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Abstract

The Hippo pathway negatively regulates the cell number in epithelial tissue. Upon its inactivation, an excess of cells is
produced. These additional cells are generated from an increased rate of cell division, followed by inappropriate
proliferation of cells that have failed to exit the cell cycle. We analyzed the consequence of inactivation of the entire E2F
family of transcription factors in these two settings. In Drosophila, there is a single activator, dE2F1, and a single repressor,
dE2F2, which act antagonistically to each other during development. While the loss of the activator dE2F1 results in a severe
impairment in cell proliferation, this defect is rescued by the simultaneous loss of the repressor dE2F2, as cell proliferation
occurs relatively normally in the absence of both dE2F proteins. We found that the combined inactivation of dE2F1 and
dE2F2 had no significant effect on the increased rate of cell division of Hippo pathway mutant cells. In striking contrast,
inappropriate proliferation of cells that failed to exit the cell cycle was efficiently blocked. Furthermore, our data suggest
that such inappropriate proliferation was primarily dependent on the activator, de2f1, as loss of de2f2 was inconsequential.
Consistently, Hippo pathway mutant cells had elevated E2F activity and induced dE2F1 expression at a point when wild-
type cells normally exit the cell cycle. Thus, we uncovered a critical requirement for the dE2F family during inappropriate
proliferation of Hippo pathway mutant cells.
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Introduction

The Retinoblastoma tumor suppressor protein (pRB) and the

related proteins p107 and p130 negatively regulate cell prolifer-

ation. In a textbook model, the role of pRB family members in cell

cycle regulation is explained by their ability to attenuate the

activity of E2F transcription factors. E2F is best known for its

ability to control the G1/S transition and is rate limiting for S

phase entry (for review see: [1–4]). The E2F transcriptional

program provides cell cycle dependent expression of a large panel

of genes encoding replication proteins, cell cycle regulators and

others. In early G1 phase, members of the pRB family are

complexed with members of the E2F family and repress expression

of E2F regulated genes through recruitment of corepressor

complexes to target promoters. In late G1 phase, cyclin dependent

kinases phosphorylate pRB family members, thus releasing free

E2F proteins to allow induction of E2F-dependent transcription.

Since functional inactivation of the pRB pathway occurs in most

tumor cells it is thought that unrestrained E2F activity drives

inappropriate proliferation in tumors [5]. Such an idea is further

supported by findings that mutations in E2f genes reduce

proliferation in Rb deficient mouse embryos [6–8].

In mammalian cells, E2F activity is a combined output of eight

family members, which, in turn, are loosely grouped into a class of

repressors (E2F-3b through E2F-8) and a class of activators (E2F-1

through E2F3a). E2F-1 through E2F-6 require a heterodimeric

partner of the DP family of proteins to bind to DNA, while E2F-7

and E2F-8 bind to DNA in a DP-independent manner. As a way

to dissect the contribution of E2F to cell proliferation, dominant

negative forms of DP and E2F, dn-DP and dn-E2F respectively,

were used. Expression of dn-E2F, which binds to DNA, but fails to

repress or activate, leads to immortalization in mouse fibroblasts

and renders cells resistant to senescence induced by p19ARF, p53

or by RASV12 [9]. However, cells expressing dn-E2F were

impaired in the ability to proliferate following serum stimulation.

This suggests that E2F activity is not needed during cell

proliferation but is required in a specific context, such as cell

cycle re-entry from quiescence. In contrast, a reduction of DP

function, either by siRNA or by using a dn-DP form, resulted in

cell cycle arrest and a senescence-like phenotype, indicating that

E2F is in fact needed for cell proliferation [10,11]. One potential

explanation for these discrepancies is that reducing DP does not

inactivate the total pool of E2Fs, since E2F-7 and E2F-8 repressors

bind to DNA in a DP-independent manner, and therefore the two

remaining E2Fs may induce the cell cycle arrest. An alternative

explanation is that dn-E2F does not completely inhibit E2F

activity [11] and the remaining E2F activity is sufficient to sustain

cell proliferation.

The biological role of E2F in the context of animal development

is being extensively studied by using gene targeting approaches in

mice. However, interpretation of the phenotypes of individual E2F

knockouts is often complicated by the redundancy and compen-

sation among the family members. The impact of genetic ablation

of E2f genes on cell proliferation is more profound in compound

knockouts. Mouse embryonic fibroblasts (MEFs) lacking a whole

class of activator E2Fs, E2f-1, E2f-2 and E2f-3, fail to proliferate
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due to a high level of p21 [12], E2f-4; E2f-5 double knockouts are

defective in a p16 mediated cell cycle arrest [13], while E2f-7; E2f-

8 knockouts have a high level of apoptosis due to deregulation of

E2f-1 expression [14]. Nevertheless, the large number of E2F

genes makes it currently unfeasible to genetically ablate all E2F

activity in mammals to determine the consequences of the loss of

E2F function on cell proliferation.

Genetically, Drosophila provides a relatively simpler system to

study the role of E2F, since the corresponding families are smaller.

The Drosophila E2F family consists of a single activator, dE2F1, and

a lone repressor, dE2F2. Both dE2Fs dimerize with the single dDP

protein in order to bind to DNA. Unlike mammalian cells, the

Drosophila genome lacks orthologs of E2F-7 or E2F-8 that bind to

DNA in a dDP independent manner. It is important to note that

the loss of dDP has been shown to functionally inactivate both

dE2F1 and dE2F2 [15]. A de2f1 mutation severely reduces cell

proliferation, leads to the loss of expression of E2F target genes,

and almost complete cessation of DNA synthesis [16,17].

Strikingly, these defects are largely suppressed by a concomitant

mutation in de2f2. de2f1 de2f2 double mutant animals can survive

until late pupal stages and show normal patterns of cell

proliferation and differentiation even though E2F targets are no

longer expressed in a cell cycle dependent manner and are likely to

be present at suboptimal levels [18]. A similar phenotype has been

observed in dDP mutant animals. Thus, the complete loss of E2F

function in dDP or in de2f1 de2f2 mutants is permissive for cell

proliferation and appears to have a relatively minor impact on

animal development; however, whether the loss of E2F affects cell

proliferation during oncogenic stimuli has not been studied. Given

that most models emphasize the prominent role of E2F in

proliferation of tumor cells, this is an important question to be

addressed.

