
Research Article
In Silico Identification of Potent PPAR-𝛾 Agonists from
Traditional Chinese Medicine: A Bioactivity Prediction, Virtual
Screening, and Molecular Dynamics Study

Kuan-Chung Chen1 and Calvin Yu-Chian Chen2,3

1 School of Pharmacy, China Medical University, Taichung 40402, Taiwan
2 School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan

Correspondence should be addressed to Calvin Yu-Chian Chen; ycc929@MIT.edu

Received 17 December 2013; Accepted 25 January 2014; Published 26 May 2014

Academic Editor: Fuu-Jen Tsai

Copyright © 2014 K.-C. Chen and C. Y.-C. Chen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The peroxisome proliferator-activated receptors (PPARs) related to regulation of lipidmetabolism, inflammation, cell proliferation,
differentiation, and glucose homeostasis by controlling the related ligand-dependent transcription of networks of genes. They are
used to be served as therapeutic targets against metabolic disorder, such as obesity, dyslipidemia, and diabetes; especially, PPAR-𝛾
is the most extensively investigated isoform for the treatment of dyslipidemic type 2 diabetes. In this study, we filter compounds of
traditional Chinese medicine (TCM) using bioactivities predicted by three distinct prediction models before the virtual screening.
For the top candidates, the molecular dynamics (MD) simulations were also utilized to investigate the stability of interactions
between ligand and PPAR-𝛾 protein. The top two TCM candidates, 5-hydroxy-L-tryptophan and abrine, have an indole ring and
carboxyl group to form the H-bonds with the key residues of PPAR-𝛾 protein, such as residues Ser289 and Lys367. The secondary
amine group of abrine also stabilized an H-bond with residue Ser289. From the figures of root mean square fluctuations (RMSFs),
the key residues were stabilized in protein complexes with 5-Hydroxy-L-tryptophan and abrine as control. Hence, we propose 5-
hydroxy-L-tryptophan and abrine as potential lead compounds for further study in drug development process with the PPAR-𝛾
protein.

1. Introduction

The peroxisome proliferator-activated receptors (PPARs)
belonged to the nuclear receptor superfamily of ligand-
inducible transcription factors. They are “fatty acid sensors”
related to regulation of lipid metabolism, inflammation,
cell proliferation, differentiation, and glucose homeostasis
by controlling the related ligand-dependent transcription of
networks of genes [1–3]. There are three different isoforms of
PPARs in mammal, which are PPAR-𝛼, PPAR-𝛾, and PPAR-
𝛿/𝛽. They have different tissue distributions and responses
to different ligands [4–6]. PPARs are used to be served as

therapeutic targets against metabolic disorder, such as obe-
sity, dyslipidemia, and diabetes; especially, PPAR-𝛾 is the
most extensively investigated isoform for the treatment of dy-
slipidemic type 2 diabetes [7–10]. It is a well-known receptor
located in fat for antidiabetic insulin sensitizers and has the
functions related to adipogenesis, lipogenesis, and glucose
homeostasis [11–13]. In rat stroke models, PPAR-𝛾 has been
served as a brain protector against ischemic cerebral infrac-
tion [14].

Nowadays, increasing numbers of drug are designed with
a target protein against a specific disease [15–18], as increas-
ing numbers of distinct mechanism of diseases have been
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Figure 1: Comparative plots of observed versus predicted activity for (a) MLR, (b) SVM, and (c) BNT models. Correlation trend (blue line)
and 95% prediction boundaries (enclosed by magenta lines) were shown.

identified by the researches [19–26]. Recently, the compounds
from traditional Chinese herb have been proven to have
the therapeutic effects [27–30]. In previous researches, many
compounds of traditional Chinese medicine (TCM) have
been indicated as potential candidates of lead compounds

against cancer [31–34], neuropathic pain [35], stroke [36, 37],
and virus infection [38, 39].

In the former study, we aim to detect potential candidates
from TCM compounds as agonists targeting PPAR-𝛼, PPAR-
𝛿, and PPAR-𝛾 [40]. However, a compound which had
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Figure 2: Human intestinal absorption model for top TCM compounds and T2384.

