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Simple Summary: Immune and cancer cells compete for nutrients within the tumor microenvi-
ronment, leading to a metabolic battle between these cell populations. In this battle, tumor cells
reprogram their metabolism for a high demand of building blocks and energy and to gain advantages
over immune cells. To study these mechanisms, we require the quantification of metabolic fluxes,
which can be estimated at the genome-scale, with constraint-based or kinetic modeling.

Abstract: The tumor’s physiology emerges from the dynamic interplay of numerous cell types,
such as cancer cells, immune cells and stromal cells, within the tumor microenvironment. Immune
and cancer cells compete for nutrients within the tumor microenvironment, leading to a metabolic
battle between these cell populations. Tumor cells can reprogram their metabolism to meet the high
demand of building blocks and ATP for proliferation, and to gain an advantage over the action of
immune cells. The study of the metabolic reprogramming mechanisms underlying cancer requires the
quantification of metabolic fluxes which can be estimated at the genome-scale with constraint-based
or kinetic modeling. Constraint-based models use a set of linear constraints to simulate steady-state
metabolic fluxes, whereas kinetic models can simulate both the transient behavior and steady-state
values of cellular fluxes and concentrations. The integration of cell- or tissue-specific data enables the
construction of context-specific models that reflect cell-type- or tissue-specific metabolic properties.
While the available modeling frameworks enable limited modeling of the metabolic crosstalk between
tumor and immune cells in the tumor stroma, future developments will likely involve new hybrid
kinetic/stoichiometric formulations.

Keywords: metabolic reprogramming in cancer; immune system; genome-scale metabolic models;
constraint-based modeling; stoichiometric models; kinetic metabolic models; metabolic crosstalk

1. Introduction

Tumors have a pseudo-organ-like dynamism with numerous cell types that interact to
create a unique physiology [1]. The cell types within the tumor microenvironment (TME)
include cancer cells, immune cells and stromal cells (Figure 1), and they play a key role in
the progression of the disease [2]. Immune response can potentially lead to the destruction
of cancer cells; however, tumors often evade the host’s immune system through different
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mechanisms [3]. Indeed, the dynamic interplay between tumor, stroma and immune
system can lead to both pro-tumorigenic and anti-tumorigenic behaviors [4,5]. At the
metabolic level, there is a battle between immune and cancer cells where they compete for
nutrients within the TME. Cancer cells reprogram their metabolism to have an increased
nutrient uptake from the TME, which limits the availability of nutrients for immune cell
populations, weakening, corrupting and evading immunosurveillance [6].
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and memory T cells (TMEM)). The stromal cells include cancer-associated fibroblasts (CAFs), which are embedded in the
TME with Extracellular Matrix (ECM) fibers.

The immune effectors against cancer are natural killer cells (NK), dendritic cells
(DC), macrophages, polymorphonuclear leukocytes (PMN) (neutrophils, eosinophils and
basophils), mast cells and T cells (lymphocytes B and cytotoxic T lymphocytes). NK cells,
DC, PMN, mast cells and macrophages constitute the first-line effectors to cancer cells
(Figure 1). NK cells participate in the innate and adaptive immune response through close
interactions with T lymphocytes with cytotoxic effects and memory [6].

Based on the expression of cell surface markers T cells are classified into CD4+ helper
T (TH) and CD8+ cytotoxic T (TC) functional cell lineages. TH cells bind to the class II major
histocompatibility complex (MHC) molecules and help the immune system recognize for-
eign substances to modulate the immune response and to produce cytokines to enhance or
suppress inflammation [7]. TC cells target pathogen-infected or malignant cells by secreting
inflammatory cytokines, as well as cytotoxic proteins that act as cell lytic molecules, such
as the pore-forming protein perforin, which facilitates the entry of the inducing apoptosis
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granzyme in the target-cell membrane. TH cells circulate through the body, and they
are activated when recognize an antigen presented by the antigen-presenting cell (APC).
Antigen-presenting starts with the ingestion of the foreign particles by the APC; then the
particles are degraded and exported to the cell surface, with the resulting antigens, where
they are presented in association with molecules from the class II MHC. Upon activation,
TH cell populations expand and release several immunomodulating cytokines [8]. TC cells
travel through the blood flow, searching for antigens that are presented by MHC Class
I to the T-Cell Receptor (TCR). The activation of these cells required several interactions
between the molecules they express on the surface, the molecules on the surface of the
APCs and DCs [9].

The TC activation requires two signals: a first signal the TCR binds to the MHC class I
molecule, and a second signal assisted by stimulating the CD28 molecule on the TC with
cytokines released from TH cells. Then, using IL-2 acting as a growth and differentiation
factor for the TC, the TC clonally expand, increasing the cells that recognize the antigen [10].

Before encountering an antigen, T cells are called T naïve (TN) and after antigen
encounter, T cells are activated. Regulatory T cells (Tregs) emerge from the acquisition of
immuno-suppressive characteristics of the TH cells. TC cells can differentiate from TN to
stem central memory T cells (TSCM), to central memory T cells (TCM), effector memory T
(TEM) or effector T cells (TEFF). All of these cells finally converge in terminally differenti-
ated effector memory cells re-expressing CD45RA (TEMRA) [7]. TN cells usually express
CD45RA cell-surface antigen isoform when activated; T cells, such as TCM and TEM cells,
switch from expressing isoform CD45RA to the isoform CD45RO [11,12], whereas TEMRAs,
such as TN cells, re-express CD45RA [13].

Memory T cells can be CD4+ or CD8+ and are TEM or TCM subtype depending on
the set of cell surface markers they express. All of them are long-lived and capable of
expanding quickly when re-exposed to their corresponding antigen, which provides a
controlled immune response against previously encountered foreign bodies.

T cells rewire their metabolism to promote these changes. TN cells primarily rely on
glucose respiration and oxidative phosphorylation (OXPHOS) to meet their energy needs.
Upon recognizing an antigen, activated T cells differentiate to TEFF and switch to aerobic
glycolysis, increasing both glucose and glutamine uptake [14]. Once the antigen is cleared,
memory T cells switch to fatty acid oxidation (FAO) as their primary energy source [14].
Similarly, Tregs mainly depend on OXPHOS and FAO [15]. T cells become exhausted when
they fail to clear antigens. T lymphocytes derived from tumors show elevated levels of PD-1
(Programmed Cell Death-1), decreasing the PI3K/Akt/mTOR signaling pathway’s activity.
PD-1 and PD-L1 (Programmed Death-Ligand 1) belong to the family of immune checkpoint
proteins that modulate the T-cell response [16]. The PD-1/PD-L1 interaction ensures that
the immune system is activated only at the appropriate time in order to avoid chronic
autoimmune inflammation and represents an adaptive immune resistance mechanism of
tumor cells in response to endogenous immune antitumor activity [17]. Indeed, tumor
cells often overexpress PD-L1, which binds to the activated T cells’ PD-1 receptors and
inhibits their cytotoxic activity [18]. Exhausted T cells in tumors with elevated levels of
PD-1 are unable to uptake nutrients, such as glucose and glutamine; therefore, even if they
often have dysfunctional mitochondria and decreased mitochondrial mass, they rely on
FAO [14,19] (Figure 2). It has been suggested that the degree of T-cell exhaustion induced
by PD-1 might depend on the reserves of endogenous lipids that can be mobilized for
energy generation [20].