Drosophila has proven to be an excellent model to investigate

cancer-causing genes. This is illustrated, for example, by studies of

the recently identified the Hippo tumor suppressor pathway. The

cellular functions of the Hippo pathway are to restrict cell

proliferation and promote apoptosis (for review see: [19–22]). The

core components of the pathway are the protein kinases Warts

(Wts), Hippo (Hpo) and Mob as tumor suppressor (Mats). Salvador

(Sav) serves a scaffold for Wts and Hpo. Assembly of an active

complex of the four negative regulators Wts/Hpo/Mats/Sav is

accompanied by mutual phosphorylation and leads to activation of

the Wts kinase. Once active, Wts phosphorylates and inactivates

the transcriptional co-activator Yorkie (Yki) by excluding Yki from

nucleus. Yki is thus far the most downstream component of the

pathway. In the absence of Wts-dependent phosphorylation, Yki

enters the nucleus where it requires transcription factors to be

recruited to the promoter of the Hippo pathway target genes.

Thus far, only the lone TEAD/TEF protein family member in

Drosophila, Scalloped, has been shown to interact with Yki [23,24]

while the Yki mammalian homolog YAP binds to a variety of

transcriptional factors and modulates their activity. Among Hippo

pathway targets are genes that promote cell proliferation and

genes that inhibit apoptosis such as cyclin E, microRNA bantam,

and diap1. Inactivation of any negative regulator of Hippo

pathway signaling, or overexpression of the positive regulator

Yki, stimulates additional cell divisions by increasing the

proliferation rate of actively dividing cells, delaying the cell cycle

exit, and simultaneously protecting cells from apoptosis. Failure to

exit the cell cycle on time gives rise to inappropriate proliferation

of Hippo pathway mutant cells. Since patterns of cell proliferation

are normal in dDP mutants and in de2f1 de2f2 double mutants,

these combinations provide us with an opportunity to determine

when and where proliferation driven by the potent oncogene Yki is

dependent on dE2F family members. In this work, we show that

the loss of E2F function produces a distinctly different result in

actively dividing cells and in cells that proliferate inappropriately

due to the failure to exit the cell cycle. Inactivation of the entire

dE2F family in actively dividing cells has only a subtle effect on the

ability of Yki to increase the rate of cell division. In contrast, the

loss of E2F function fully blocks inappropriate proliferation of

these cells. Thus, our work uncovers the in vivo requirement for

E2F function during oncogenic proliferation driven by Yki,

specifically at the point when cells normally exit the cell cycle

and enter quiescence.

Results

Yki-Driven Proliferation of Actively Dividing Cells in the
Wing Imaginal Disc Does Not Require E2F Mediated
Control

We initially used a dDP mutation to determine whether Yki

requires dE2F mediated control to drive cell proliferation. dDP is

an obligatory heterodimeric partner of both dE2F1 and dE2F2,

and the loss of dDP has been shown to functionally inactivate both

de2f1 and de2f2 [15]. Importantly, dDP single mutant or de2f1 de2f2

double mutant animals survive until late pupal stages and exhibit

normal patterns of cell proliferation [17,18]. Thus, the use of these

mutant combinations allowed us to minimize indirect cell cycle

effects produced when dE2F1 function alone is inactivated. The

MARCM technique [25] was employed to generate clones of wild-

type cells, wild-type cells overexpressing yki, dDP mutant cells, and

dDP mutant cells that overexpress yki in the larval wing imaginal

disc. All clones were marked with GFP, induced simultaneously,

and allowed to grow for the same period of time (Figure 1). At this

stage of development, the majority of cells in the wing disc are

asynchronously dividing and therefore the rates of cell prolifera-

tion can be accurately measured. As expected, overexpression of

yki accelerated the cell cycle progression of wild type cells

(Figure 1A–B). The median population doubling time in yki

overexpressing clones was 10.6 hr. This was faster than that of the

wild type population, which was 13.8 hr. We found that a dDP

mutation did not significantly affect the ability of yki to increase

rates of cell division (Figure 1C–D). The median population

doubling time in clones of dDP mutant cells overexpressing yki was

11.3 hr, indicating that these cells were still proliferating faster

Author Summary

The E2F transcription factor family is considered to be the
best-characterized downstream target of the retinoblasto-
ma protein (pRB). The pRB pathway is functionally
inactivated in most tumor cells, and it is thought that
unrestrained activity of E2F drives inappropriate prolifer-
ation in tumors. We utilized the relative simplicity of the
Drosophila model to determine the role of the dE2F family
in proliferation of cells following inactivation of the
recently identified Hippo tumor suppressor pathway. We
found that Hippo pathway mutant cells require the dE2F
family to delay the cell cycle exit and to proliferate
inappropriately when wild-type cells enter quiescence.
This is significant since the loss of the entire dE2F family
exerts almost no effect on the ability of Hippo pathway
mutations to accelerate proliferation of actively dividing
cells. Thus, the importance of the dE2F family in cells with
an inactivated tumor suppressor pathway varies in
different contexts. This discovery may have implications
in designing anti-cancer therapies that inhibit E2F activity.

dE2F in Oncogenic Proliferation
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than wild type cells. Thus, this result suggests that E2F mediated

control is not required for Yki induced proliferation in actively

dividing cells.

The Loss of E2F–Dependent Control Blocks Yki-Driven
Inappropriate Proliferation in the Cells Posterior to the
SMW in the Eye Imaginal Disc

In the eye imaginal disc, Hippo pathway mutant cells delay the

cell cycle exit and undergo inappropriate proliferation. To

determine the effect of the loss of E2F mediated regulation in

these settings, we examined the effect of yki overexpression in

clones of wild type or dDP mutant cells during cell cycle exit. In a

wild type eye disc, BrdU labeling reveals a narrow stripe of S phase

cells posterior to the morphogenetic furrow (MF), referred to as the

Second Mitotic Wave (SMW) (Figure 2A). Cells within the MF are

arrested in G1 and therefore do not incorporate BrdU. Posterior

to the SMW, cells exit the cell cycle and differentiate. In contrast,

yki overexpressing cells (GFP positive) failed to undergo cell cycle

exit and continued proliferating [26], as shown by the appearance

of BrdU positive cells posterior to the SMW (Figure 2B). Strikingly,

no ectopic BrdU incorporation was observed when yki was

overexpressed in clones of dDP mutant cells, which are marked by

the presence of GFP (Figure 2C). This indicates that although E2F

function is unnecessary for Yki to increase rates of cell proliferation

in actively dividing cells, Yki is dependent on the presence of

dE2F/dDP activity to drive cells into inappropriate cell cycles

posterior to the SMW.

To further confirm this conclusion, we examined cell prolifer-

ation when both de2f1 and de2f2 were genetically ablated while the

Hippo pathway was inactivated by a wts mutation. Clones of de2f2

single, de2f1 wts double, and de2f2 de2f1 wts triple mutant cells were

simultaneously generated in the same eye imaginal disc using the

ey-FLP/FRT technique. The triple mutant tissue could be

distinguished from the neighboring wild type tissue by the

complete lack of GFP. Similar to yki overexpressing cells, wts

mutant cells failed to exit the cell cycle and proliferated

inappropriately posterior to the SMW [27,28] (Figure 2D).

