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The 𝑘 nearest neighbor is one of the most important and simple procedures for data classification task. The 𝑘NN, as it is called,
requires only two parameters: the number of 𝑘 and a similarity measure. However, the algorithm has some weaknesses that make it
impossible to be used in real problems. Since the algorithm has no model, an exhaustive comparison of the object in classification
analysis and all training dataset is necessary. Another weakness is the optimal choice of 𝑘 parameter when the object analyzed
is in an overlap region. To mitigate theses negative aspects, in this work, a hybrid algorithm is proposed which uses the Self-
Organizing Maps (SOM) artificial neural network and a classifier that uses similarity measure based on information. Since SOM
has the properties of vector quantization, it is used as a Prototype Generation approach to select a reduced training dataset for the
classification approach based on the nearest neighbor rule with informativeness measure, named 𝑖NN.The SOM𝑖NN combination
was exhaustively experimented and the results show that the proposed approach presents important accuracy in databases where
the border region does not have the object classes well defined.

1. Introduction

The main task of a data classifier is to predict the class of an
object that is under analysis. The simplest procedure for data
classification tasks is the 𝑘nearest neighbor (𝑘NN) algorithm.
The algorithm strategy for classification comprises three
operations: (i) an unlabeled sample is compared to dataset
training through a similarity measure; (ii) the labeled objects
are sorted in order of similarity to the unlabeled sample;
and finally, (iii) the classification occurs giving the unlabeled
sample the majority class of the nearest neighbors objects.
Because of its simplified algorithm (three basic operations
steps), and reduced number of parameters (similarity mea-
sure and the 𝑘 number of nearest neighbor), this instance-
based learning algorithm is widely used in the data mining
community as a benchmarking algorithm [1–5].
Since the 𝑘NN algorithm has no model, an exhaustive

comparison of the unlabeled sample with all the labeled and

stored objects in the database is necessary, which increases
the computational time of the process. In addition to this
weakness of algorithm, the decision boundaries are defined
by the instances stored in the training set and, for this, the
algorithm has low tolerance to noise; that is, all training
dataset objects are considered relevant patterns. Finally, the
optimal choice of 𝑘 depends upon the dataset mainly when
the object analyzed is in a boundary region, making this
parameter to be tuned according to the application [6–9].
To overcome the drawbacks above, there are in the

literature different approaches such as similarity measure
alternative to the Euclidean distance to minimize misclassifi-
cation in boundaries region [10], methods to avoid searching
the whole space of training set [11], and dataset summariza-
tion to find representative objects of training set [9]. For
the dataset summarization approach, there are two main
strategies to reduce the dataset volume: one of them based on
instance selection and the other based on prototypes. For the
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approaches based on pattern (or instance) selection, the aim
is to find a representative and reduced set of objects from the
training dataset, which has the same or higher classification
accuracy of a raw dataset [8, 12–15]. The strategies based on
prototype, on the other hand, are defined in two approaches:
Prototype Selection (PS) [16] and Prototype Generation (PG)
[13, 17–19]. The approaches are equivalent; both can be used
to identify an optimal subset of representative prototypes,
discarding noise, and redundancy. The difference is that PG
can also be used to generate and to replace the raw dataset by
an artificial dataset.The use of prototypes or reduced training
objects that are represented by prototypes minimizes some
of 𝑘NN drawbacks previously mentioned as the exhaustive
comparison of all training dataset.
Silva and Del-Moral-Hernandez [5] presented combina-

tion methods that use the winning neuron and topological
maintain concepts of the Self-OrganizingMaps (SOM)neural
network to define a reduced subset of objects of the training
set that are highly similar to the object that is under analysis
for classification [5, 20]. This object subset is retrieved and
then utilized by the 𝑘NN to execute the classification task. In
other words, the SOM executes a preprocessing for the 𝑘NN
classifier, recovering the similar objects from the winning
neuron and from the adjacent neighbors of the SOM map
[21].
With respect to drawback in the tuning of parameter𝑘, Zhang et al. proposed a computation learning for this

parameter [22]. Song et al., on the other hand, proposed a
metric based on informativeness to perform the classification
process in a boundaries region, where the choice of 𝑘 is more
sensible [10]. This algorithm was called 𝑖NN and the main
idea is investigating the nearest objects more informative
instead of the closest. This approach outperforms the use of𝑘NN with Euclidean distance; however, it further increases
the complexity of the comparison, consequently increasing
process time [23].
Inspired by use of PG [5, 20, 21], we introduce a hybrid