The metabolic phenotype of cancer cells reflects the characteristics of any proliferating
cell; thus, cancer and immune cells have similar metabolic requirements [21], and the
metabolism is responsible for many of the pathophysiologic interactions that occur within
the TME, including the symbiotic nutrient sharing, competition for nutrients and usage of
metabolites as signaling molecules [1]. A full understanding of the metabolic phenotype
and crosstalk between cancer cells and immune cell populations requires tracing metabolic
fluxes (i.e., the rate at which metabolites are interconverted through metabolic reactions
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and transported across cellular membranes). In this regard, over the last decade, Genome-
Scale Models (GEMs) have emerged as platforms where multiple layers of data can be
integrated to estimate the underlying flux maps at a genome-scale. Thus, in addition to
other aims, GEMs can be applied to the study of the interactions of cancer cells with the
surrounding cells from the TME [22], as well as predicting [23] and circumventing the drug
resistance [24].
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Figure 2. T cells remodel their metabolism to get differentiated into T-cell subsets within the TME. TN cells use glucose that
enters in OXPHOS. Upon encountering cognate antigen, activated T cells get differentiated into TEFF, rapidly uptaking
glucose and glutamine to perform aerobic glycolysis and generating lactate as a by-product. Once the antigen is cleared,
TEFFs can get differentiated into memory T cells (TMEM), which depend on fatty acid oxidation. Equally, cancer cells
depend on aerobic glycolysis and glutaminolysis that are fueled by glucose and glutamine, respectively, with production
of lactate as a by-product. TEFF within the TME can be differentiated into Tregs with immunosuppressive properties
that mainly produce energy by oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). T cells can become
exhausted if they fail to clear antigens, as, for example, in cancer. T lymphocytes derived from tumors show elevated levels
of PD-1 decreasing PI3K/Akt/mTOR signaling pathway and therefore glycolysis. Exhausted T cells in tumors having often
dysfunctional mitochondria rely on FAO. FA: fatty acids. Cancer cells and T cells compete for nutrients, since cancer cells
also have an increased glucose and glutamine uptake and they use aerobic glycolysis with production of lactate that is
exported to the extracellular space, promoting acidification in the TME that compromises the activity of immune cells.

1.1. Crosstalk between Cancer and Immune Cells

Metabolic reprogramming and immune escape are two major hallmarks of cancer
cells. Metabolic reprogramming is not only indispensable for sustaining tumorigenesis
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but also for maintaining homeostasis of immune cells. Immune and tumor cells compete
for metabolic resources within the TME, as they share metabolic needs. However, com-
pared with immune cells, cancer cells show greater plasticity to reshape their metabolism
to circumvent the adverse conditions and increase the ability to capture and exploit the
limited metabolites available within the TME. This leads to an interaction between tumor
and immune cells that results in a metabolic competition within TME that limits nutrient
disposition and conditions the function of immune cells and often results in immunosup-
pression [25,26]. Indeed, cancer metabolic reprograming creates a metabolically hostile
TME in which immune cells acquire functional defects and enter a hyporesponsive (or aner-
gic) reversible state, with impaired effector capacities even favoring tumor progression [27].
Local nutrient depletion or production of metabolic “waste” products can affect immune
cells contributing to immune evasion in several ways (Figure 3) [28]. In this regard, it
has been identified critical differences between immune and tumor cells which may be
exploited to treat cancer [21]. Thus, the blocking of tumor-mediated immunosuppres-
sion, the tailoring of immune responses by manipulating cellular metabolic pathways and
the identification of new targets have proven to have a very positive impact in clinical
oncology [15,29].

Cancer triggers immune escape thought several mechanisms including reduced ex-
pression of antigens at the surface of tumor cells, reduced expression of MHC molecules by
APCs, impaired co-localization of TCR and co-stimulatory receptors, secretion of inhibitory
cytokines and activation of inhibitory receptors on T-cell surface, as well as metabolic
rewiring [30]. The influence of metabolic determinants on the regulation of immune cells
plasticity and function are still to be fully elucidated. Emerging evidence suggests that
metabolic crosstalk between cancer and immune cells can strongly contribute to immune
suppression and can even facilitate cancer progression [6,14,28]. Since the loss of physio-
logical regulation in cancer cells is associated with increased metabolic demand and each
type of immune cell has distinct metabolic requirements that restrict or alter cell fate, the
interaction of cancer cells and immune cells is subject to a significant plasticity to engage
metabolic programs that modulate metabolite levels and consequently their function and
fate [21]. Consequently, metabolic pathophysiologic interactions in the TME that drive
cancer progression derive from autonomous malignant cells alone or with interacting
cells rewiring their metabolic properties. The main metabolic reprogrammed properties
that dictate the course of the disease are related to the Warburg effect, the acidification
of the TME, the mutations that alter the availability of certain amino acids, hypoxia, the
metabolite-sensing-induced mechanisms, the macromolecules and organelles released in
the TME and the reverse Warburg effect.

1.1.1. Warburg Effect

Even in the presence of oxygen and fully functioning mitochondria, tumor cells
preferentially use aerobic glycolysis instead of oxidative phosphorylation, which supports
the production of building blocks, reductive power and ATP for proliferating cells, but
it has lower ATP yield per molecule of substrate, a phenomenon termed the Warburg
effect [31]. This metabolic adaptation is regulated by a number of oncogenes and tumor
suppressor genes, such as PI3K/Akt/mTOR signaling pathway, C-MYC and hypoxia
inducible factor (HIF) [32].

Glucose and glutamine are the main substrates of cancer cells; thus, their uptake is
increased in cancer. Glutamine metabolism is mainly driven by the C-MYC oncogene, a
proto-oncogene often constitutively overexpressed in cancer, which increases the expression
of glutamine transporters and their metabolic enzymes [21,27] (Domblides et al. 2019).
C-MYC, also promotes activation of glycolytic genes and glucose transporters [33]. In this
regard, cancer cells often overactivate mTOR, which upregulates the translocation of the
glucose transporter GLUT1 to the plasma membrane [27]. PI3K/Akt/mTOR pathway
activity is frequently upregulated in cancer as it is involved in the regulation of cell
proliferation, growth, cell size, metabolism, and motility [21].
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In cancer cells, hypoxia triggers a metabolic shift towards glycolysis since the absence
of oxygen limits the use of OXPHOS [34]. Hypoxia conditions also induce the overex-
pression of several glycolytic enzymes through Akt activation [35]. Hypoxia inducible
factor Alpha (HIF-1α) transcription factor targets genes that constitute an adaptation for
metabolic rewiring. These include vascular endothelial growth factor (VEGF) and its re-
ceptors to regulate vascular remodeling and plasticity, enzymes of the glycolytic pathway
(i.e., hexokinase 2, lactate dehydrogenase) and glucose transporters, as well as Carbonic
Anhydrase IX (CA-IX) for pH regulation [36].
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1.1.2. Acidification of the TME

As per the Warburg effect, cancer cells produce significant amounts of lactate that
accumulates in the TME. Lactate is exported by co-transport with protons through the
Mono-Carboxylate Transporters (MCTs) and promotes acidification within the TME. Ad-
ditionally, acidification can be potentiated by membrane CA-IX upregulated by the HIF
pathway. CA IX promotes acidification in the TME since its active site faces the extracellular
space and catalyzes CO2 hydration, which produces protons outside of the cancer cells. CA
IX also cooperates with bicarbonate transporters, as well as MCTs, to transport acid from
the intracellular space of the cancer cells to the TME [37]. The proteoglycan-like domain of
CA IX mediates non-catalytic export of protons coupled with export of lactate in cancer
cells through MCT [38].

Acidification of the TME provides a growth advantage to tumor cells at the expense
of immune cells, as it inhibits proliferation and function of T cells, affects the function of
monocytes and NK cells, and acts over the chemotaxis and migration of neutrophils and
DCs while promote Treg formation, myeloid-derived suppressor cells (MDSCs) and M2
polarized macrophages infiltration with greater immunosuppressive effects on T cells [30]
(Figure 3).