Additionally, wts mutant cells continue cell divisions during early

pupal development when wild type cells are quiescent (Figure 2G).

The inappropriate proliferation during larval and pupal stages

gives rise to a surplus of interommatidial cells. During pupal eye

development, the excess of interommatidial cells is eliminated by a

wave of apoptosis. However, since wts mutants are defective in

normal apoptosis in the eye, these supernumerary cells remain and

can be visualized in 48 hr old pupal retina as extra layers of cells

between adjacent ommatidial clusters (Figure 2J). Consistent with

the results of the overexpression of yki in dDP mutant cells

(Figure 2C), clones of de2f2 de2f1 wts mutant cells posterior to the

SMW were largely devoid of BrdU incorporation and mitoses, the

latter were detected by the appearance of phosphorylated histone

H3 (phosH3), (Figure 2E–F). No S phases were detected in the

triple mutant combination at 12 hr after puparium formation

either (Figure 2H), a time point when wts mutant cells continue

inappropriate proliferation (Figure 2G). Furthermore, examination

of pupal retinas revealed that clones of de2f1 de2f2 wts triple mutant

cells (Figure 2K) or dDP mutant cells that overexpress yki

(Figure 2M) no longer contain an abnormally large number of

supernumerary interommatidial cells which are otherwise found in

clones of wts mutant cells (Figure 2J) or in clones of cells that

overexpress yki (Figure 2L). To measure the extent to which the

loss of dE2F function reduced the number of interommatidial cells

in wts mutant tissue, we counted the number of secondary, tertiary,

and bristles cells per each ommatidial hexagon. Clones of wts

mutant tissue in pupal retinas contained an average of 31.662.6

cells, which was significantly higher than 12.060.1 cells found in

wild type tissue (Figure 2N). However, the regions that were triple

mutant for de2f1 de2f2 wts had only 13.761.0 cells. Similarly, a

dDP mutation significantly reduced the number of cells in clones

that overexpress yki from 30.363.3 down to 15.061.0 (Figure 2N).

These reductions are consistent with the observations that these

cells fail to proliferate posterior to the SMW. We further

emphasize that the inability of wts mutant cells, or yki

overexpressing cells, to undergo inappropriate proliferation in

the absence of E2F control is not merely a consequence of non-

specific cell cycle defects due to inactivation of the dE2F family.

Most cell proliferation occurs normally in de2f1 de2f2 double

mutants [18] or dDP mutants [17] and, as shown here, a dDP

mutation did not prevent yki from increasing rates of cell division

in asynchronously dividing cells of the wing disc (Figure 1).

Next, we wished to determine whether both dE2F family

members are equally important in wts mutant cells to undergo

inappropriate proliferation. To address this question we compared

the S phases posterior to the SMW in clones of de2f2 wts double

mutant cells with that of wts single mutant cells in the same eye

imaginal disc. Previous analysis revealed that patterns of cell

proliferation are normal in clones of de2f2 mutant cells [29]. The

de2f2 wts double mutant cells were marked by the lack of GFP, wts

single mutant cells were distinguished by an intermediate GFP

Figure 1. Inactivation of the dE2F family does not block Yki-
induced proliferation in actively dividing cells. Clones of cells of
four different genotypes marked with GFP (green) were induced
simultaneously with the MARCM technique and allowed to grow for the
same period of time. Cells were visualized by staining with DAPI (blue).
Population doubling time (DT) is shown for each genotype. Data were
collected from 28 clones for wild type, 28 clones for tub.yki, 66 clones
for DP2/2, and 33 clones for tub.yki in DP2/2. Average clone areas are
9,2066613 pixels for wild type; 18,49161,780 pixels for tub.yki;
2,8146279 pixels for DP2/2 and 12,90961,263 pixels for tub.yki in
DP2/2. (A) Control clones induced with a wild type FRT42D
chromosome. (B) Clones of wild type cells that overexpress yki contain
more cells than control in (A). (C) Clones of dDP mutant cells. (D) Clones
of dDP mutant cells that overexpress yki contain more cells than clones
of dDP mutant cells (C) or control clones (A).
doi:10.1371/journal.pgen.1000205.g001

dE2F in Oncogenic Proliferation
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Figure 2. Yki-driven proliferation of cells posterior to the SMW is blocked in the absence of the dE2F family. (A) The pattern of S
phases in the wild type eye discs as revealed by BrdU labeling. Position of the morphogenetic furrow (MF) is shown by arrowhead. Posterior is to the
right. Wild type cells asynchronously proliferate anterior to the MF, arrest in G1 in the MF and undergo a synchronous S phase in the second mitotic
wave (SMW) posterior to the MF. (B–C) Clones of wild type (B) and dDP mutant (C) cells overexpressing yki were generated with the MARCM system
and marked with GFP (green). Clones in (B) were generated with the ey-FLP while clones in (C) were generated with the hs-FLP. (B) Posterior to the
SMW, wild type cells that overexpress yki fail to exit the cell cycle and proliferate inappropriately as evident by the appearance of BrdU positive cells.
(C) In contrast, yki is unable to induce inappropriate proliferation of dDP mutant cells posterior to the SMW. Note, that dDP mutant cells that
overexpress yki show a normal pattern of BrdU incorporation in the SMW but do not incorporate BrdU posterior to the SMW. (D–M) Clones of mutant
cells of different genotypes were generated with ey-FLP and the mutant tissue was distinguished by the lack of GFP (green). (D–F) Mosaic larval eye
discs were labeled with BrdU (red) to detect the S phases (D and E) or stained with anti-phosH3 (magenta) to visualize mitoses (F). (D) wts mutant cells
fail to exit the cell cycle posterior to the SMW and undergo inappropriate proliferation, which is evident by the persistence of BrdU incorporation
(pointed by arrows). (E–F) In contrast, inappropriate proliferation posterior to the SMW is strongly reduced in de2f1 de2f2 wts triple mutant cells as

dE2F in Oncogenic Proliferation
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signal and by the increased spacing between ommatidial clusters,

while the wild type cells had the highest intensity of GFP

(Figure 3A). The loss of de2f2 had no effect on inappropriate S

phases posterior to the SMW in wts mutant cells, as the phenotype

of de2f2 wts mutant cells was indistinguishable from the phenotype

of wts mutant cells (Figure 3B–D). Additionally, the spacing

between adjacent ommatidial clusters (marked with Elav) is

increased in clones of de2f2 wts double mutant cells when

compared to that of wild type cells. Such increase reflects the

appearance of additional interommatidial cells in the wts mutant

tissue [27]. Taken together with the results described above, this

indicates that de2f2 is not important for the phenotype of wts

mutant cells and that de2f1 is required for inappropriate

proliferation of wts mutant cells. Consistently, no ectopic S phases

were detected in de2f1 wts double mutant clones (data not shown).