approach, where in a first step there is the SOM,which has the
quantization vector and topological maintenance as impor-
tant features for using it as a preprocessing in order to present
to the classifier algorithm a reduced set of objects, highly
similar to the unknownobject that is being investigated.Next,
the 𝑖NNalgorithmwill attribute a class to the unknownobject
based on the most informative objects of selected set. For
the initial exploratory experiments, we observed important
results of accuracy and time in classification process [23].
We here formally detail how SOM𝑖NN works in hybrid

architecture for classification problems. Besides that, here
we introduced an experimental methodology to analyze
qualitatively the SOM𝑖NNclassifier in three artificial datasets,
experimenting different distribution in the region of class
overlapping. In addition, we perform the experiments in 21
databases publicly (7 times more than in the previous study)
available in the UCI repository and also sampling way by the
5-fold cross validationmethod in the complementary website
to the paper published by Triguero et al. [9]. The results
are analyzed using accuracy, kappa, prototype reduction, and
time as performance indices.

The rest of the paper is organized as follows: in Section 2, a
brief explanation of Prototype Generation and the taxonomy
proposed by [9] are shown; Self-Organizing Maps and the
methods to use them in classification with 𝑘NN are presented
in Section 3. In Section 4, the experimental methodology is
introduced. Experimental results, discussion, and compara-
tive results are given in Section 5. In the last section, the
conclusions are provided.

2. Theoretical Fundamental

2.1. A Brief Introduction to Prototype Generation. For a better
understanding of the Prototype Generation idea, let us con-
sider an object x𝑛 of a dataset, defined as a set of descriptive
attributes of 𝑚 dimensional and with a class attribute 𝑦; that
is, x𝑛 = [𝑥𝑛1, 𝑥𝑛2, . . . , 𝑥𝑛𝑚, 𝑥𝑛𝑦].Then, let us assume thatXtrain
is a training dataset with 𝑁train samples of x𝑛. The purpose
of Prototype Generation (PG) is to obtain a reduced set,Xred,
with𝑁red instances selected or generated fromXtrain, but with𝑁red ≪ 𝑁train. The cardinality of this reduced set must be
sufficiently small to decrease the evaluation time taken by a
classifier (𝑘NN, for example), maintaining the classification
accuracy. In fact, data reduction approaches aim mainly to
summarize the raw dataset, without damaging the analytical
properties, which implies performance accuracy.
For the PG methods, prototypes are used by classifiers

instead of raw datasets, or they are used to generate an
artificial dataset. Data generation can be interesting in some
cases to eliminate data noise or to solve dataset with unbal-
anced class. Since the possibilities of usage are diversified,
the literature presents different methods, approaches, and
algorithms. This was the reason for Triguero et al. [9] to
propose a PG taxonomy that is used to enhance 𝑘NN
drawbacks, which was defined as a hierarchical way of three
levels (generation mechanisms, resulting generation set, and
type of reduction), and also review the all algorithms of the
PG from the literature (see [9] for a detailed explanation).
In the next section, we introduce a brief of Self-

Organizing Maps and the approach is proposed, the combi-
nation of SOM and 𝑘NN.
2.2. A Brief Summary for the Kohonen Self-Organizing Maps.
Kohonen Self-Organizing Map (SOM) is a type of neural
network that consists of neurons located on a regular low-
dimensional grid, usually two-dimensional (2D). Typically,
the lattice of the 2D grid is either hexagonal or rectangular
[24]. The SOM learning or training process is an iterative
algorithm which aims to represent a distribution of the input
pattern objects in that regular grid of neurons. The similar
input patterns are associated in the same neurons or in the
adjacent neurons of the grid.
For the SOM training, a dataset is chosen and divided into

two distinct sets. The training set is used to train the SOM
which is here called Xtrain. The other set is used to test the
trained SOM (Xtest). After this dataset division, we start the
training SOM. Formally, an object is randomly selected from
Xtrain during a training, defined as x𝑛 = [𝑥𝑛1, 𝑥𝑛2, . . . , 𝑥𝑛𝑚],
where the element 𝑥𝑛𝑚 is an attribute or feature of the object,
which belongs to 𝑅𝑚. The object is similar to what was before
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defined, but without the class 𝑥𝑛𝑦 information. Additionally,
each neuron 𝑗 of the SOM grid has a weight vector w𝑗 =[𝑤𝑗1, 𝑤𝑗2, . . . , 𝑤𝑗𝑚]𝑇, where 𝑗 = 1, 2, . . . , 𝑙; here 𝑙 is the total
number of neurons of the map.
During the learning process, the input pattern is ran-