1.1.3. Role of Amino Acids in Battle between Immune and Cancer Cells

Changes that disrupt the amino acids metabolism and availability in the TME consti-
tute important targets for cancer cells to circumvent the immune response since immune
cell correct functioning requires homeostasis of the amino acid metabolism. For exam-
ple, Indoleamine 2,3-Dioxygenase (IDO) expression can be induced by Interferon-gamma
(IFNγ) or can be constitutively overexpressed by mutations in BIN and KIT oncogenes [27].
IDO regulates the tumor functions associated with inflammation and its overexpression
leads to tryptophan deprivation, which suppresses CD8+ T effector cells and NK cells while
inducing Tregs and MDSC, impairing immune cell functions (Figure 3) [27]. Furthermore,
overexpression of glutaminase leads not only to depletion of glutamine levels but also to
high glutamate levels that might impair the immune function [28]. Cysteine is necessary
for glutathione synthesis, ROS detoxification, and T-cell activation [39] (Siska et al. 2016).
Thus, inhibition of cysteine uptake impairs T-cell activation, as it is critical for the Reactive
Oxygen Species (ROS) detoxification machinery [28].

1.1.4. Hypoxia

Hypoxia is a common feature of tumor tissues that arises because of oxygen diffusion
limitations and an abnormal vasculature. Response to hypoxia is mediated by HIF-1α
transcription factor which is commonly overexpressed in tumors [40]. HIF-1α can be acti-
vated by growth-signaling pathways, such as PI3K/Akt/mTOR or MAPK [41], and some
oncometabolites, such as fumarate and succinate, can also induce HIF-1α signaling [42].

HIF-1α promotes the expression of several cytokines and chemokines that attract
monocytes, macrophages and myeloid cells [43]. Monocytes differentiate into tumor-
associated macrophages (TAMs) whose infiltration is closely related to tumor cell prolif-
eration as they impair T-cell proliferation and cytotoxic activities, trigger inflammation
and promote cancer; meanwhile, myeloid cells, such MDSCs, contribute to immunosup-
pression [44]. O2-deprived cancer cells may also release ROS and metabolites, such as
adenine and lactate, that inhibit T-cell function and recruit Tregs with immunosuppressive
functions [28]. The 5′-nucleotidase pathway is induced by hypoxia leading to adenosine
accumulation in tumors impairing the immune function (T cells, NK and activation of
immunoregulatory M2) [28].

Together with HIF-1α (HIF1A), at least five additional members of the HIF family: HIF-
1β (ARTN), HIF-2α (EPAS1), HIF-2β (ARNT2), HIF-3α (HIF3A), have been discovered in
human. HIF-1β is a dimerization partner of HIF-1α for the hypoxia signaling that together
with HIF-1α form the transcriptional active complex HIF-1. HIF-1β is constitutively
expressed and unaffected by hypoxia. However, certain tumor cell lines derived from
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different entities are capable to elevate HIF-1β expression under hypoxic conditions which
implies a survival benefit. It has been demonstrated that HIF-1β is a potential direct target
gene of HIF-1 in human Hep3B hepatocellular carcinoma cells [45]. In the case of HIF-2α, it
has been found that is involved in the extracellular ATP promotion of breast cancer invasion
and epithelial–mesenchymal transition [46]. Overexpression of HIF-2β is associated with
decreased cell proliferation and better prognosis in gastric cancer [47], whereas HIF-3α is a
potent prognostic biomarker in different kinds of cancer [48].

1.1.5. Signaling Events Induced by Metabolite-Sensing

Cells need to perceive the changes in intracellular and extracellular metabolites to
interact with the environment and respond accordingly. Therefore, in addition to their role
in biosynthesis, metabolites also modulate protein activity, cell signaling, and gene expres-
sion. Thus, metabolic signals contribute to immune cell function and impact anticancer
immunity so they can be modulated to optimize cancer [49]. AMP-activated protein kinase
(AMPK) and mTOR signaling are master regulators of cell metabolism and constitute good
examples of the signaling pathways induced by metabolic-sensing. AMPK is a sensor
of cellular energy and nutritional status; therefore, it plays a key role in the regulation
of the cell energy homeostasis and carcinogenesis as energy balance dysregulation is an
important driver of the alterations in cancer [50]. Changes in AMP/ATP ratio regulate
the activity of key metabolic enzymes governing anabolic and catabolic pathways that
facilitate cell survival, control mitochondrial respiration, nutrient transport, autophagy,
differentiation, and cell polarity [51]. An increased ratio of AMP/ATP in metabolically
stressed cells enhances phosphorylation of AMPK that results in activation of ATP- pro-
ducing pathways [21]. Moreover, mTORC1-mediates the amino acid sensing with the help
of arginine sensor proteins and the arginine level controls mTOR activity [50]. In cancer
cells dysregulation of the PI3K/Akt or the Ras/ERK signaling are coupled to mTOR activa-
tion which controls differentiation, proliferation, survival, cytoskeleton organization and
autophagy [51]. Other examples of metabolite sensors constitute transmembrane proteins,
such as G-protein-coupled receptors, that can function as a succinate and α-ketoglutarate
receptor that sense metabolites for the TCA cycle [50] which importance in oncogenesis
relays in the control of cellular energy and synthesis of precursors for biosynthetic path-
ways [52]. Metabolic signals contribute to immune cell function and impact anticancer
immunity, so that they can be modulated to optimize cancer immunotherapy. New cancer
therapies can be found by better understanding the nutrient-sensing processes in T cells,
since it will allow us to enhance their metabolic capability to compete for nutrients with
cancer cells. Immunometabolic signaling is dynamically regulated through the interplay
of nutrient signaling networks and serine/threonine kinases, such as the PI3K–AGC ki-
nases, mTOR and LKB1–AMPK pathways [48]. Changes such as activation of AMPK or
inhibition of mTOR promote Tregs over TEFFs and inhibit the function of NK cells [53].
Phospholipids can also be key second messengers that are highly regulated regarding
to turnover, since they influence downstream immunometabolic pathways; for example,
PI3K activity induces diverse signaling pathways involved in regulating cellular function,
including Akt, phosphoinositide-dependent protein kinase 1 and mTOR. Lipid molecules
such as cholesterol and FAs play a key role in the activation, differentiation, and function
of T cells [54] (Wei et al. 2017). PI3K also controls lipid and cholesterol content which are
integral components of cellular membranes and is also an important regulator of autophagy
essential for T-cell homeostasis, function and differentiation [49] (Saravia et al. 2020).

Glucose sensing regulates and shapes T-cell responses as glucose transporting GLUT1
expression and glycolysis promote TEFF cell and Treg cell proliferation impair Treg cell
lineage stability and suppressive function [54] (Wei et al. 2017). T and tumor cells reprogram
their metabolism to enhance glucose uptake and aerobic glycolysis to compete for glucose
in the TME and in the glucose-limited TME, the immune response of tumor-infiltrating
T cells is less effective than in T cells from glucose-rich environments [54]. Activated T
cells have a glucose-sensitive metabolic checkpoint controlled by AMPK, which regulates
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mRNA translation and glutamine-dependent mitochondrial metabolism needed to sustain
T-cell metabolic homeostasis mediating adaptive immunity [55].

Numerous studies have demonstrated that drugs that inhibit the mechanistic target of
rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting
differentiation and blocking proliferation of different cancers, i.e., in hematological malig-
nancies such as acute myeloid leukemia (AML) [56]. In solid cancers such as glioma, agents
such as isogambogenic acid [57] and compound C [58] inhibit glioma growth through the
activation of the AMPK–mTOR pathway. In pancreatic cancer, repurposing of metformin
and aspirin by targeting AMPK–mTOR and inflammation is used for prevention and treat-
ment [59]. In prostate cancer it has been found that small-molecule natural inhibitors of
the PI3K/Akt/mTOR Pathway can be useful for chemoprevention and intervention [60].
In breast cancer, AMPK activators suppress breast-cancer-cell growth by inhibiting DVL3-
facilitated Wnt/y can be useful for chemn by targetin [61]. In non-small-cell lung cancer
(NSCLC) heat treatment led to the increased phosphorylation of AMPK and the decreased
phosphorylation of mTOR in vitro and in vivo. Moreover, in NSCLC, the GRP78 knock-
down inhibits the AMPK–mTOR pathway, and the AMPK inhibitor compound C decreased
heat-induced autophagy, suggesting that activation of ER stress was involved in autophagy
induction and promotion of the AMPK–mTOR pathway [62].