In addition to delaying the cell cycle exit, the loss of Hippo

pathway protects cells from both developmental and stress induced

apoptosis [19–22]. Although a mutation in de2f1 blocked inappro-

priate proliferation in Hippo pathway mutant cells, de2f1 wts double

mutant cells, like wts single mutant cells, were fully resistant to a wave

of apoptosis that normally occurs during pupal eye development

(Figure 4A–B) or to DNA damage induced apoptosis in the larval eye

disc following irradiation (Figure 4C). Thus, resistance to apoptosis,

a hallmark of inactivation of Hippo pathway, remains unaffected by

the loss of de2f1. This sustained resistance to apoptosis is a likely

explanation for the slight increase of the number of interommatidial

cells in de2f1 de2f2 wts mutant tissue and in dDP mutant cells

overexpressing yki in comparison to wild type (Figure 2N). From

these data we concluded that de2f1 is specifically required in Hippo

pathway mutant cells to delay the cell cycle exit and sustain

inappropriate proliferation posterior to the SMW.

The Loss of E2F–Mediated Control Does Not Block
Induction of Yki Target Genes

A trivial explanation for the lack of inappropriate proliferation

in de2f2 de2f1 wts is that inactivation of dE2F family members

renders Yki inactive in these cells. To directly address this question

we examined whether Yki is capable of inducing its target genes in

dDP mutant cells. Drosophila inhibitor of apoptosis, dIAP1, has been

recently shown to be a direct Yki transcriptional target [23,24]

and, together with Expanded [30], are commonly used to

accurately assess the activity of the Hippo pathway. Notably,

upregulation of Expanded and dIAP1 following yki overexpression

was observed in wild type cells (Figure 5A, 5C) and to almost the

same extent in clones of dDP mutant cells (Figure 5B, 5D). This

suggests that the loss of E2F regulation does not prevent induction

of at least two well established Yki targets.

Next, we investigated the expression of cyclin E since it is an

E2F target [2] and is also considered to be a critical target of the

Hippo pathway [19–22]. Clones of wts single and de2f1 wts double

mutant cells were generated. As shown in Figure 6, the level of

cyclin E was elevated in wts mutant cells and in de2f1 wts double

mutant cells. Thus, the observation that induction of multiple Yki

target genes is not compromised by the loss of E2F control implies

that Yki remains active in dE2F deficient cells. Such a conclusion

is in agreement with the resistance to apoptosis of de2f1 wts mutant

cells, further evidence that Yki is fully functional in the absence of

dE2F family.

Inactivation of the Hippo Pathway Leads to Elevation of
E2F Activity

To further elucidate the role of de2f1 in Hippo pathway mutant

cells, we used a PCNA-GFP reporter [31] to accurately measure

Figure 3. Loss of de2f2 does not affect the wts mutant
phenotype in the eye. Clones of mutant cells were generated with
ey-FLP. Position of the morphogenetic furrow (MF) is marked by a white
arrowhead in B and D. Posterior is to the right. (A) de2f2 and wts are on
two separate chromosomal arms. Therefore following expression of ey-
FLP, clones of cells of four different genotypes are generated (wild type,
de2f2 mutant, wts mutant and de2f2 wts double mutant). de2f2 wts
double mutant tissue is marked by the lack of GFP (green), is labeled
e2f22/2 wts2/2 in (A) and is outlined by a white line in (A–C). wts single
mutant tissue is distinguished by a reduced intensity of GFP (green) and
an increased spacing between ommatidial clusters (marked by ELAV).
An example of wts mutant tissue is labeled wts2/2 in (A) and is denoted
by yellow outline in (A–C). Wild type tissue is distinguished by the
strongest level of GFP (green). An example of the wild type tissue is
found between the yellow and white line. (B–D) Mosaic larval eye discs
were labeled with BrdU (red) to detect cells in S phase (B,D) and ELAV
(blue) to identify position of ommatidial clusters (B–D). Posterior to the
MF, wild type cells undergo a single round of S phases in the second
mitotic wave (SMW) (denoted by white arrow in B). In contrast,
inappropriate BrdU (red) incorporation posterior to the SMW was
detected in both wts and de2f2 wts mutant cells (B,D). (C) As a result of
this inappropriate proliferation, spacing between ommatidial clusters is
increased in both wts and de2f2 wts mutant tissue in comparison to wild
type tissue. A merged image is shown in D.
doi:10.1371/journal.pgen.1000205.g003

judged by the absence of cells in S phase (red in E) or in mitosis (magenta in F) (pointed by arrows). (G–H) BrdU incorporation (red) in 12 hr pupal eye
discs. (G) wts mutant cells continue unscheduled proliferation during early pupal development while wild type cells remain fully quiescent as revealed
by BrdU labeling. (H) Inappropriate BrdU incorporation is absent in clones of de2f2 de2f1 wts triple mutant cells (a clone is pointed by arrow). (I–M)
Pupal retina at 48 hr APF stained with anti-Discs large protein (Dlg) (red) to visualize cell outlines. (I) Wild type retina contains a single layer of
interommatidial cells between ommatidial clusters. (J) Inappropriate proliferation of wts mutant cells posterior to the SMW and resistance of these
cells to the developmental apoptosis during the pupal stage gives rise to the dramatic excess of interommatidial cells (pointed by arrow). (K) In
contrast, the number of interommatidial cells is significantly reduced in de2f1 de2f2 wts triple mutant tissue (indicated by arrows). (L–M) The MARCM
technique was used to overexpress yki in wild type (L) or in dDP mutant cells (M). A dDP mutation dramatically reduces supernumerary
interommatidial cells which arise when yki is expressed. (N) Quantification of the number of interommatidial cells in pupal retina shown in (J–M). Data
were collected from 23 ommatidia clusters for wild type, 11 ommatidia clusters for wts, 24 ommatidia clusters for de2f1 de2f2 wts, 12 ommatidia
clusters for tub.yki and 17 ommatidia clusters for tub.yki in DP2/2. The following abbreviations were used: e1 e2 wts corresponds to de2f1 de2f2 wts;
yki corresponds to tub.yki and yki in DP corresponds to tub.yki in DP2/2. Error bars represent standard deviations. Note that in comparison to the
wild type tissue there is a small excess of interommatidial cells in de2f1 de2f2 wts triple mutant tissue and in dDP mutant tissue that overexpresses yki.
This is likely due to the failure to execute normal pupal developmental apoptosis in these cells.
doi:10.1371/journal.pgen.1000205.g002

dE2F in Oncogenic Proliferation
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E2F activity in clones of wts mutant cells. In a wild type eye disc,

the PCNA-GFP reporter is expressed in a narrow stripe of cells

prior to S phase entry in the SMW and is absent in the posterior

region of the eye (Figure 7A). In contrast, wts mutant cells failed to

downregulate the expression of the PCNA-GFP reporter posterior

to the SMW (Figure 7B). This indicates that these cells have an

abnormally high E2F activity. Importantly, the high E2F activity is

due to de2f1 because the PCNA-GFP reporter is no longer

expressed in de2f1 wts double mutant cells posterior to the SMW

(Figure 7C). The finding that wts mutant cells have a high E2F

activity posterior to the SMW is unexpected since the activator

dE2F1, which provides the pattern of expression of the PCNA-GFP

reporter in the eye disc [31], is normally downregulated in these

cells (Figure 7D and [15]). Therefore, we examined the expression

of dE2F1 in clones of wts and hpo mutant cells using a highly

specific dE2F1 antibody (Figure 7E). In contrast to the wild type

dE2F1 pattern, the expression of dE2F1 was highly abnormal in

wts and hpo mutant cells (Figure 7F). First, the level of dE2F1 was

elevated in cells that normally express dE2F1 within the MF.