Table 1: Docking results, predicted pEC50, and ADMET properties for top TCM compounds and T2384.

Name Dock score Predicted pEC50 CYP2D6a probability Hepatotoxicity probability PPB levelb
MLR SVM BNT

5-Hydroxy-L-tryptophan 148.721 5.89 6.62 6.59 0.069 0.291 0
Abrine 142.592 6.31 6.63 6.44 0.049 0.642 0
Saussureamine C 135.304 5.90 7.27 7.91 0.415 0.450 0
Saussureamine B 124.688 8.85 7.63 8.00 0.356 0.708 0
Saussureamine A 103.030 7.59 7.81 7.64 0.336 0.754 0
∗T2384 77.618 7.52 7.06 8.50 0.069 0.953 2
∗Control.
aInhibition probability of cytochrome P450 2D6 enzyme.
bPlasma protein binding: 0: binding is <90%; 1: binding is >90%; 3: binding is >95%.

a higher binding affinity with target protein may not always
obtain a higher bioactivity. In this paper, we aimed to focus
on the target protein of PPAR-𝛾 and filter TCM compounds
using bioactivities predicted by three distinct prediction
models before the virtual screening.Themolecular dynamics
(MD) simulationswere also utilized to investigate the stability
of interactions between ligand and PPAR-𝛾 protein in the
docking pose under dynamic conditions. We attempt to
identify the potentTCMcompoundswith higher bioactivities
and binding affinity for PPAR-𝛾 protein and discuss the
functional group of these candidates and common binding
residues of PPAR-𝛾 protein in their docking pose.

2. Materials and Methods

2.1. Data Collection. After TCM compounds from TCM
database, Taiwan [41], were filtered by Lipinski et al.’s rule
of five [42], a total of 9,029 nonduplicate compounds were
prepared by Prepare Ligand module in Discovery Studio
2.5 (DS2.5) to adjust the ionization state to physiological
setting for virtual screening. For calculating the pharma-
cokinetics properties, ADMET Descriptors model in DS2.5
was employed to calculate the aqueous solubility, CYP2D6
binding, hepatotoxicity, and plasma protein binding (PPB) as
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties for each compound.
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Figure 3: Binding sites and common binding residues for PPAR-𝛾 protein. PPAR-𝛾 proteinwith (a) binding site defined by T2384, (b) docking
poses of top TCM compounds and T2384 in the binding site. (c) Top view, (d) side view of docking poses with common binding residues.
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Figure 4: Chemical scaffold of control and top three candidates: (a) T2384, (b) 5-hydroxy-L-tryptophan, (c) abrine, and (d) saussureamine
C.

The X-ray crystallography structure of the human per-
oxisome proliferator-activated receptor gamma (PPAR-𝛾)
protein was obtained from RCSB Protein Data Bank with
PDB ID: 3K8S [43]. After protein preparation, the chain A of
PPAR-𝛾 protein was used as target protein for virtual screen-
ing, and T2384, cocrystallized in PPAR-𝛾 protein, was used
as control.

2.2. Biological Activity Prediction Using Multiple Linear Re-
gression (MLR), Support Vector Machine (SVM), and Bayes
Network Toolbox (BNT)Models. For the prediction of biolog-
ical activity for the TCM compounds, three distinct predic-
tion models were constructed with the pEC

50
(log(1/EC

50
))

value of 20 compounds from Rikimaru et al.’s study [2] as
training set.The genetic function approximationmodule [44]
of DS 2.5 was utilized to determine the suitable molecular

descriptors for constructing the prediction models, and the
fitness of individual model was estimated by square corre-
lation coefficient (𝑅2). Cross-validation test was used to val-
idate the prediction model. For three distinct prediction
models,multiple linear regression andBayes network toolbox
were performedusingMATLAB, and support vectormachine
was performed using LibSVM developed by Chang and Lin
[45].