1.1.6. Macromolecules and Organelles Released in the TME

Macromolecules and organelles released by noncancerous cells in the TME support
biosynthetic and bioenergetic needs of the cancer cells and due to the overlapping metabolic
demands of cancer and immune cells in the tumor ecosystem, the transfer of this metabolic
resource confer cancer cells with a growth advantage over immune cells [63]. Intercellular
organelle transfer has been demonstrated to be an important survival mechanism under
external stress conditions [63]. Being either unidirectional or bidirectional, intercellular
organelle transfer is a process in which whole organelles are donated from one cell to
another with the transfer of cytosol and plasma membrane components, as well as of small
molecules and ions by ATP-dependent mechanisms through nanotubes. In this process, the
endoplasmic reticulum/Golgi bodies, endosomes, lysosomes and mitochondria originating
in one cell (organelle donor) are transported to another cell [63]. Mitochondrial transfer
phenomenon is involved in cancer progression by modulating inflammation processes,
chemotherapy resistance and, thus, cancer cell survival, and it can be advantageous for the
survival of cancer cells that have fully functioning mitochondria [64].

1.1.7. Reverse Warburg Effect

The novel concepts of the “reverse Warburg effect” and the “autophagic tumor stroma
model of cancer metabolism” are supported by the evidence that enhanced aerobic gly-
colysis and/or autophagy in the cancer-associated fibroblasts (CAFs) sustains epithelial
cancer cell growth via the secretion and transfer of high-energy metabolites by the tumor
stroma including ketones, lactate, amino acids (glutamine) and nucleotides [65]. Addition-
ally, CAFs contribute to a strong immunosuppressive effect having lactic acidosis in the
TME [66] and CAF-derived exosomes have also been shown to contain nutrients [65,67].

1.2. Crosstalk between the TME, Extracellular Matrix and Cell Metabolism in Cancer

Cancer cells interact with both the immune system and the stroma, while fibroblasts,
and other stromal cells, can interact with immune system and influence its response. A
deep comprehension of the dynamic interactions between cancer stromal and immune
cells in the TME ecosystem is required to predict the resulting pro- or antitumor effects [2].
The extracellular matrix (ECM) is a complex network of secreted proteins that creates
a complex 3D microenvironment providing mechanic support for tissues and organs
while controlling many cell functions, including cell polarity, migration, proliferation,
oncogenic transformation, metabolic plasticity and responsiveness to therapies targeting
cell metabolism [68]. CAFs and cell–ECM interactions are key elements in controlling these
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metabolic changes. CAFs and other stromal cells can recruit immune cells to the tumor [2]
and CAFs undergo the reverse Warburg effect providing cancer cells with glycolytic
metabolites that help cancer cells support the Warburg effect [69]. ECM components, such
as fibronectin and laminin, are internalized by integrins and control nutrient signaling
pathways in a reversible control manner which affects the ability of cancer cells to grow
under nutrient deprived conditions and this way have a metabolic advantage over the
immune cells [70].

2. Genome Scale Metabolic Modeling in Cancer
2.1. GEMs

GEMs are mathematical representations of the metabolic potential of an organism; they
define the whole set of stoichiometry-based, mass-balanced metabolic reactions in an or-
ganism. To date, a number of generic GEMs of human metabolism have been reconstructed,
including Human Metabolic Reaction (HMR) series: HMR [71] and HMR2 [72]; The Recon
series: Recon 1 [73]; Recon 2 [74] and Recon3D [75]; and the Edinburgh model [76] and
they have been extensively used in the study of cancer metabolism (Table 1). A key com-
ponent of GEMs is the biomass function, an artificial reaction that serves as a surrogate
for the metabolic demand (i.e., building blocks, metabolic energy and reductive power)
required for growth and proliferation. A second feature of GEMs are Gene-Protein-Reaction
(GPR) annotations, a set of rules that define the isoenzymes or protein complexes that
catalyze each reaction, enabling to map transcriptomics and proteomics measures to GEM
reactions [77–80].

Table 1. Human metabolic generic models and their complexity in terms of number of genes, reactions and metabolites.
Adapted from [79].

Human Generic Model No. of Genes No. of
Reactions

No. of
Metabolites

Cancer-Type
Application

Application
References

Human Metabolic Reaction (HMR) [71] 3668 8100 6000 Renal carcinoma [81]

Human Metabolic Reaction (HMR2)
[72] 3765 8181 6007 Hepatocellular

carcinoma [82]

Recon 1 [73] 1496 3311 2766
Generic cancer [83–85]

16 cancer types [82]

NCI-60 CCLs [86]

Recon 2 [74] 1789 7440 2626 9 cancer types from
TCGA [87]

Recon 3D [75] 3288 13,543 4140 Prostate cancer [80]

Edinburgh model [76] 2322 2823 2671 Colon and breast CCLs [88]

Abbreviations: (CCL) cancer cell line.

2.2. Constraint-Based Modeling

The analysis of the distinct usage of metabolic pathways in cancer metabolism requires
the quantification of metabolic fluxes. A metabolic flux is the rate at which substrates are
converted to products through a given reaction or pathway. Constraint-based modeling,
sometimes referred to as stoichiometric modeling, is a modeling approach that uses a set
of linear constraints to simulate steady-state metabolic fluxes across a metabolic network.
This approach assumes a metabolic quasi-steady state where no intracellular metabolites
accumulate or deplete, as their average concentration can be assumed constant in time.
This assumption is generally valid for intracellular metabolites as they transition towards
a quasi-steady state several orders of magnitude faster than variations in extracellular
metabolite concentrations or the gene-expression program of the cell [89]. Since intracellular
concentrations are assumed constant under quasi-steady state, the input and output fluxes
for each metabolite must be balanced. In constraint based-modeling, this constraint is
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written as S × v = 0, where S is the stoichiometric matrix, which defines the stoichiometric
coefficients of each metabolite in each of the reactions in the network, and v is the vector
of steady state fluxes (Figure 4A). Additionally, flux boundaries can be set to satisfy
thermodynamic laws (i.e., reaction reversibility) or with measured rates of metabolite
uptake and secretion (Figure 4D). Since constraint-based modeling relies primarily on
network stoichiometry, which is well-defined on a GEM and does not require precise
knowledge of the kinetic properties of enzymes, it is widely used to model metabolic fluxes
in GEMs [77–79,90].
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Figure 4. Genome-scale metabolic modeling. (A) FBA optimization maximizes a linear objective function, ψ(v), formed by
the dot product of the flux vector containing each reaction flux, (vi) by a predetermined coefficient, ci, in the stoichiometric
matrix (S) subject to a steady-state assumption, Sv = 0, as well as lower and upper bounds on each reaction flux (lbi and ubi).
From the unconstrained space (B), the allowable solution space is defined by specifying the steady-state assumption (C), as
well as lower and upper bounds on each reaction flux (D). Various methods can then be used to interrogate the solution
space, such as (E) optimization for a biologically motivated objective function to identify a single optimal solution (e.g., flux
vector in case FBA optimization method is used) or (F) sampling to provide an unbiased characterization via flux vectors
uniformly distributed in the solution space.