Second, dE2F1 was ectopically expressed in cells posterior to the

MF. Thus, Hippo pathway mutant cells that inappropriately

proliferate posterior to the SMW have an elevated E2F activity

which is likely due to a high level of dE2F1.

To determine whether the high level of dE2F1 is a specific

response to inactivation of the Hippo pathway or an indirect

consequence of inappropriate cell proliferation posterior to the

SMW, we examined the pattern of dE2F1 expression in clones of

archipelago (ago) mutant cells. ago mutant cells, like wts or hpo mutant

Figure 5. dDP mutation does not block yki-dependent induc-
tion of its target genes, dIAP1 and Expanded. The MARCM
system was used to drive yki overexpression in wild type (A, C) or in dDP
mutant cells (B, D) of the larval eye disc. Cells that express yki are
marked with GFP (green). Merge images are on the right. yki
overexpression induces Expanded (A) and dIAP1 (C) expression (pointed
by arrows) in wild type cells. Inactivation of the dE2F family in dDP
mutant cells does not significantly affect yki-dependent induction of
Expanded (B) and dIAP1 (D) (pointed by arrows). Images in (B and D)
show the same clone that was double stained with dIAP1 and
Expanded, while images in (A and C) represent two different clones
stained singularly with Expanded (A) and dIAP1 (C).
doi:10.1371/journal.pgen.1000205.g005

Figure 4. Loss of de2f1 does not affect resistance to DNA
damage and pupal developmental apoptosis in wts mutants. In
all panels, clones were generated with the ey-FLP/FRT technique and
mutant tissue is distinguished by the absence of GFP (green). (A–B) The
pupal eye discs at 30 hr APF containing clones of wts mutant (A) and
de2f1 wts double mutant (B) cells were stained with anti-Cleaved
Caspase3 (C3) antibody (red) to detect apoptotic cells. In the pupal eye
discs, developmentally regulated apoptosis is abundant in wild type
cells (green) but is largely absent in wts mutant tissue (lack of green)
and in de2f1 wts double mutant tissue indicating that de2f1 wts double
mutant cells, like wts mutant cells, are protected from the cell death. (C)
DNA damage induced apoptosis following irradiation was detected
with anti-C3 antibody (red). There is an extensive apoptosis in wild type
tissue. In contrast, de2f1 wts double mutant cells are protected from
apoptosis after DNA damage. An example of de2f1 wts double mutant
tissue is pointed by arrow. The morphogenetic furrow is marked by the
arrowhead.
doi:10.1371/journal.pgen.1000205.g004
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cells, fail to exit the cell cycle and proliferate posterior to the SMW

[32]. In contrast to the abnormally high expression of dE2F1 in

Hippo pathway mutant cells, the level of dE2F1 was not elevated

in clones of ago mutant cells posterior to the SMW (Figure 7G).

Furthermore, expression of cyclin E, which is sufficient to drive

quiescent cells posterior to the SMW into the cell cycle [33,34], did

not result in an increase of the level of dE2F1 (Figure 7H). Finally,

the level of another dE2F family member, dE2F2, is unaffected in

wts mutant cells (Figure 7I). Thus, we concluded that dE2F1 is

specifically upregulated following inactivation of the Hippo

pathway.

As a further characterization, we tested whether de2f1 is

transcriptionally induced in Hippo pathway mutant cells. The in

vivo activity of the de2f1 promoter in hpo mutant cells was examined

using an enhancer trap allele, de2f1729. The de2f1729 allele has been

extensively used as an accurate measurement of de2f1 transcription

[34–36]. This allele carries a lacZ gene inserted within the

endogenous de2f1 gene. Therefore, the production of b-galacto-

sidase reflects transcriptional activity at the de2f1 promoter. Clones

of hpo mutant cells were induced in the eye disc and the expression

of the lacZ gene from the de2f1729 allele was compared between the

hpo mutant and adjacent wild type cells. Through detection of

immunofluorescence, we found a higher level of b-Gal in hpo

mutant cells than in wild type cells within the MF; thus, indicating

that de2f1 transcription was induced (Figure 7J).

Finally, we depleted SL2 tissue culture cells of Hpo and Wts by

RNA interference, (RNAi), and examined what effect this had on

the level of dE2Fs by western blot analysis. Consistent with the

effects seen in eye imaginal discs, the dE2F1 protein level was

markedly increased in cells deficient of either Wts or Hpo, while the

dE2F2 protein level remained constant (Figure 7K). To further

biochemically characterize the properties of Hpo and Wts depleted

cells we transiently transfected these depleted cells with an E2F

reporter, PCNA-luc. Depletion of RBF1, the Drosophila pRB

homolog, elevated the expression of the reporter by 2.5 fold in

comparison to control treated cells (Figure 7L). Noticeably, the

reporter was induced approximately 2 fold in Hpo and in Wts

depleted cells, which is similar to the level seen in cells deficient of

RBF1, the endogenous inhibitor of dE2F1. We concluded that

inactivation of the Hippo pathway increases the level of dE2F1 and,

more importantly, elevates E2F activity both in vivo and in vitro.

Discussion

Current models emphasize the importance of the E2F

transcription factor in cell cycle control as one of the key

downstream targets of the pRB tumor suppressor protein.

Although E2F activity is rate limiting for S phase entry in tissue

culture cells, ablation of the entire pool of Drosophila E2F is

permissive for cell proliferation in vivo and only marginally affects

animal development. However, it is unknown whether oncogene

driven cell proliferation would also be insensitive to the loss of the

entire dE2F family. This is an important conceptual point because

unrestrained proliferation is a central property of a cancer cell, and

this unrestrained proliferation is thought to be the result of

deregulated E2F activity [5].