2.3. Docking Simulation. For virtual screening, LigandFit
protocol [46] in DS 2.5 was employed to dock each com-
pound into an active site using a shape filter and Monte
Carlo ligand conformation generation, and each docked
pose was minimized with Chemistry at HARvard Macro-
molecular Mechanics (CHARMM) force field [47] and
evaluated with a set of scoring functions. In addition, LigPlot
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Figure 6: RMSDs and radii of gyration for PPAR-𝛾 protein and ligands over 40 ns MD simulation.

v.2.2.25 program [48] was employed to identify the interac-
tions between protein and ligand in each docking pose.

2.4. Molecular Dynamics Simulation. Before the molecular
dynamics simulation by Gromacs [49], each protein-ligand
complex in docking pose has been reprepared. Each ligand
was reprepared by SwissParam program [50], and the protein
was reprepared with charmm27 force field by Gromacs.
The protein-ligand complex was solvated using a watermodel
of TIP3P with aminimum distance of 1.2 Å from the complex
and then minimized by steepest descent algorithm [51] with

maximum of 5,000 steps. Then a single 10 ps constant tem-
perature (NVT ensemble) equilibration was performed using
Berendsen weak thermal coupling method followed by a
40 ns production simulation. For each MD simulation, it
adopts the particlemeshEwald (PME) optionwith a time step
of 2 fs. A series of protocols in Gromacs were employed to
analyze the MD trajectories.

3. Results and Discussion

3.1. Biological Activity Predictions. The genetic approxima-
tion algorithm determined the six optimum molecular
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Figure 7: Total energy of PPAR-𝛾 complexes with (a) T2384, (b) 5-hydroxy-L-tryptophan, (c) abrine, and (d) saussureamine C over 40 ns
MD simulation. The average fluctuations in a cycle of 21 frames were illustrated by yellow (T2384), violet (5-hydroxy-L-tryptophan), wine
(abrine), and cyan (saussureamine C) line, respectively.

descriptors for constructing prediction models with 20 com-
pounds of training set. The selected descriptors were ES
Sum sssCH, ES Count aaN, BIC, IAC Mean, CHI 3 P, and
JY. These six optimum molecular descriptors can be broadly
divided into two groups, which are electronic and special
topological descriptors. For electronic topological descrip-
tors, it includes ES Sum sssCH, ES Count aaN for calculat-
ing the sums of the electrotopological state (E-state) values
and the counts of each atom type, respectively. For special
topological descriptors, BIC and IAC Mean are bonding
information content and mean information of atomic com-
position, which both belong to Graph-Theoretical InfoCon-
tent descriptors [52]. CHI 3 P is a Kier and Hall molecular
connectivity index [53]. JY is a Balaban index [54]. According
to these selected descriptors, the functional formula of
multiple linear regression (MLR) model was constructed as
follows:

pEC
50
= − 5.987 + 1.987 × ES Sum sssCH

− 0.812 × ES Count aaN + 8.608 × BIC

− 2.047 × IAC Mean + 0.812 × CHI 3 P

+ 2.159 × JY.

(1)

The support vector machine (SVM) and Bayes network
toolbox (BNT) models were also constructed with the
identical training set and descriptors. The correlation of
predicted and observed activities shown in Figure 1 illustrates
the correlation trend and 95% prediction bands for each
prediction model. The square correlation coefficients (𝑅2) of
training set for MLR, SVM, and BNT models are 0.8442,
0.8536, and 0.7612, respectively. These prediction models are
acceptable for predicting activity of PPAR-𝛾 protein.

3.2. Docking Simulation. The potent compounds, which have
acceptable predicted activities in all three prediction models,
have been virtual screening with the target protein. After
filtering by the absorption properties, the top TCM can-
didates ranked by Dock score were listed in Table 1 with
their predicted activities and pharmacokinetics properties.
Human intestinal absorption model displayed in Figure 2
suggested that the top five TCM candidates may have good
absorption.