However, the space of solutions emerging from the abovementioned constraints in a
GEM is generally largely undetermined (Figure 4B) (i.e., there is a wide range of possible
flux distributions, many of them biologically irrelevant). To overcome this limitation,
Flux Balance Analysis (FBA) identifies the optimal flux distribution(s) by maximizing a
biologically motivated objective function, such as the flux, through the biomass reaction
(Figure 4E) [91]. Nevertheless, there can still potentially be multiple flux distributions that
maximize a given objective. Phenotypically different alternate optimal solutions can yield
the same optimal objective value resulting from a FBA optimization. The range of optimal
flux distributions can be estimated by Flux Variability Analysis (FVA). FVA estimates the
allowable range of flux values through a given reaction by finding the maximum and
minimum possible fluxes from the several solutions that satisfy the optimal objective
function’s value, such as maximum biomass production, called the alternate optimal
solution space [92]. Therefore, alternate optimal solution space can be quantified by using
FVA, since it provides a range of minimum and maximum values for each reaction of the
system [92].
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An alternative to these methods consists of using sampling methods that avoid the
need to specify an objective function by estimating the distribution of possible flux values
in the solution space through techniques such as Uniform Random Sampling and Hit-and-
Run Sampling [93–96]. The solution space can then be characterized statistically from the
set of sampled flux vectors in terms of a probability density function (Figure 4F). Uniform
Random Sampling obtains a statistically meaningful number of solutions uniformly dis-
tributed through the entire solution space. Hit-and-Run Sampling is a Markov chain Monte
Carlo method in which the solution space is randomly sampled [97].

Given that the solution space is often underdetermined, recent studies have enabled
the incorporation of thermodynamics constraints and integrated metabolomics data to
ensure that the simulated flux maps are thermodynamically and kinetically feasible. For
example, anNET, by testing the thermodynamic consistency of the data by identifying ther-
modynamically infeasible errors and by predicting the concentrations beyond the quantita-
tive data being measured, makes a quality check of metabolite concentrations and enables
to identify the reactions whose metabolic flux is actively regulated [98]. Thermodynamics-
based Flux Analysis (TFA) integrates quantitative metabolomics data and standard Gibbs
free energy release of reactions [99] to add a thermodynamic constraint to each reaction
that ensures that the directionality of each reaction is feasible given the ratio of concen-
trations between substrates and products [100]. While pyTFA and matTFA were the first
implementations of the TFA [101], a modified version of matTFA that considers alternative
parameter values and methods has been developed in by Tomi-Andrino et al. [102], and
recently, mod-matTFA toolbox was implemented.

TC-iReMet2 is a constraint-based modeling approach to account for magnitude of
flux changes that combines relative metabolite and transcript time-course data to estimate
fluxes, providing a more accurate explanation of flux rerouting over time [103]. Linear
Bound Flux Balance Analysis (LBFBA) uses transcriptomic or proteomic expression data
and adds on individual fluxes soft constraints whose parameters are estimated from a
training expression and flux dataset that are then used to predict metabolic fluxes from
expression data in other conditions [104]. Relative Expression and Metabolomic Integration
(REMI) uses GEMs to translate differential gene expression and metabolite abundance data
into differential fluxes to analyze the dysregulated physiology for any given pair of condi-
tions by integrating differential gene expression and differential metabolite abundances
with thermodynamic data into a single framework, and then maximizing the consistency
between them [105].

2.3. Context-Specific GEMs

At a given cell or tissue, only a subset of enzymes is expressed; thus, it is generally
recommended to integrate transcriptomics, proteomics or other condition-specific data to
generic GEMs of human metabolism to build context-specific GEMs. A context-specific
GEM is a subset of the generic GEM in which inactive reactions are removed to reflect
cell-type- or tissue-specific metabolic phenotypes. This contextualization process (Figure 5)
depends on: generic GEM chosen, definition of the biomass function, uptake and secretion
flux constraints, gene expression levels, metabolomics, and tissue- or cell-specific metabolic
functions of the cell or tissue type that need to be active in the extracted model. Additionally,
the algorithm and parameter selection (e.g., gene expression thresholds and metabolic
constraints) can affect model content and predictive accuracy. Thus, context-specific
modeling often requires evaluation procedures for the selection of such parameters [106].
Model extraction methods (MEMs) are omics data-integration algorithms used to create
context-specific GEMs. MEMs include GIM3E [107], iMAT [108], MBA [109], INIT [82],
mCADRE [110], tINIT [82], CORDA [111], FastCore [112] and FASTCORMICS [113]. In
all of these methods there are two critical points: (1) the gene expression pre-processing
controlling the distinction between active and inactive genes and (2) Gene to reaction
mapping by GPR associated with each reaction.
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Context-specific GEMs have a wide range of applications, such as identifying pu-
tative drug targets [114], predicting of host–pathogen metabolic interactions [115,116]
or characterizing the reprogrammed metabolism of liver cancer stem cells [117]. Some
databases with published context-specific GEMs include the BioModels Database [118]
(https://www.ebi.ac.uk/biomodels-main/ [Accessed on 1 January 2020]), metabolic at-
las [119] (https://www.metabolicatlas.org/ [Accessed on 1 January 2020]) and BIGG
models database [120] (http://bigg.ucsd.edu/ [Accessed on 1 January 2020]).
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model, defining of the gene expression threshold to include a gene in a reaction and choosing the MEM algorithm to use
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2.4. Kinetic Models

Constraint-based approaches make use of network stoichiometry to characterize the
intracellular fluxes at steady state and cannot generally simulate fluxes and metabolite
concentrations outside of the quasi-steady state nor simulate the regulatory loops emerging
from the kinetic properties of enzymes. Kinetic models use mathematical expressions
referred to as kinetic laws or rate equations which compute the rate through an enzyme-
catalyzed reaction as a function of metabolite and enzyme concentrations and the kinetic
parameters of the enzymes. Substituting the rate equations in the mass balance equation
(S × v) results in a system of ordinary differential equations (ODEs) describing the metabo-
lite concentration changes over time. The equations for the reaction rates are functions of
enzyme concentrations, kinetic parameters and metabolite concentrations, so it is possible
to describe the stoichiometric relation between substrate and products considering the en-
zymatic mechanisms and different levels of regulation (i.e., allosteric or post-transcriptional
regulation), making these methods appropriate for multiple omics data types’ integration.
Therefore, solving such models enables dynamic analysis of biological systems and allows
quantitative predictions of the cells’ states along time for enhanced in silico hypothesis
generation. Kinetic models have been typically used to generate efficient strain optimiza-
tion algorithms [121], although they have also been extensively applied to model cancer
metabolism [122–124].

Kinetic models are typically built in a bottom-up manner: for each reaction, a kinetic
law with its respective parameter values should be provided, resulting in model structures
with great amounts of parameters. The model parameters can be experimentally assessed
through the literature, experimental measures or databases, such as Brenda [125] or SABIO-
RK [126]. Alternatively, model parameters or parameter uncertainty can be estimated by
using parametric estimation methods [127,128] or Monte Carlo methods [129,130].

Kinetic models have to be compatible with physicochemical laws, such as electro-
neutrality and osmotic balance, experimental flux and metabolite measurements to reduce
model uncertainty and discard the reaction directionalities that are not consistent with
the observed physiology [131]. Kinetic rate laws should also be able to model enzyme
saturation and the mechanistic regulatory details [131].

https://www.ebi.ac.uk/biomodels-main/
https://www.metabolicatlas.org/
http://bigg.ucsd.edu/
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Because of this complexity, kinetic models are often of limited scope, covering one or
a few metabolic pathways, but the network of metabolism is highly interconnected and the
dynamics of the whole system are required to simulate its behavior. Recent efforts have
been made towards building genome-scale kinetic models [132–135].

Alternatively, it is possible to reduce the model complexity by modeling in detail only
the kinetics of reactions that are important for a particular physiological condition and for
the remaining reactions use simple approximate kinetic laws, such as considering a quasi-
steady state, and then modeling these parts by stoichiometry only. Ensemble modeling
wherein multiple models are combined in order to create a feasible solution space consti-
tutes a solution to address kinetic parameter scarcity and small-scale preference [136,137].
ORACLE [138], GRASP [139] and K-FIT [140] are packages for ensemble modeling.