In this report, we addressed the role of the dE2F family

members in cell proliferation following inactivation of the recently

identified Hippo tumor suppressor pathway. In order to minimize

any possible non-specific cell cycle effects seen in the presence of a

de2f1 mutation, we have taken advantage of the previous

observation that the complete ablation of E2F function in either

de2f1 de2f2 double mutants or dDP single mutants is permissive for

cell proliferation [15,17,18]. Our results strongly argue that the

effect of the loss of E2F function on proliferation of Hippo

pathway mutant cells is distinctly different in actively dividing cells

and in cells undergoing unscheduled proliferation posterior to the

SMW. In actively dividing cells that overexpress the pro-oncogene

yki, a positive effector of the Hippo pathway, inactivation of the

dE2F family has a minimal effect on cell proliferation; as Yki is

capable of dramatically accelerating the rate of cell cycle

progression of dDP mutant cells. Similarly, clones of cells which

lack de2f1, de2f2, and wts (a negative regulator of Yki) appear to be

relatively large; however, the quantification of a population

doubling time in these mutant cells is technically inaccurate due

to the requirement of two independent recombination events to

generate triple mutant clones. Elimination of E2F function does

not abolish Yki-dependent transcription, thus, we suggest that an

elevated level of Yki target genes such as cyclin E and others may

account for the accelerated proliferation of dDP mutant cells.

Indeed, previous studies have shown that transient expression of

cyclin E is sufficient to increase the rate of DNA synthesis of dDP

mutant cells in the eye disc [15]. Thus, another conclusion that we

drew from these results is that proliferation defects of dDP mutant

cells are essentially rescued by Yki overexpression. This idea is

consistent with the notion that Yki and the dE2Fs appear to share

some common targets such as cyclin E. A caveat to this explanation

is that for the exception of diap1, it is not known what putative

targets are directly regulated by Yki. Secondly, since Yki fails to

induce an E2F-reporter in the absence of de2f1, this suggests that

Yki does not generally rescue E2F-dependent transcription in dDP

mutant cells, but rather increases expression of a limited set of

shared targets. Discerning how Yki overexpression accelerates the

rate of proliferation in the absence of dE2F and how the interplay

between Yki and dE2F occurs at common targets will be

important directions in future studies.

In striking contrast to the results of inactivation of the entire

dE2F family in actively dividing cells, we find that E2F function is

required during Yki-driven unscheduled proliferation in otherwise

Figure 6. Loss of de2f1 does not block induction of cyclin E in
wts mutant cells. Clones of mutant cells were generated with ey-FLP
and distinguished by the lack of GFP (green). (A) In wild type eye
imaginal discs, cyclin E (magenta) expression is elevated within and
immediately posterior to the morphogenetic furrow (MF). In wts mutant
cells (B) and in de2f1 wts double mutant cells (C) cyclin E is expressed
further posterior. Position of MF is shown by arrowhead. Posterior is to
the right.
doi:10.1371/journal.pgen.1000205.g006
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Figure 7. Elevated E2F activity in cells with inactivated Hippo pathway. Clones of mutant cells were induced with ey-FLP. Position of the
morphogenetic furrow (MF) is shown by arrowhead. Posterior is to the right. (A–C) Expression of the E2F reporter, PCNA-GFP, (red) in the wild type
eye disc (A), or in the eye discs containing clones of wts mutant tissue (B) and de2f1 wts double mutant tissue (C). (A) In wild type disc, the E2F
reporter is expressed in a narrow stripe (red) immediately posterior to the MF, preceding S phase entry into the second mitotic wave (SMW). (B) In wts
mutant cells which are marked by the absence of b-Gal (green), the E2F reporter is inappropriately expressed in the posterior region of the eye disc.
Mutant tissue is outlined. (C) Inappropriate expression of the E2F reporter in the posterior region of the eye disc is absent in de2f1 wts double mutant
cells. Note, that clones of wts de2f1 double mutant cells were marked with b-Gal (green) produced from the de2f1729 mutant allele. de2f1 wts double
mutant tissue is outlined. (D) Endogenous dE2F1 (magenta) is expressed within the MF in a wild type disc as revealed by anti-dE2F1 antibody. (E–G, I)
Clones of mutant cells were induced with ey-FLP and mutant tissue is identified by the lack of GFP (green). (E) The anti-dE2F1 antibody is highly
specific as the staining is absent in de2f1 mutant tissue (lack of green in E and pointed by the arrow). (F) wts and hpo mutant cells have an increased
level of dE2F1 within the MF and inappropriately express dE2F1 posterior to the MF. Examples are pointed by the arrows. Position of mutant tissue is
outlined. (G) Expression of endogenous dE2F1 protein (magenta) is unaffected in ago mutant cells in larval imaginal eye discs. (H) cyclin E was
expressed ectopically in wild type mitotic clones using the MARCM system. Ectopic expression of cyclin E fails to elevate level of dE2F1 protein
(magenta) posterior to the MF. Cells that express cyclin E are marked with GFP (green) and are outlined. (I) Endogenous dE2F2 protein (red) is
expressed ubiquitously throughout the eye disc. Level of dE2F2 protein remains the same in both wts mutant and wild type tissue. (J) de2f1 is
transcriptionally induced in hpo mutant cells as revealed by the de2f1 enhancer trap allele, de2f1729. de2f1729 contains the lacZ insertion into the
endogenous de2f1 gene. The lacZ expression reflects transcription from the de2f1 promoter [34,35]. Staining with anti-b-Gal antibody (magenta) was
used to reveal expression of the lacZ gene in de2f1729. (K) SL2 cells were treated with nonspecific (NS), dE2F1 (E1), Warts (Wts) and Hippo (Hpo) dsRNA
to deplete the corresponding proteins by RNAi. Cell extracts were analyzed by Western blot using antibody specific for Wts, dE2F1 and dE2F2.
Depletion of Wts and Hpo shows an increase in the level of dE2F1 protein. In contrast, the dE2F2 protein level is not affected. The same blots were re-
probed with anti-Tubulin antibody to control for equal loading. (L) Endogenous E2F activity is elevated in Hpo or Wts depleted SL2 cells. SL2 cells
were incubated with non-specific (NS), RBF1, Hpo, and Wts dsRNAs for 4 days to deplete the corresponding proteins. On day 4, the E2F reporter
(PCNA-luc) was transfected into the depleted cells and the luciferase activity was measured 2 days later to determine the level of the endogenous E2F
activity in these cells. The pIE-LacZ plasmid was co-transfected to normalize for transfection efficiency. Results depict the mean of three experiments.
Unpaired Student’s t-Test assuming equal variance concluded that the increase of PCNA-luc reporter activity in RBF1, Hpo and Wts depleted cells was
statistically significant from the NS control. RBF1 and Hpo depleted cells had a p-Value ,0.001. Wts depleted cells had a p-Value ,0.03.
doi:10.1371/journal.pgen.1000205.g007
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quiescent cells posterior to the SMW in the eye imaginal disc.

