Pax7-positive cells and increased muscle mass. Inhibition of BMP signaling impairs the
growth of skeletal muscle, suggesting that BMP promotes the proliferation of muscle pro-
genitor cells [90]. In mice, BMP regulates postnatal growth and adult muscle homeostasis
by regulating the proliferation of satellite cells, whereas BMP inhibition impairs muscle
growth [91,92]. Moreover, an inhibitor of DNA-binding protein 1, a BMP target gene, is nec-
essary to maintain muscle satellite cells in an undifferentiated or proliferative status [93,94].
In an experiment using C2C12 cells, BMP induced osteoblast differentiation while suppress-
ing myogenic differentiation [95]. Smad4, a downstream effector of BMP-Smad (canonical
BMP) signaling, is a critical suppressor of BMP in myogenic differentiation [96].

The demand for Wnt signaling during myogenesis differs between the fetal and em-
bryonic phases [97]. Embryonic myoblasts in the developing limbs of mice normally form
progenitors and skeletal muscle fibers. In the fetal stages, progenitors that express a consti-
tutively active form of β-catenin, an effector molecule of canonical Wnt signaling, increase
the number of Pax7-positive cells [97]. Wnt7a enhances the symmetrical division of satellite
cells during skeletal muscle regeneration by maintaining the stem cell pool [98]. Further
studies reinforced the importance of BMP and Wnt signaling in myogenesis. Recapitu-
lated myogenesis of pluripotent stem cells was achieved through the action of specific
molecules at precise time points. When epiblast-like cells were treated with a BMP inhibitor
(LDN193189) and Wnt activator (CHIR99021), commitment of the presomitic mesoderm
was initiated [99]. Following the addition of a growth factor cocktail (fibroblast growth
factor 2, hepatocyte growth factor, and insulin-like growth factor 1), the cell population
displays a mixture of differentiated myocytes (myogenin-positive) and progenitor cells
(Pax7-positive) [100,101]. Taken together, many growth factors and signaling molecules are
involved in regulating the myogenesis and transcription of MRFs. Moreover, these factors
and signals may be involved in cross-talk.
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8. TLE3 Represses Transcription of MyoD and Suppresses Myogenesis

Groucho/TLE proteins are transcriptional cofactors that do not directly bind to DNA
but play essential roles in cell differentiation [102]. Members of the Groucho/TLE fam-
ily, including TLE3, suppress Wnt-β-catenin signaling as transcriptional co-repressors of
Tcf/Lef, which are downstream effectors of Wnt-β-catenin signaling and subsequently
repress transactivation of the Wnt target gene [102–105]. We previously identified Tcf/Lef-
responsive elements in the 5′ untranslated regions of TLE3 through comparative genomic
and functional analyses. We demonstrated that Wnt-β-catenin signaling directly increases
the expression of TLE3 in W20-17 cells, a murine bone marrow mesenchymal stem cell
line [106]. Groucho/TLE family proteins are composed of a five-domain structure [107]:
the Q domain, which is glutamine-rich and highly conserved, forms two coiled-coil mo-
tifs that can oligomerize [108–110]; a glycine/proline-rich domain, which is critical for
recruiting and interacting with histone deacetylases [109,111,112]; a CcN domain, which
contains putative phosphorylation sites of cdc2 and casein kinase II and a nuclear lo-
calization sequence; a serine/proline-rich domain, which contains a region enriched by
serine/proline [107,113–115]; and a WD40 domain, which is highly conserved and contains
tandem repeats of tryptophan and aspartic acid. X-ray crystallography revealed that the
WD40 domain forms a β-propeller and binds various transcription factors [102]. TLE3 is
expressed in the myoblasts of murine embryos, and its expression overlaps with that of
both MyoD and Myf5 [116]. TLE3 is also expressed in cells with the same mesenchymal
lineage as myoblasts, including bone marrow mesenchymal stem cells [117–119], myoblasts,
adipocytes, and osteoblasts. MyoD is a master transcription factor of myogenesis, and
PPARγ and Runx2 are master transcription regulators of adipogenesis and osteoblasto-
genesis, respectively [120,121]. Villanueva et al. [122] identified TLE3 as a transcriptional
coactivator of PPARγ in adipocytes, and it was later confirmed that TLE3 enhances the
transcriptional activation of PPARγ and induces adipogenesis of bone marrow mesenchy-
mal stem cells [118,119]. Interference with the interaction between PPARγ and PRDM16
causes TLE3 to shift the fate of adipose stem cells from brown fat cells to white fat cells,
thus impairing fatty acid oxidation and thermogenesis [123]. Endogenous TLE3 interacts
with MyoD in C2C12 cells. TLE suppresses myoblast differentiation in C2C12 cells and is
induced by overexpression of MyoD in C3H10T1/2 cells [124]. To confirm whether the
suppressive effect of TLE3 on myogenesis is due to repression of MyoD-dependent trans-
activation, we employed luciferase reporters driven by muscle creatine kinase (MCK0.8)
and myogenin (MG185) promoters. TLE3 suppresses the transcriptional activation of
MyoD and other MRFs including MRF4, Myf5, and myogenin. Moreover, ChIP assays
showed that TLE3 disrupts the binding of MyoD to the promoter region of myogenin [124].
Typically, the WD domain of Groucho/TLE plays a critical role in transcriptional regula-
tion [125]. We previously showed that the WD domain of TLE3 is necessary to repress the
transcriptional activity of Runx2. However, the WD domain-deletion mutant still represses
the transcriptional activity of MyoD, and both the Q and serine/proline-rich domains of
TLE3 are essential for interacting with and repressing MyoD [124]. MRFs interact with E
proteins, including E12, through their bHLH domains [126]. TLE3 also interacts with the
bHLH domain of MyoD. Although overexpression of E12 dose-dependently counters the
suppressive effect of TLE3 on transactivation of MyoD activity, TLE3 does not interact with
E12 but rather disrupts the interaction between MyoD and E12. This result suggests that
TLE3 masks the E protein-binding region on MyoD; thus, TLE3 competitively interferes
with MRF and E protein interactions [124] (Figure 4). Together, TLE3 facilitates the differen-
tiation of mesenchymal stem cells into the white adipocyte lineage by activating PPARγ, an
adipogenic master regulator, and suppresses the transcription of Runx2 and MyoD, which
are master regulators of osteoblastogenesis and myogenesis, respectively. The role of TLE3
in skeletal muscle in vivo remains unknown. Studies are needed to analyze muscle-specific
TLE3 knockout mice because TLE3 null mice are embryonically lethal.
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9. NF-κB Represses Transcription of MyoD and Suppresses Myogenesis