2.5. Application of Metabolic Analysis Tools in Cancer Research
2.5.1. Software for Constraint-Based Modeling Tools

One of the most widely used frameworks for constraint-based modeling is the fam-
ily of Constraint-Based Reconstruction and Analysis (COBRA) packages. Available in
MATLAB [141], Python [142] and Julia [143], this family of open-source packages provide
community-contributed modules to perform a variety of constraint-based modeling anal-
ysis, including FBA, FVA, flux sampling, in silico gene Knockouts (KOs) and a variety
of MEMs algorithms that allow network integration of metabolomics, transcriptomics,
proteomics and thermodynamic data. The MEM data integration is used to simulate
different metabolic phenotypes, including growth rate and gene essentiality. Essential
and synthetic lethal genes are defined by using in silico KO strategies that disrupt the
biomass reaction’s flux by blocking the biosynthesis of at least one essential metabolite and
halt cellular proliferation. Other frameworks for constraint-based modeling and/or GEM
metabolic reconstruction are reviewed in detail in [141,144] (Table 2).

Table 2. Software applications for constraint-based modeling and/or genome-scale metabolic reconstruction. In References
[141,144], all of these tools are reviewed in more detail.

Name (and Reference) Language Interface Development OS

COBRA Toolbox [141] MATLAB
COBRA.py, COBRA.jl (Python and Julia) Script Open source AllM

RAVEN [145] MATLAB Script Open source AllM

CellNetAnalyzer [146] MATLAB Script/GUI Closed source AllM

FBA-SimVis [147] MATLAB/Java GUI Closed source Windows

OptFlux [148] Java Script Open source All

Sybil [149] R Script Open source All

CBMPy [150] Python Script Open source All

SurreyFBA [151] C++ Script/GUI Open source All

FASIMU [152] C Script Open source Linux

FAME [153] Web-based GUI Open source All

PathwayTools [154] Web-based GUI/script Closed source All

Kbase [155] Web-based Script Open source All

AutoKEEGRec [156] MATLAB Script Open source AllM

AuReMe [157] Python GUI Open source All

CarveMe [158] Python Script

MetaDraft [159] Python Script Open source All

ModelSEED [160] Web-based GUI Open source All
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Table 2. Cont.

Name (and Reference) Language Interface Development OS

PathwayTools [161] Common Lisp GUI (API) Open source All

Merlin [162] Java GUI Open source All

CoReCO [163] Python Script Open source All

MEMOSys [164] Java GUI Proprietary source All

GEMSiRV [165] Java GUI Open source All

MetExplore [166] Web-based GUI Open source All

RbioNet [167] Part of the COBRA ToolBox Script Open source All

MetaFlux [168] Web-based GUI Open source (distributed
as part of Pathways tools) All

Abbreviations: (AllM) all operative systems in which it can run MATLAB, (API) Application Programming Interface, (GUI) Graphic User
Interface, (OS) operative system.

2.5.2. Application of GEMs in Metabolic Cancer Research

GEMs have been widely used to analyze the metabolic phenotype underlying cancer,
find cancer-specific metabolic essential genes that are putative novel drug targets in cancer
and stratify patients [169]. Table 3 describes a number applications of GEMs in cancer
research, such as modeling of the Warburg effect; predicting potential biomarkers, drug tar-
gets and adverse drug effects; identifying metabolic signatures for drug repositioning; and
determining and identifying anti-metabolites for metabolic inhibitors to co-administrate in
adaptive therapies.

Table 3. Application of GEMs in metabolic cancer research.

Reference Category Concept Tools Used Databases Type of Validation

[170]

CSGEMs to
generate metabolic
signatures for drug

repositioning

PC GEM to explore PC metabolism and
repurpose new drugs. Reconstruction

performed combining personalized GEMs
from individual patient’s transcriptome and
PC-specific proteomics data from the HCA.

RAVEN,
FastGeneSL

[171], DIRAC,
TCGAbiolinks,
DESeq, gcrma

HPA, HMA,
Connectivi-

tyMap2

In silico cell viability
assay and in vitro cell

assay.

[172]
CSGEMs to predict

biomarkers and
drug targets

GEM of transcriptional regulator-metabolite
associations with mixed computational and
wet lab experiments integrating intracellular
metabolic profiles of NCI-60 (4) 54 CCLs with
transcriptomic and proteomic data. Perform

metabolic profiling of CCLs and resolve
signaling across multiple regulatory layers.

fitlm (Matlab)
sparseNCA

Gene
Expression
Omnibus
NCI-60,
HMD,

TRRUST,
KEGG

In vivo metabolite
fold-changes between

normal and cancer
tissues.

[83]
CSGEMs to predict

biomarkers and
drug targets

CSGEM to study the role of metabolic
alterations for novel therapy targets. Predicts

52 cytostatic drug targets (40% by known
drugs). Analyze synthetic lethal drug targets

to identify drug synergies.

NCI-60

shRNA data, cytostatic
scores for single and
double drug target

predictions, synergistic
drug targets via yeast

orthologs.

[173]
GEMs to identify

antimetabolites for
drug design

Assess anticancer effects of drugs structurally
similar to DrugBank [174]. Uses Tanimoto

scores from OpenBabel [175] to assess
structural similarity between DrugBank drugs

and metabolites CSGEM predicted to be
essential for maximal growth rate. Developed
pyTARG to constrain the HMR, using 34 CCLs
and 26 healthy tissue RNA-Seqs. Implemented
FBA within PyTARG to quantify the original

drug affecting reactions rates decrease. Model
the impact of a relative inhibition on global

cell metabolism.

OpenBabel [175],
pyTARG,

COBRApy

DrugBank
[174], KEGG,

BioProject,
HPA, GEO,
BioModels

Differential effects of a
lipoamide analog on
MCF7 and ASM cells.

Proof of concept of
identification of

therapeutic windows.
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Table 3. Cont.

Reference Category Concept Tools Used Databases Type of Validation

[109]
GEMs to identify

antimetabolites for
drug design

Proteomics samples from 27 HCC patients and
83 healthy individuals from HPA to

reconstruct cancer and healthy GEMs with the
tINIT from the HMR 2.0 generic GEM.

CSGEMs to identify antimetabolites used as
anticancer drugs. Healthy GEMs to explore

candidate antimetabolites toxicity on healthy
samples.

RAVEN
(gap-filling,

tINIT,
checkTasks)

HPA

Usage of
antimetabolites for
treatment of HCC

demonstrated by the
inhibitory effect of the
l-carnitine analog, one

of the predicted
antimetabolites, on the

proliferation of the
HepG2 CCL.

[176]

GEMs to identify
metabolic

inhibitors to
administrate with
drug combinations

in adaptive
therapies

Found that taxane-treated breast cancer cells
undergo a metastable transition in which they
depend more on oxidative and non-oxidative
glucose metabolism conferring them resistance

to doxorubicin. Predict that these rewired
cancer cells can be effectively targeted when a

glucose metabolism inhibitor is
co-administered with doxorubicin.

Prism
(GraphPad)

In vivo experiments
with mouse models,

patient explant system.

[177]
GEMs to explore

cancer metabolism
biology

Central C and N RMGEM to study the
interplay between glucose and glutamine for

biomass formation in ammonia
microenvironment. Perform Warburg effect

quantitative. Used the RMGEM to do FBA to
study all possible glutamine fates. Found that
glutamine can supply C sources for cell energy

production and can be used as a C and N
source to synthesize essential metabolites.

FAME

[178]
GEMs to explore

cancer metabolism
biology

HPaA to explore the prognosis of each protein
in 17 major cancers. Uses CSGEMs to identify

tumor growth involved genes. Based on
transcriptomics of ~ 8000 patients with clinical
metadata. Revealed that survival is associated

with upregulation mitosis and cell growth
genes while downregulated genes are mostly

involved in cellular differentiation.

Kaplan–Meier
plots, PCA

HPaA [178],
BioModels,
TCGA, GO,

GDC

Immunohistochemistry.

[179]
CSGEMs to explore
cancer metabolism

biology

Merged 374 CSGEMs from the HPaA to
reconstruct a generic CRC GEM. Identified the
mayor differences between tumor and normal

samples in terms of highly perturbed
metabolites by applying modules reporter

metabolite and reporter subnetworks
algorithms. Mayor differences were related to

the glutathione, arginine and proline
metabolic reprogramming.