Overexpression of yki or inactivation of negative regulators of the

Hippo tumor suppressor pathway, such as wts, renders cells of the

eye imaginal disc refractory to the cell cycle exit signals and, as a

result, cells continue to proliferate inappropriately [19,21]. These

abnormal cell cycles are fully blocked when E2F function is

eliminated either by a mutation in the dDP gene or by combined

ablation of both de2f1 and de2f2 genes. This conclusion is

supported by the complete absence of cells in S phase or in

mitosis posterior to the SMW in mutant clones. Furthermore, loss

of E2F function in clones of wts mutant cells or in clones of cells

that overexpress yki significantly reduces the number of supernu-

merary interommatidial cells that primarily arise due to inappro-

priate proliferation during larval and early pupal development.

Interestingly, this reduction is very similar to that seen in clones of

expanded mutant cells, an upstream negative regulator of Yki, albeit

the molecular mechanism is distinctly different. Unlike de2f1 de2f2

wts triple mutants, expanded mutant cells proliferate inappropriately

posterior to the SMW [37]. However, the supernumerary

interommatidial cells are largely removed during the wave of

developmental pupal apoptosis, while de2f1 de2f2 wts triple mutant

cells are fully protected from cell death.

The results described here highlight the specific requirement for

dE2F to maintain a proliferation potential in cells with high Yki

activity posterior to the SMW. We emphasize that the loss of E2F

control is permissive for cell proliferation in actively dividing wild

type cells, as well as in actively dividing cells that overexpress yki.

However, inactivation of the dE2F family fully prevents inappro-

priate divisions of Hippo pathway mutant cells that have failed to

exit the cell cycle. While one could predict this result in the

absence of de2f1 alone, since cell proliferation is severely reduced

in de2f1 mutants, it was perhaps surprising to find that Yki-driven

inappropriate proliferation posterior to the SMW is completely

blocked by the total inactivation of the dE2F family. In this

respect, these results are distinct from the predicted outcome of

inactivation of other cell cycle regulators such as cyclin E or cyclin A

on cell proliferation in Hippo pathway mutants. Mutations in

these genes are likely to fully abrogate Yki induced proliferation in

most, if not all, settings due to their fundamental roles in cell cycle

regulation. In support of this distinction we note that the loss of the

microRNA bantam has been shown to block Yki-driven prolifer-

ation in actively dividing cells of the wing disc, as well as cell

proliferation during normal development [38,39].

Why is Yki unable to drive cells into the cell cycle in the absence

of E2F activity? One formal possibility is that Yki function is

compromised in dE2F deficient cells posterior to the SMW.

However, this seems unlikely since de2f1 wts double mutant cells,

like wts single mutant cells, are fully protected from DNA damage

induced apoptosis at larval stage and from developmental

apoptosis in the pupal eye. Thus, inhibition of apoptosis, one of

the key aspects of Yki function, remains unaltered. Consistently,

Yki does induce its target genes, diap1 and Expanded, in dDP mutant

cells. Hence, Yki activity does not appear to be generally affected

by the loss of E2F function. We also note that Yki-dependent

induction of cyclin E (this work) and cyclin B (our unpublished

observations) still occurs in de2f1 deficient cells posterior to the

SMW, yet these cells fail to proliferate posterior to the SMW.

Thus, it remains a likely possibility that high cyclin E activity is

capable of driving proliferation in actively dividing cells in the

absence of dE2F, but not in cells during the cell cycle exit where

cyclin E appears to require an assist from dE2F1 to sustain

unscheduled cell proliferation. Although we cannot formally

exclude the possibility that expression of some Yki target genes

is deregulated in dE2F deficient cells, these results suggest that in

the absence of dE2F, the Yki transcriptional program alone is

insufficient to drive cell proliferation in otherwise quiescent cells

posterior to the SMW. We emphasize that overexpression of

dE2F1 is not sufficient to sustain proliferation in cells posterior to

the SMW (for example see: [35,40]) and that the phenotype of

Hippo pathway mutant cells is likely to be a result of a cumulative

effect of deregulation of a panel of Yki target genes. This is

consistent with several studies that have shown that upon the cell

cycle exit, cells become highly resistant to proliferative signals. For

example, co-expression of dE2F1 and cyclin E is needed to bypass

the cell cycle exit [40]. Similarly, combined ablation of two

negative regulators of the cell cycle, RBF1 and the cdk2 inhibitor

Dacapo, is required to prevent the exit from the cell cycle in the

larval eye [41]. Thus, our results highlight the need for dE2F

during inappropriate proliferation at the specific point when cells

attempt to exit the cell cycle.

The Hippo pathway controls epithelial tissue growth by

regulating the expression of genes that can promote cell

proliferation and genes that can inhibit apoptosis. In humans,

loss of expression of Lats1/2 (Wts homolog) [42] and mutations in

WW45/Sav [43] and Mob (homolog of mats) [44] have been found

in several tumor cell lines, while YAP expression is frequently

elevated in cancers [45,46]. Accordingly, mouse embryos lacking

WW45/Sav display hyperplasia due to defects in cell cycle exit and

terminal differentiation of epithelial progenitor cells [47]; while

Lats12/2 knockout animals develop soft-tissue sarcomas and

ovarian stromal cell tumors [48]. Additionally, in a transgenic

mouse model, YAP activation in the liver induces hyperplasia

followed by tumor formation [46,49]. Thus, the Hippo pathway

represents a frequent mutational target and the outcome of its

deregulation is tumorigenesis in both mice and humans. Although

the status of the pRB pathway has not been determined in these

tumors, it is generally thought that inactivation of the pRB

pathway is an obligatory event in most, if not all, types of tumors

[5]. In this respect, it is particularly intriguing that the ablation of

Hippo function leads to an increase in dE2F1 level and elevation

of E2F activity. Since the Hippo pathway is highly conserved

between flies and mammals, it would be interesting to determine

whether expression of mammalian E2fs is also induced following

inactivation of the Hippo pathway. In support of this possibility we

note that ectopic expression of YAP in transgenic mice increases

the level of a well known E2F target gene, PCNA [49]. A

comparison of de2f2 wts and de2f1 de2f2 wts mutant clones revealed

that de2f1 is more important during inappropriate proliferation

than de2f2. Importantly, the dE2F1 increase is not a coincidental

result of an accelerated rate of proliferation in Hippo pathway

mutant cells, since the level of dE2F1 is normal in clones of ago

mutant cells, which, like wts mutants, proliferate posterior to the

SMW. Although dE2F1 induction appears to be a result of a

transcriptional response in hpo mutant cells and following

overexpression of Yki (this work and [36]), whether the de2f1

promoter is directly regulated by Yki is currently not known.

Further experiments will be necessary to decipher the exact

mechanism by which Yki exerts its effect on de2f1 expression.