For the docking simulation, the binding site of PPAR-𝛾
protein was defined by the volume and position of control,
T2384 (Figure 3(a)). We visually inspected docking poses
of top ranked TCM candidates (Figure 3(b)), 5-hydroxy-L-
tryptophan, abrine, and saussureamine C interacting with
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Figure 8: Continued.
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Figure 8: Secondary structure assignments and secondary structural feature ratio variations of PPAR-𝛾 complexes over 40 nsMD simulation.
Residues 1–65 in 𝑦-axis correspond to residues 207–271, residues 66-250 in 𝑦-axis correspond to residues 276–460, and residues 251–262 in
𝑦-axis correspond to residues 465–476.

similar PPAR-𝛾 binding site residues as control (Figures
3(c)-3(d)). Figure 4 displays the structure of T2384 and top
three candidates. According to the docking poses shown in
Figure 5, T2384 has 𝜋 interactions with residues Phe264 and
Phe363, hydrogen bonds (H-bonds) with residues Cys285
and Lys367, and hydrophobic contact with other nine
residues.

Compared with T2384 in PPAR-𝛾 protein, the top three
TCM candidates have been docked with similar docking
poses. Due to the molecular size of three TCM compounds,
none of them have interaction with Phe264 as T2384.
Except saussureamine C, both of 5-hydroxy-L-tryptophan
and abrine have 𝜋 interaction with residue Phe363 as control.
However, saussureamine C still has hydrophobic contact with
residue Phe363. All top three candidates have similar H-bond
with residue Lys367 and hydrophobic contacts with some
common residues, such as Leu330 andMet364. Except that 5-
hydroxy-L-tryptophanhas hydrophobic contact instead ofH-
bond with residue Cys285, the other two candidates have the
similar H-bond with residues Cys285 as T2384. In addition,
abrine and saussureamine C also have H-bond with Ser289
and Met364, respectively.

3.3. Molecular Dynamics Simulation. The docking poses in
the docking simulation illustrate that the top three TCM
candidates have similar interactions with the target proteins
as T2384. However, the structure of PPAR-𝛾 protein is fixed

during the progress of docking simulation. As this reason,
the molecular dynamics (MD) simulations for each protein-
ligand complex were performed to investigate the stability of
interactions between ligand and target protein in the docking
pose under dynamic conditionsand investigate the possible
variations for each protein-ligand complex after docking.

The root mean square deviations (RMSDs) and radii of
gyration for each protein and ligand in the complexes were
illustrated in Figure 6. For RMSD, it calculates the deviation
of the structure compared with the starting structure over
40 ns of MD simulation.They indicate that all protein-ligand
complexes tend to be stable after 30 ns of MD simulation.
Radius of gyration, which measures the mass of the atom
relative to the center of mass of the complex, is indicative
of the compactness of each complex. As shown in Figure 6,
there is no significant variation for the compactness of each
complex. Figure 7 illustrates the variation of total energy for
each protein-ligand complex over the course of 40 ns MD
simulationwith the average fluctuations in a cycle of 21 frames
shown in the center of each graph. Total energy trajectories
indicate that these systemswere stabilized for PPAR-𝛾 protein
in the complex with T2384 and top three TCM candidates
over the course of 40 nsMD simulation. Figure 8 displays the
variation of secondary structure of PPAR-𝛾 protein and
secondary structural feature ratio over the course of 40 ns
MD simulation for each complex with T2384 and top three
TCM candidates. It indicates that docking with three TCM
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Figure 9: RMSD values (upper left half) and graphical depiction of the clusters (lower right half) of PPAR-𝛾 complexes during 30–40 ns MD
simulation.

candidates may not cause the significant differences from
docking with the control in the secondary structure of PPAR-
𝛾 protein.

The representative structures of each complex after MD
simulation were identified by the cluster analysis with a
RMSD cutoff of 0.1 nm. In Figure 9, it illustrates the RMSD
values and graphical depiction of the clusters over 30–
40 ns MD simulation. The representative structures of each
complex were identified by middle RMSD structure in
the major cluster over 30–40 ns MD simulation, which
are 38.88 ns (T2384), 39.86 ns (5-hydroxy-L-tryptophan),
39.80 ns (abrine), and 39.96 ns (saussureamine C), respec-
tively.The snapshots and ligand interaction diagrams for each