domly selected from the training set and it is compared with
the weights vector of the map, initially initialized randomly.
The comparison between x𝑛 and w𝑗 is usually made through
Euclidean distance.The shortest distance indicates the closest
neuron 𝑐, which will have its weight vectorw𝑐, updated to get
close to the selected input pattern x𝑛. Formally, neuron 𝑐 is
defined as follows:

𝑐 = argmin
𝑗

󵄩󵄩󵄩󵄩󵄩x𝑛 − w𝑗
󵄩󵄩󵄩󵄩󵄩 . (1)

The closest weights vector w𝑐 and their neighbors are
updated using the Kohonen algorithm [24]. However, the
topological neighborhood is defined so that the farther away
the neuron from w𝑐, the lower the intensity for the neigh-
borhood to be updated. The intensity of the neighborhood
function is defined in relation to the training time. In other
words, in initial times, the level has high value and, according
to the next iterations, it is reduced at each iteration. See
Kohonen [24] for a complete explanation of the training rule
of the SOMmap.

2.3. Building a PrototypeGeneration Based on SOM. Since the
training phase has been completed, each input pattern object
from the training set has to be grouped to the closest neuron.
The idea in this approach of using SOM as a PG technique
is that the index of each instance x𝑛 is a part of the nearest
neuron list. Thus, the list of each neuron 𝑗 is here called the
Best Matching Unit List (BMUL), formally defined as

BMUL𝑗 = {𝑛 | 𝑑 (x𝑛,w𝑗) ≤ 𝑑 (x𝑛,w𝑖) ∨ 𝑖 ̸= 𝑗} , (2)

where 𝑗 is assigned to the number of the map neuron and
BMUL is a list with the indexes 𝑛 of input patterns objects
associated with the nearest neuron.
The relationship between the instance of training set x𝑛

and the list of the best match unit BMUL𝑗 is of many-to-one.
That is, some units 𝑗, which we could call microclusters, must
be associated with one ormore instances and other units may
have no associations; that is, the list can be empty {0}.
The classification method proposed herein explores two

important characteristics of the SOM: vector quantization
and topological ordering [24]. For better understanding these
features, consider the representation of Figure 1 with input
patterns objects (filled circles) used for training a SOM map
and the weight vectors of each neuron (squares) after the
training phase. In this figure, each weight vector represents
a microcluster of input patterns, which is a quantization
characteristic. The relationship between the weight vectors
can be interpreted as a boundary, which can be understood
as a Voronoi region, as exemplified by the shaded area in
Figure 1. In operational aspects of use, this can be considered
in a classification process in which the strategy, introduced
and explored herein,means to establish a two-step process. In
the first step, when a test sample x𝑡 (see Figure 1, the unfilled

u
xt

Figure 1: The border between the weight vectors (squares) can
be interpreted as a Voronoi region (shaded area). Thus, the input
patterns object (filled circles) belongs to a Voronoi region.

circle) is compared to the weight vectors of the trained SOM
map (the squares of Figure 1), the algorithm defines the
closest unit 𝑢 according to the following equation:

𝑢 = argmin
𝑗

󵄩󵄩󵄩󵄩󵄩x𝑡 − w𝑗
󵄩󵄩󵄩󵄩󵄩 . (3)

Hence, as 𝑢 is the nearest unit, we know the list with
input patterns indices that should be queried, that is, BMUL𝑢.
Illustratively, consider that weight vector 𝑢 belongs to a
Voronoi region; see Figure 1, the shaded area, which has a
BMUL𝑢 list with the indices of input patterns known (filled
circle). Also in this figure, the unlabeled sample x𝑡 (unfilled
circle) belongs to the region covered by unit 𝑢 (shaded area);
that is, in the second step of the classification process, the𝑘NN algorithm is performed with a reduced set of objects.
However, note that the input patterns object stored in the