NF-κB is a transcription factor that is closely related to various physiological and
pathological conditions, such as immune system, cell survival, and inflammatory processes.
In response to stimuli such as tumor necrosis factor (TNF)-α, the inhibitor of κBα is de-
graded, and p65, the main subunit of NF-κB, forms a complex with p50. This heterodimer
complex of p50/p65 is translocated from the cytoplasm to the nucleus. In the nucleus, the
p50/p65 heterodimer binds to the responsive elements of NF-κB to regulate target gene ex-
pression [127]. In a mouse model, the regeneration of skeletal muscle following trauma was
improved following systemic administration of the NF-κB inhibitor curcumin [128]. Several
groups reported that activation of NF-κB suppresses the differentiation of skeletal muscle
by reducing MyoD protein levels [129–132]. In contrast, NF-κB signaling is necessary for
myoblast proliferation [129–132]. Because MyoD regulates the exit from the cell cycle, in
part through transactivation of the cell cycle inhibitor p21, NF-κB suppresses myoblast
differentiation through the sustained proliferation of myoblasts [129,133]. In addition, NF-
κB mediates the suppression of myoblast differentiation by inducing cyclin D1, a member
of the cyclin family of proteins, which increases cell cycle progression from the G1 to S
phase [129]. We reported that treatment with a TNF-α ligand suppresses MG185-luciferase
activity induced by overexpression of MyoD in a TNF-α concentration-dependent manner
in vitro. To confirm this function, we generated C-terminal-truncated constructs of p65,
the main subunit of NF-κB and downstream effector of TNF-α. p65 consists of transacti-
vation domain 1, transactivation domain 2 (TA2), Rel homology domain, DNA-binding
domain, and dimerization domain. Although the full-length and transactivation domain 1
domain-deleted p65 mutant suppressed the MG185-luciferase activity induced by MyoD
induction, the TA2 domain-deleted mutant p65 did not. These results indicate that TNF-α
suppresses transactivation of MyoD via the canonical NF-κB signaling effector p65-TA2
domain [132]. The DNA binding capacity and transcriptional activation of NF-κB decrease
during myoblast differentiation [129,134]. Insulin-like growth factors stimulate the activity
of NF-κB during myogenesis [135,136]. We previously determined the activity of NF-κB
during skeletal muscle regeneration in a mouse model. NF-κB signaling was active from
days 1 to 3 after injection of cardiotoxin, which corresponded to the proliferation stage
of satellite cells. This behavior of NF-κB signaling was similar to the expression levels of
cyclin A2 and was related to the progression of the S phase in the cell cycle [137]. NF-κB
activation occurs prior to the increase in myogenin levels [132]. However, the role of NF-κB
(p65) in the skeletal muscle in vivo remains unknown. Further studies of muscle-specific
p65 knockout mice are needed because p65-null mice are embryonically lethal.

10. Conclusions

Maintaining skeletal muscle mass and function is important for a healthy lifestyle.
Elderly populations in both developed and developing countries have increased, and strate-
gies for regenerating and restoring skeletal muscle mass and function are urgently needed.
Therefore, the research focus has rapidly shifted from the development of muscle to the
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regenerative medicine of skeletal muscle tissue, particularly using stem cells. Researchers
have attempted to modify the expression of genes essential for generating muscles in vivo
to recapitulate myogenesis ex vivo. In vitro myogenesis protocols are currently used to
model muscle-associated diseases in vitro for drug discovery or cell therapy, in which
functional muscles are produced in the laboratory for tissue replacement therapy. In this
review, we highlight the function of MRFs and their modulators, such as TLE3 and NF-κB,
and target genes, such as taste receptors. Further research is needed to understand the
function of MRFs and the physiology or pathology of satellite cells, which will contribute
to the development of cell therapies or drug discovery for muscle-related diseases.
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