docking pose of the representative structures are illustrated in
Figure 10. For T2384, it maintains the H-bonds with residues
Cys285 and Lys367 in a nonstatic condition, whichmay retain
the docking pose of T2384 in the binding pocket of PPAR-
𝛾 protein. In addition, the ligand interaction diagram also
indicates that T2384 has interactions with common residues
in docking simulation. For 5-hydroxy-L-tryptophan, it keeps
the H-bond with residue Lys367 in a nonstatic condition and
also has an H-bond with residue Ser289 as the docking pose
of abrine in the docking simulation. Similarly, abrine has H-
bonds with residues Ser289 and Lys367 as well as has an H-
bond and𝜋 interactionwith residue Tyr327.Thedocking pose
of saussureamine C in the docking simulation is not stable
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Figure 10: Docking poses ofmiddle RMSD structure in themajor cluster during 30–40 ns ofMD simulation. Snapshots and ligand interaction
diagrams for PPAR-𝛾 protein complexes with T2384 (38.88 ns), 5-hydroxy-L-tryptophan (39.86 ns), abrine (39.80 ns), and saussureamine C
(39.96 ns). For 2D diagrams, residues with magenta cycles are involved in hydrogen-bond, charge, or polar interactions, and residues with
green cycles are involved in van der Waals interactions.
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Figure 11: Continued.
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Figure 11: Distances of potential H-bonds between PPAR-𝛾 protein and each compound during 40 ns MD simulation.

in a nonstatic condition. In the representative structures after
MD simulation, it has H-bonds with residues His449 and
Leu476, as well as a 𝜋 interaction with residue Phe282.

The H-bonds occupancies for key residues of PPAR-𝛾
protein in each complex are shown in Table 2 with cutoff of
0.3 nm. Figure 11 displays the variation of these distances over
the course of 40 ns MD simulation. For T2384, the potential
H-bonds with key residues of PPAR-𝛾 protein are formed by
its sulfonamide group. 5-Hydroxy-L-tryptophan and abrine
form H-bonds with residue Lys367 by the carboxyl group.
They form H-bonds with residue Ser289 by the indole group
in the beginning of MD simulation, but the H-bond for
abrine has shifted from the indole group to secondary amine
group after 5 ns of MD simulation. In addition, the carboxyl
group of abrine also forms a stable H-bond with residue
Tyr327 after 7 ns of MD simulation. For saussureamine C,
the docking pose in the docking simulation had changed
after MD simulation. The H-bonds formed by the carboxyl
group are shifted from residue Lys367 to residue Ser289 after
5 ns of MD simulation. In addition, it forms stable H-bonds
with residueHis449 by its sulfonamide group and heterocycle
group after MD simulation.

The root mean square fluctuations (RMSFs) shown in
Figure 12 illustrate the stability of each residue over 30–
40 ns MD simulation. Residues Cys285, Lys367, and His449
are stabilized by all top three TCM candidates and T2384.

As abrine forms stable H-bond with residues Ser289 and
Tyr327, the RMSFs of Ser289 and Tyr327 are much lower in
the complex with abrine than with others. For saussureamine
C, as theH-bondswith residue Tyr327 are shifted between the
heterocycle group, secondary amine group, and sulfonamide
group, it causes the highest value of RMSF for residue Tyr327
in the complex with saussureamine C.

To consider the variation of each ligand during MD sim-
ulation, variation of torsion angles during 40 ns of MD simu-
lation for each ligand in the PPAR-𝛾 complexes is shown in
Figure 13. As T2384 is the cocrystallized compound in the
PPAR-𝛾 protein, the docking pose is stable during 40 ns of
MD simulation. For 5-hydroxy-L-tryptophan, the docking
pose which is also stable during 40 ns of MD simulation
except for the hydroxyl group in the indole ring has a 180-de-
gree shift after MD simulation. For abrine, the variation of
torsions 10 and 11 at the initial period of MD simulation may
be the reason that the H-bond has shifted from the indole
group to secondary amine group, and carboxyl group forms
a stable H-bond with residue Tyr327 after MD simulation.
Torsions 14 and 16 for saussureamine C indicate that the
docking pose of saussureamine C has a fluctuation during 15–
30 ns of MD; it can also be seen in the ligand RMSD (Fig-
ure 6) and the distance variation with residue Tyr327 (Fig-
ure 11).The variation of torsion 19 shows that the sulfonamide
group of saussureamine C is flexible over MD simulation.
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Figure 12: RMSFs for residues 207–476 of PPAR-𝛾 complexes with each compound over 30–40 nsMD simulation. Common binding residues
were illustrated with dash lines.