PIANO (R)
(KEGG and GO

enrichment
analysis), CRC

(Bioprofiler
analysis),
RAVEN,

Kaplan-Meier
survival analysis,
log-rank p-value

HpaA,
BioModels,
TCGA, GO,

GDC

ODC1, SMOX, SRM
and SAT validated
in vivo and in vitro,

using 15 patients and 4
CRC CCLs.

[71]
GEMs to explore

cancer metabolism
biology

HMR 2.0 and proteomics data in HPA to
construct consensus hepatocytes GEM

(iHepatocytes2322) that improves previous
GEMs including an extensive description of

lipid metabolism. GEM used to analyze
transcriptomics data from non-alcoholic fatty

liver disease patients.

INIT, Reporter
Subnetwork

analysis
checkTasks
(RAVEN),
RAVEN

HPA,
Uniprot,

GEO

Hepatocytes biological
functions of

hepatocyte-specific
GEM demonstrated by

simulating 256
metabolic functions of

HepatoNet, using
checkTasks/fitTasks

(RAVEN).

[90]
GEMs to explore

cancer metabolism
biology

GPR called S-GPR considering transcripts
stoichiometry. Investigate PC cells metabolic

effects chronic exposure to an endocrine
disruptor.

Mann-Whitney
test, FASIMU,
Gimme, Mat,
pFBA MADE

HMD, Lipid
Maps, HMA,

GEO

Qualitative comparison
between predicted

metabolic consump-
tion/productions and
the metabolomic and

lipidomic experimental
measurements.
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Table 3. Cont.

Reference Category Concept Tools Used Databases Type of Validation

[180]

Warburg effect
computer
metabolic
modeling

Study common and robust metabolic
pathways supporting cancer cells (glycolysis,
TCA cycle, pentose phosphate, glutaminolysis

and oxidative phosphorylation). Propose
metabolic targets for anticancer treatments by

a constraint-based modeling on integrated
data.

COBRA toolbox GEO

Verified that the in
silico kinetic growth

curve exhibit a
comparable behavior

with the experimentally
obtained from Hela

CCLs.

[84]

Warburg effect
computer
metabolic
modeling

GEM human metabolic network accounting
stoichiometry and enzyme solvent capacity.
Demonstrate that Warburg effect happens

since the metabolic adaptation of cancer cells
to increase biomass production rate.

BRENDA,
SABIO-RK

Correlation between
enzyme concentration

predictions and
expression of 1269

metabolic genes from
60 NCI CCLs.

Validated against 1000
flux distributions of

two models by ACHR
sampling.

[181]

Warburg effect
computer
metabolic
modeling

Expand metabolic efficiency notion by ATP
production FBM constrained by glucose

uptake and solvent capacities in the cell’s
cytoplasm. Found that at low glucose uptake

rates mitochondrial respiration is the most
efficient pathway for ATP generation while

when increasing glucose uptake rates a
gradual switch to aerobic glycolysis achieves
ATP highest rate since it is more efficient for

the required solvent capacity.

Agreement between the
experimentally

determined fluxes and
the model predictions.

[182]

Warburg effect
computer
metabolic
modeling

Constraint-based modeling with E-Flux
integrating 13 different cancer cell

transcriptomics with Recon1 generic model.
Found that metabolic changes distributions

are similar in different cancer types,
supporting that Warburg effect is a general

metabolic adaptation.

E-Flux,
GeWorkbench
2.4.0, COBRA

GEO

Abbreviations: (C) carbon, (CCL) cancer cell line, (CRC) colorectal cancer, (CSGEM) cancer-specific GEM, (DIRAC) DIfferential RAnk
Conservation, (GDC) Genomic Data Commons, (GEO) Gene Expression Omnibus, (GO) Gene Ontology, (HCC) Hepatocellular Carcinoma,
(HMA) Human Metabolic Atlas, (HMD) Human Metabolome Database, (HPA) Human Protein Atlas, (HpaA) Human Protein Pathology
Atlas, (N) nitrogen, (PC) prostate cancer, (RMGEM) reduced metabolic GEM.

2.5.3. Modeling the Metabolic Crosstalk between Cell Populations

To model the metabolic crosstalk between multiple cell populations, such as substrate
competition or cross-feeding (i.e., the metabolic products of a cell population are used as
substrates for a second cell population), multiple GEMs, each representing a subpopulation,
can be coupled (i.e., connected to a shared extracellular compartment). This approach has
been pioneered in the modeling of bacterial communities, where metagenomic sequencing
data are used to build models of specific bacteria species present in the community, which
are subsequently coupled [183]. This has enabled modeling the metabolic host–microbiome
interactions in the human gut and their role in health and disease [184,185]. Addition-
ally, 32 organ and cell-type-specific GEMs have been integrated to build physiologically
constrained female and male whole-body metabolic models that in addition of predict-
ing how the microbiome may modulate human metabolism, they can also predict organ
metabolic essentiality, biomarkers of inherited metabolic diseases and inter-organ metabolic
cycles [186]. However, modeling the crosstalk between cancer and immune population
in the cancer stroma is a major challenge due to the intermingling of the different cell
populations, to the tumor heterogeneity and to the dynamics changes happening both in
cancer and in the immune populations. Building a context-specific GEM by using bulk
transcriptomics, proteomics or metabolomics will result in a single model representing the
average profile of the tumor, and, thus, it will be unable to capture metabolic heterogene-
ity, nor the metabolic crosstalk between cell populations. However, thanks to the use of
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single-cell RNA-Seq (scRNA-Seq) is possible to analyze the composition and the population
changes. For example, thanks to the use of scRNA-Seq, Wu et al. [187] discovered rare cell
types in non-small-cell lung cancer (NSCLC) such as follicular dendritic cells and T-helper
17 cells. Lin et al. [188], using scRNA-Seq, discovered in pancreatic ductal adenocarcinoma
(PDAC) distinct cell types in primary and metastatic PDAC tissues including tumor cells,
endothelial cells, cancer-associated fibroblasts (CAFs) and immune cells. Cancer cells have
higher inter-patient heterogeneity, whereas stromal cells are more homogenous across
patients. Furthermore, they found that the expression levels of cell-type-specific markers
for EMT+ cancer cells, activated CAFs and endothelial cells significantly associated with
patient survival. Moreover, in PDAC, Dominguez et al. [189] identified a population of
CAFs that are programmed by TGFβ and express the leucine-rich repeat containing 15
(LRRC15) protein. These LRRC15+ CAFs surround tumor islets and are absent from normal
pancreatic tissue. The integration of the information provided by scRNA-Seq with GEMs
has led to the development of approaches such as popFBA or single-cell FBA.

PopFBA

PopFBA [190] is an extension to FBA to study the cooperating metabolism through
the exchange of a defined set of metabolites within the presence of several subpopulations
in a population sharing a common environment. Spatial proximity dictates differences
of the distinct components in the tumor for nutrient exchange with the plasma and other
cells within the populations. A single GEM is used as a building block, and the population
model consists of multiple clones with identical stoichiometry, constraints and sharing
the plasma nutrient supply. Linear programming optimization is used to find the optimal
growth rate of the entire tumor mass, allowing us to investigate the cooperation among
different clones and the different metabolic strategies taken. However, because all the
models share the same stoichiometry, this approach is unlikely to encapsulate the metabolic
differences between distinct cancer and immune cell populations. Therefore, popFBA only
allows us to explore how metabolic heterogeneity and cooperation phenomena affect the
overall growth of cancer cell populations.