dataset (filled circles), which are the closest to the object being
classified x𝑡 (unfilled circle), belong to neighboring Voronoi
regions and are consequently represented in other lists; see
Figure 1, circle with a dotted line.
For that reason, in a classification task with 𝑘NN or (𝑖NN

as will be introduced in the next section) combined with
SOM, the use of the objects represented only as BMUL𝑢
list results in a substantially reduced classification process
time but can reduce the accuracy rate. Thus, we explored the
second important feature of SOM, the topological ordering
of the training dataset objects. In other words, in addition to
the BMUL𝑢 list, the lists of adjacent neurons in the SOMmap
grid are also consulted.
The visit of adjacent units depends on the grid initially

set at the SOM training phase. For the SOM trained with
rectangular lattice topology, the units of the four adjacent
units should be considered. Thus, the query list BMULquery
for the unknown pattern x𝑡 is defined as

BMULquery = {BMUL𝑢,BMULtop𝑢 ,BMULright𝑢 ,
BMULbottom𝑢 ,BMULleft𝑢 } .

(4)

Otherwise, for a hexagonal lattice topology, we have to
consider six adjacent units and so on. In previous studies
using SOM with 𝑘NN [5, 20, 21], we compared the two
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Input:The weight vectors of SOMMap trained (W); training objects dataset (Xtrain); and an unknown sample (x𝑡)
Output: the label of unknown sample (𝑥𝑡𝑦)
Compare the unknown sample x𝑡 with each weight vector w𝑗 ofW using Eq. (3)
The units to be visited are defined by Eq. (4) and the input patterns objects are retrieved by Eq. (5), recovering a reduced dataset
training𝑋BMULquery .
The reduced dataset and the unknown sample are used by a classifier (𝑘NN or 𝑖NN) that return the object class.

Algorithm 1: Prototype Generation based on SOM briefly described in a pseudo-code.

neighborhood topologies (rectangular and hexagonal) and
the results were equivalent. For this reason, the rectangular
lattice topology was chosen in this work.
Finally, in the second step of the classification method

proposed here, the reduced objects set belonging to
BMULquery (4) is used to find the 𝑘 nearest neighbors (𝑘NN).
Note that the set of objects extracted from the query lists,
that is, XBMULquery , is part of the set of input patterns objects
used for the SOM training; that is, Xtrain = [x1, x2, . . . , x𝑛]𝑇
and XBMULquery ⊂ Xtrain. Formally, we have

XBMULquery = {xbmul | bmul ∈ BMULquery} . (5)

Thus, the class of the 𝑘 nearest (or 𝑖 informative instances
as will be explained in the next section) is used to label
the unknown sample x𝑡. This framework combination was
initially called SOM𝑘NN (and here will be introduced the
SOM𝑖NN classifier).
In summary, the conventional algorithm NN (or 𝑘NN)

compares the unknown sample with all the instances of the
dataset; here, the comparison is limited to a selection of
the objects; that is, the comparison is restricted to a small
number of instances from the training dataset. The main
implementation steps are described as a pseudo-code in
Algorithm 1.
As verified in this section, we formalized a strategy to

select input pattern objects to be used as references in a
classification task and to speed the time of 𝑘NN algorithm.
The next section introduces the 𝑖NN algorithm which is less
sensible to 𝑘 parameter and for this works better than 𝑘NN in
datasets with overlapped classes (boundary not well defined).

2.4. Informative Nearest Neighbors. Some data classification
approaches based on nearest neighbor, in addition to defining
a given range of 𝑘 values to find the nearest neighbors, also
utilize new distance metrics, such as the informative nearest
neighbor [10]. In other words, they utilize in the analysis of a
new object of unknown class a measure that quantifies which
training set object is most informative.
In order to find the informative nearest neighbor, the 𝑖NN

algorithm, as it is called in the proposal by Song et al. [10],
calculates the informativity through the following equation:

𝐼 (x𝑖 | x𝑡) = − log (1 − 𝑃 (x𝑖 | x𝑡)) × 𝑃 (x𝑖 | x𝑡) ,
𝑖 = 1, . . . , 𝑁, (6)

where 𝐼 is the value of the informativity between the neighbor
x𝑖 and the object under analysis of unknown class (x𝑡), to the
extent that 𝑃(x𝑖 | x𝑡) is the probability of the object x𝑖 being
the informative nearest neighbor. This probability is defined
by the following equation:

𝑃 (x𝑖 | x𝑡)
= Pr (x𝑖 | x𝑡)𝜂( 𝑁∏

𝑛=1

(1 − Pr (x𝑖 | x𝑡)) × (⨿[𝑐𝑖¬𝑐𝑛])) .
(7)

The first term in (7) Pr(x𝑖 | x𝑡)𝜂 is defined as the
probability that the object x𝑖 is close to the object x𝑡 and 𝜂
is defined as 𝑁x𝑖/𝑁, where 𝑁x𝑖 is the number of objects that
have the same class as x𝑖. The second part in (7) indicates
the probability that the object x𝑖 is distant from the other
objects of the training dataset x𝑛. The indicator ⨿[⋅] will be
1 if the class attributes of the objects x𝑖 and x𝑛 are different;
in other words, 𝑐𝑖¬𝑐𝑛. Therefore, it can be understood as a
penalty factor.
The probability Pr(x𝑖 | x𝑡) in (7) can be defined as a

function of distance between the objects; in other words,

Pr (x𝑖 | x𝑡) = exp (− 󵄩󵄩󵄩󵄩x𝑖 − x𝑡
󵄩󵄩󵄩󵄩2) . (8)

To understand the 𝑖NN algorithm in practical terms,
consider the dataset utilized in Figure 2(a), where it is
represented by shaded circles, to the extent that the shades
(dark and light) represent the two classes of the set. Now
consider Figure 2(b), which has the same training objects
with the addition of an object without class represented by
a circle without shade. Now, consider in Figure 2(c) the
contours in training objects and test object, representing the
classification process executed utilizing the traditional 𝑘NN,
with Euclidean distance and 𝑘 value being equal to 5. In this
process, the majority class of the nearest neighbors is the
one that is represented by dark shading. And, therefore, the
decision-making process is made by this class. However, the
object under analysis has as its nearest neighbor an object of
the training set that belongs to the classwith light shading and
this, on the other hand, also has as its neighbor another object
of the same class. Therefore, utilizing the 𝑖NN algorithm, the
informativity takes into consideration not only the majority
class but also the nearest objects and the concordance that the
other objects of the training set have with the nearest object.
In conclusion, in the case of the 𝑖NN, the classification would
be made by the class represented by the lightest shading
Figure 2(d).
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x1

x2

(a) Training dataset

x1

x2

(b) Training dataset with the test object

K = 5

x1

x2

(c) 𝑘NN classification process

Informative nearest neighbor

K = 5

x1

x2

(d) 𝑖nn classification process

Figure 2: Illustration of the classification process made by the 𝑘NN and 𝑖NN algorithm.

Thus, the concept of informative nearest neighbor has
the following definitions. Within the 𝑘 nearest neighbors, the
object that is nearest to the object that is being classified,
which is distant from other objects of different classes, is
considered the most informative object, such that its class
is attributed to the unknown object. On the other hand, the
object that has a different class from the most informative
object is considered least informative. An object is also
considered least informative within the 𝑘 nearest neighbors
when it has the same class as the most informative object and
is nearest to other objects of different classes.
The informativity calculation has a high computational

cost because, in addition to comparing the object under
analysis with the objects of the training set (first part in
(7)), the algorithm still requires a comparison between the
training set objects (second part in (7)). In order to reduce
the computational effort, Song et al. [10] suggest having the
execution of the 𝑘NN algorithm before executing the 𝑖NN to
define a reduced dataset with 𝑘most similar objects, accord-
ing to the Euclideanmetric. However, the 𝑘NN algorithm has
the disadvantages presented in the Introduction (the need to
store the training set, noise sensibility, etc.) and its use before
the 𝑖NN can affect the performance in the classification of
objects that are in a border region, as illustrated in Figure 2(c).
The following section presents a proposal that combines

the SOM with the 𝑖NN algorithm to build a process that
will be named SOM𝑖NN. This section will also show the
advantages of the SOM𝑖NN over the 𝑖NN.
3. Methodology for Combining SOM and 𝑖NN:
A Hybrid Classification SOM𝑖NN