4. Conclusion

This study aims to investigate the potent TCM candidates for
PPAR-𝛾 protein.The biologically activities of candidates were
predicted by three distinct prediction models (MLR, SVM
andBNT) based on their ligand characteristics. After docking
simulation, the docking poses of top TCM compounds
ranked by the scoring function were validated by the MD
simulation. For the top three TCM candidates, both of 5-
hydroxy-L-tryptophan and abrine have an indole ring and
carboxyl group to form the H-bonds with the key residues of
PPAR-𝛾 protein. The secondary amine group of abrine also
stabilized an H-bond with residue Ser289. The key residues

were stabilized in protein complexes with 5-Hydroxy-L-
tryptophan and abrine as control. For saussureamine C, the
interactions of docking pose in the docking simulation are
not stable after MD simulation. Hence, we propose 5-hy-
droxy-L-tryptophan and abrine as potential lead compounds
for further study in drug development process with the
PPAR-𝛾 protein.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



16 Evidence-Based Complementary and Alternative Medicine

.

.

(1)

(2)
(3)

(4)

T2384

5-Hydroxy-L-tryptophan

.

Abrine

.
Saussureamine C

(5)
(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
(15)

(16)

(17)

(18)

(19)

N

S

Cl
S

Cl

S O

O

HN

F
F

F

Cl

N
H

O

HO

(1) (2) (3)

(4)

N
H

O

NH

O
O

NH

O O

(5) (6) (7)

(8)

(10) (11) (12)

(13)

(14) (15) (16)

(17) (18) (19)

(9)

−O

NH3
+

O−

O−

NH2

Figure 13: Variation of ligand torsion angles for each of PPAR-𝛾 complexes during 40 ns of MD simulation. Red and gray lines represent the
ligand torsion angle at docking simulation and first conformation of MD simulation, respectively.



Evidence-Based Complementary and Alternative Medicine 17

Table 2:H-bond occupancy for key residues of PPAR-𝛾 proteinwith
top three candidates and T2384 overall 40 ns molecular dynamics
simulation.

Name H-bond interaction Occupancy

T2384

Tyr327:HH/O20 8.70%
Tyr327:OH/H40 5.55%
Lys367:HZ3/O20 39.30%
Lys367:HZ3/O21 0.75%

5-Hydroxy-L-tryptophan

Cys285:O/H21 1.30%
Ser289:HG1/N7 7.05%
Ser289:OG/H26 0.15%
Ser289:OG/H21 14.54%
Tyr327:HH/O13 5.25%
Tyr327:HH/O14 4.55%
Lys367:HZ3/O13 49.93%
Lys367:HZ3/O14 0.90%
His449:HE2/O14 7.60%

Abrine

Cys285:O/H30 1.00%
Ser289:HG1/N7 1.45%
Ser289:OG/H22 3.00%
Ser289:OG/H30 90.05%
Tyr327:HH/O14 83.15%
Lys367:HZ3/O13 41.15%
Lys367:HZ3/O14 37.75%

Saussureamine C

Ser289:HG1/O23 32.40%
Ser289:HG1/O24 30.05%
Tyr327:HH/O14 4.95%
Tyr327:HH/O23 6.20%
Tyr327:HH/O24 14.65%
Tyr327:HH/O28 6.60%
Tyr327:OH/H52 6.65%
Lys367:HZ3/O23 2.65%
Lys367:HZ3/O24 2.70%
His449:HE2/O14 14.65%
His449:HE2/O24 3.50%
His449:HE2/N27 3.90%
His449:HE2/O28 77.60%
Leu476:OT1/H50 13.85%
Leu476:OT2/H50 7.00%

H-bond occupancy cutoff: 0.3 nm.
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