Single-Cell FBA (scFBA)

It is possible to add constraints on the single-cell fluxes by using single-cell transcrip-
tomes derived from scRNA-Seq experiments. Coupling the information of scRNA-Seq with
extracellular fluxes within the FBA steady-state modeling framework allows us to obtain
feasible solutions for the prediction of intracellular fluxes. ScFBA [191] takes as input a
template metabolic network map and an scRNA-Seq matrix. It also allows us to employ
the information on bulk expression profiles. Single-cell fluxomes and possible metabolic
interactions among them are predicted by using scFBA, starting from bulk extracellular
fluxes and a multiscale model with scRNA-Seq that optimize an individual biomass func-
tion to identify the possible combination of single-cell steady states given the constraints
on scRNA-Seq and extracellular bulk fluxes. The flux distribution of each reaction and each
cell interacts with other cells in the population via release/uptake of metabolites into/from
the TME. ScFBA first creates a multiscale population model: for each single cell in the bulk,
the same stoichiometry of the metabolic network map is first used, and then the constraints
on the fluxes of the individual networks are integrated by assigning flux boundaries as a
function of the expression state proportionally to the activity score of that reaction in each
cell. This procedure is implemented without creating context-specific models from generic
ones. Finally, each single cell in the bulk is represented by a single-cell compartment of the
multiscale model. Thus, each single-cell compartment has different metabolic parameters
and allows cooperation between cells, as well as the flow of metabolites between the TME
and the cells.
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3. Discussion

The immune system is critical in fighting cancer, as the immune response can lead to
the destruction of cancer cells. Immune cells and cancer cells compete for nutrients within
the TME. Some cancer cells gain mutations and change their characteristics to evade the
immunosurveillance by several mechanisms. Cancer cells can reprogram their metabolism
to enhance proliferation, migration and invasion of distant tissues. Many of these metabolic
changes result in an increased uptake of nutrients from the TME, limiting the availability
of nutrients for the cells from the immune infiltrate. Knowledge about the utilization of
reprogrammed metabolic mechanisms requires the quantification of metabolic fluxes, and
GEMs allow us to make computational predictions of the metabolic fluxes of cancer cells.
Modeling metabolism at the genome-scale requires us to reverse-engineer the network
structure, and then to add stoichiometric, thermodynamic and/or enzymatic capacity
constraints on the network. Using transcriptomic and proteomic data, we deem that it
is possible to identify the presence of the enzymes that catalyze the active reactions in a
given cell and tissue type. Metabolomic data can be used to determine the rate at which
metabolites are produced or consumed from the extracellular medium (i.e., extracellular
fluxes) and can have a significant effect on predictions [191]. Extracellular fluxes can be
measured ex vivo with experiments that have a controlled extracellular medium. Indeed,
culturing cells from human biopsies from which transcriptomic or proteomic data are
obtained and measuring metabolite concentrations in spent medium constitute a first
attempt towards cancer personalized medicine [192]. To test therapies that remain in the
preclinical stage, while minimizing the possible toxicity risks, if patient consent is available,
it is possible to use a tumor sample for in vitro manipulation with primary cell culture or
organoids or even subcutaneously transferring into mice or zebrafish for growth to obtain
patient-derived xenografts in which we can test different drugs and concentrations [193].

In this work, we reviewed the state-of-the-art in modeling the tumor metabolism at
the genome-scale and the crosstalk between cancer and immune cell metabolism in the
context of the existing framework for constraint-based modeling and/or genome-scale
metabolic reconstruction, including a number of approaches involving the application of
GEMs. We also addressed the population’s heterogeneity problem, which is that the actual
cellular population composition is undetermined, and thus, the average values do not
describe the population fluxes well; therefore, an additional layer of complexity must be
modeled by using specific methods. We posit that such a framework has yet untapped
potential to model the metabolic crosstalk of cancer cells and immune cell populations
that plays a key role in cancer progression and could potentially pave the way for a new
generation of therapies that potentiate antitumoral immune response.

The heterogeneity of the tumor metabolic reprogramming is not fully understood,
as there are experimental limitations for the metabolomics studies, in that, although they
are able to provide insights into the cellular metabolic status of cells, there is still a lack of
information regarding the cause or effect of metabolite changes and in silico models. Inte-
grating multi-omics data may provide a broader picture, thus enabling the identification of
the regulatory mechanisms underlying in the pathophysiology of complex diseases, such
as cancer [194]. The TME constitutes a complex adaptive ecological system, and due to
the difficulty in modeling the interactions between multiple cell types modeling, the TME
remains challenging. Capuani et al. [195] reconstructed a large-scale in silico metabolic
model of interacting human CAFs and tumor cells for the lactate shuttle. Shan et al. [196]
implemented a multiscale modeling approach to interrogate the implication of the TME on
the Warburg effect, the reverse Warburg effect and glutamine addiction. With the use of
the ScFBA algorithm developed by Damiani et al. [191], it was possible to model a hetero-
geneous cancer cell population and represent the metabolite exchange between different
cell types. Because TAMs can be induced by oncometabolites that activate in macrophages’
cancer-promoting pathways, reversing the polarization of protumoral TAMs is likely to
be an effective strategy against cancer [197]. In this direction, a new avenue constitutes to
interconvert pro-inflammatory M1 (with the ability to metabolize arginine to nitric oxide) to
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wound-healing M2 (with the ability to metabolize arginine to ornithine) [198] populations
of macrophages by using approaches such as depletion of TAMs, reprogramming of TAMs
toward M1 polarized macrophages, acting over the recruitment of monocytes into the
tumor or inhibiting the endothelial–mesenchymal transition [199]. In this line, Li et al. [199]
used an interaction network of cancer cells and macrophages to investigate how the polar-
ization of macrophages can interact with the epithelial–mesenchymal plasticity of cancer
cells. This study suggested that therapies against malignancy that enhance M1 domination
and cancer-free steady-state require mechanisms that synergistically promote the transition
of mesenchymal to epithelial cells and keep a low growth rate of mesenchymal cells.

The TME and the ECM affect tumor cell metabolism, control cell polarity, migration,
proliferation and oncogenic transformation; consequently, it is essential to understand
the contribution of nutrient transit from the TME to support cancer cells’ growth under
nutrient-starvation conditions [70]. CAFs represent a significant proportion of the TME,
and they have been shown to contribute to tumor growth, metastasis and resistance to
therapy through the regulation of cancer metabolism, as they secrete metabolites and
generate a more fibrotic ECM [70]. Integrins are plasma membrane receptors that mediate
cell–ECM interactions. Modeling the crosstalk between CAFs and cancer cells, integrin
trafficking, nutrient signaling and different mechanisms through which cancer cells can ex-
ploit different nutrient sources from the TME will enormously contribute to understanding
the metabolic plasticity and responsiveness and resistance to therapy of the cancer cells.

Future developments will likely involve methodological and translational advance-
ments, such as using richer datasets with additional data sources from different cell types
from scRNA-Seq and clinical samples that include the information of cellular regulatory
mechanisms or modeling interactions of cancer cells with the surrounding cells from the
TME, as well as predicting and circumventing the drug resistance of metabolic cancer
drugs by building integrated kinetic and stoichiometric models of cancer metabolism.
For example, The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/tcga
[Accessed on 1 January 2020]) is a good resource of cancer high-throughput-omics data
that can be collected and integrated to holistically perform analysis, using GEMs. Outside
of cancer, these bottom-up systems’ biology approaches that drive drug repurposing and
drug discovery can be used to identify therapies for other diseases [200].

4. Conclusions

Expanding the understanding of the dynamic interplay of numerous cell types, such
as cancer cells, immune cells and stromal cells within TME is likely key to develop effective
cancer therapies. Cancer cells reprogram their metabolism to capture substrates needed
to sustain proliferation with increased avidity and produce toxic metabolic byproducts,
inhibiting immune cells’ function and promoting immune evasion. Thus therapies selec-
tively targeting the metabolic crosstalk between cancer and immune cells could potentially
restore immune function within the tumor, leading to improved therapeutic outcomes. In
this regard, the GEMs approaches reviewed in this work are promising tools to analyze the
metabolic crosstalk underlying immunosuppression in the TME, stratifying patients, identi-
fying key players promoting immunosuppression in each patient strata, and repositioning
drugs to target them.
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