Finally, the data described here have a potential implication in

cancer research. Inactivation of total E2F activity using a

dominant negative form of E2F has been shown to impair re-

entry into the cell cycle from quiescence in immortalized murine

fibroblasts [9]. We find that a complete genetic ablation of the

dE2F family fully blocks proliferation of Hippo pathway mutant

cells posterior to the SMW. However, Hippo pathway mutant cells

do not undergo a transient quiescence state during inappropriate

proliferation since the mutant cells continuously express prolifer-

ation markers, such as phosH3, cyclin B, cyclin A, incorporate
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BrdU, and have a high level of an E2F reporter posterior to the

SMW (this work and [27,28,43]). Thus, dE2F is required to sustain

inappropriate cell proliferation specifically at the point when cells

normally exit the cell cycle and enter quiescence. One implication

of this result is that, at least, in the case of the inactivation of the

Hippo pathway, the use of pharmacological E2F inhibitors might

be beneficial in tumors in which cell cycle exit cues are induced

even though these tumors do not necessarily respond to these

signals and pass through temporary states of quiescence.

Materials and Methods

Fly Stocks and Mosaic Analysis
For mutant analysis, the following strong loss of function or null

alleles were used:

de2f1729, de2f2c03344, wtsX1, hpoMGH4, ykiB5, ago1, and dDPa4.

Clones of homozygous mutant cells were generated with the ey-

FLP/FRT technique. For clones of ago1 mutant cells the following

genotype was used:

ey-FLP; ago1 FRT80B/P[Ubi-GFP] FRT80B

For clones of double mutant cells of de2f2 wts the following

genotype was used:

ey-FLP; de2f2c03344FRT40A/P[Ubi-GFP] FRT40A; FRT82B

wtsX1/FRT82B P[Ubi-GFP]

For clones of double mutant cells of wts de2f1 the following

genotype was used:

ey-FLP; FRT82B de2f1729 wtsX1/ FRT82B P[Ubi-GFP]

Clones of triple mutant cells of de2f1 de2f2 wts were generated in:

ey-FLP; de2f2c03344FRT40A/P[Ubi-GFP] FRT40A; FRT82B

de2f1729 wtsX1/FRT82B P[Ubi-GFP]

Activity at the de2f1 promoter in hpo mutant tissue was

determined in larvae of the following genotype:

ey-FLP; FRT42D hpoMGH4/FRT42D P[Ubi-GFP]; FRT82B

de2f1729/+
To determine the expression of the E2F reporter, PCNA-GFP, in

wts mutant and in de2f1 wts double mutant cells the following

genotypes were used:

ey-FLP; PCNA-GFP/+; FRT82B wtsX1/FRT82B P[arm-LacZ]

ey-FLP; PCNA-GFP/+; FRT82B de2f1729 wtsX1/FRT82B P[arm-

LacZ]

Analysis of yki overexpression was done with the MARCM

system [25] in larvae of the following genotypes:

y w hs-FLP70 tub-GAL4 UAS-GFP-6XMyc.NLS; FRT42D tub-

GAL80/FRT42D dDPa4; UAS-Yki/+
y w hs-FLP70 tub-GAL4 UAS-GFP-6XMyc.NLS; FRT42D tub-

GAL80/FRT42D; UAS-Yki/+
y w hs-FLP70 tub-GAL4 UAS-GFP-6XMyc.NLS; FRT42D tub-

GAL80/FRT42D

eyFLP UAS-GFP; tub-GAL4 FRT82B P[UAS-yki]/FRT82B tub-

GAL80

Analysis of cyclin E overexpression was done with the MARCM

system [25] in:

y w hs-FLP70 tub-GAL4 UAS-GFP-6XMyc.NLS; FRT42D tub-

GAL80/FRT42D; UAS-cyclinE/+
To determine the cell population doubling time, clones of dDP

mutant cells were induced 48 hrs AED and discs were dissected

and fixed 66–70 hrs later. A standard error of the mean was

calculated for each genotype. To determine number of inter-

ommatidial cells for the pupal retinae, bristle, secondary, and

tertiary cells for one ommatidium were counted. One ommatid-

ium was defined as a single cluster of 4 cone cells, 2 primary cells,

3 bristle cells, 3 tertiary cells, and 6 secondary cells. A standard

deviation of the mean was taken to determine significance. To

measure the area per clone the histogram function in Adobe

Photoshop was used and a standard error of the mean was taken to

determine significance.

Immunohistochemistry
Antibodies used were as follows: mouse anti-cyclinE 1:20 (from

B. Edgar), guinea pig anti-Expanded 1:500 (from R. Fehon),

mouse anti-Discs Large 1:400 (DSHB), mouse anti-BrdU 1:50

(Beckton Dickinson ), rabbit anti-dE2F1 1:400 (from C. Seum),

mouse anti-b-galactosidase 1:30 (DSHB), rabbit anti-GFP 1:200

(Invitrogen), rabbit anti-C3 (Cleaved Caspase3) 1:100 (Cell

Signaling), rabbit anti-dE2F2 1:100, rabbit anti-phosH3 1:175

(Upstate), and Cy3, Cy5 (Jackson Immunolaboratories) and

Alexa488 (Invitrogen) conjugated anti-mouse and anti-rabbit

secondary antibodies. Larval and pupal tissues were fixed in 4%

formaldehyde for 30 minutes on ice, washed in phosphate-

buffered saline, and then incubated with antibodies overnight at

4uC in phosphate-buffered saline, 10% normal goat serum, and

0.3% Triton-X100 as previously described [29]. To detect dE2F1

protein, fixation was adjusted to 40 minutes on ice and then

treated as described above. To detect cyclin E protein in larval eye

imaginal disc, PLP fixation was used and then the same protocol

described above was used. To detect S phases, dissected larval or

pupal eye discs were labeled with BrdU for 2 hrs at room

temperature and then the eye discs were fixed overnight in 1.5%

formaldehyde at 4uC. Apoptosis was measured in pupal eye discs

30 hrs APF. To measure apoptosis following DNA damage, larvae

were exposed to 40 Grays of irradiation and then imaginal discs

were dissected 4 hrs later.

S2 Cell Manipulations
RNAi and transient transfections were done as described

previously[29]. For western blot analysis, S2 cells were lysed in

NP40 buffer, frozen at 280uC for 1 hr, thawed, spun down, and

then boiled in protein sample buffer. Samples were resolved using

SDS-PAGE on 7% gels, transferred to Immobilon-P membrane

(Millipore), and incubated with the following antibodies: mouse

anti-E7(tubulin) 1:9000 (DSHB), guinea pig anti-Wts 1:10,000

(From K. Irvine), rabbit anti-dE2F2 1:2,000, guinea pig anti-

dE2F1 1:7,000 (from T. Orr-Weaver).
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