The approach utilized by the SOM𝑖NN classifier explores
the concept of quantization, topology maintenance, and

informativity. As already mentioned, an informative object
allows the correct prediction of an unknown object, even in
boundary not well defined. When talking about information,
we cannot have information quality without first significantly
measuring this. Information quality is one of the determining
keys for the quality of the decisions and actions that are made
according to it [25]. It is exactly what the SOM𝑖NN classifier
proposes to do; in other words, before predicting the class
of the unknown object, it measures the information of the
training set objects before making the classification decision.
In order to understand the SOM𝑖NN combination, con-

sider a SOM trainedwith the objects fromFigure 2(a)without
using the class information (shaded color). The prototypes
adjusted resulting in trained SOM map (weight vectors) are
represented in Figure 3(a). The result of the SOM can be
generally understood as being a summary of the training
set, through a set of prototypes that have a Voronoi region,
with the number of prototypes being smaller than that of the
training set, in the following example: the twelve objects were
summarized into four prototypes. The number of prototypes
is a parameter that refers to the number of neurons of the
SOMmap.
Now consider the new object classification submitted to

process that was presented in Figure 2(b). Also consider the
prototype set being utilized in a first comparison, instead of
the training set. In this case, for the classification process, in
initial phase a comparison will be done between the object
under analysis and the set of prototypes, as illustrated in
Figure 3(a). Repeating the process that takes place in training
the SOM for the selection of the winning neuron, made using
the Euclidean distance, the nearest neuron is selected (winner
or best match) to the object under analysis. From this process
where the nearest prototype is known and that, on the other
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x1

x2

(a) Training set and prototypes generated after
the training of the SOM

x1

x2

(b) SOM: The object to be classified is rep-
resented by the circle and the prototypes are
represented by the squares

Informative nearest neighbor

x1

x2

(c) 𝑖NN: The object under analysis will be com-
pared with the objects represented by the nearest
or best match prototype

Figure 3: Illustration of the classification process made by the SOM and 𝑖NN.

hand, it is possible to know which training set objects are
represented by the prototype, see Figure 3(b) where each
prototypes has a Voronoi region. Thus, the reduced training
set objects are retrieved to start the classification phase with
the 𝑖NN. Finally, the classificationwill be donewith a reduced
set, as shown in Figure 3(c).
In summary, the last step in Algorithm 1, the use of

classifier algorithm, is executed with 𝑖NN. This process is
called here as SOM𝑖NN classifier.
Since the process will depend on the selection of the

number of neurons of the SOM map, we will utilize the
empirical proposal of Vesanto et al. [26] that defines the
number of neurons as being the root of the number of objects
of the training set. What happens is that, after training the
SOMmap, some prototypes can be empty; in other words, the
prototype represents no object of the training set. In order to
prevent this situation from happening, the proposal of Silva
and Del-Moral-Hernandez [5] will be utilized. Thus, besides
retrieving the objects of the winning prototype, it will also
consider the retrieval of the adjacent prototypes.
The combination using the SOM neural networks

approach with the 𝑖NN explores the main characteristics
that define the potential of a data classifier, which are
storage reduction, noise tolerance, generalization accuracy,
and time requirements [9]. To the contrary of the 𝑖NN that
preprocesses the data utilizing the 𝑘NN algorithm that has
a high computational cost, the algorithm proposed in this
work reduces the data representation through the SOM. In
addition, with the use of the SOM, the classification time of
the SOM𝑖NN is expected to be shorter when compared with
the 𝑖NN, which results in less memory use, maximizing the
classifier’s performance in terms of classification time.
The next section highlights all steps that were done to

make the experiments with the SOM𝑖NN classifier.

4. Experimental Methodology, Results,
and Analysis

This section will present the dataset utilized in the exper-
iments and the parameterization of the classifiers utilized
for the comparison with our SOM𝑖NN proposal. The exper-
iments consist in using an artificial dataset for qualitative

and quantitative analysis and with public dataset used as
benchmarking in the literature to evaluate the efficacy of the
algorithm proposed.

4.1. Datasets. In order to provide a qualitative analysis with
visualization of the border decision-making area and a quan-
titative analysis in terms of classifier accuracy, three datasets
were generated with the following features: 300 objects, two
attributes, two classes, and a balanced number of objects
per class. For all datasets, the objects were distributed with
the same mean but with difference in the standard deviation
value, in order to force an overlapping of classes. Thus, each
dataset represents distinct situations on the border of classes:
no, low, and high confusion.
In order to evaluate the efficacy of the algorithm pro-

posed and compare it with others from the literature, 21
public databases were chosen (Repository of the University
of California, Irvine, UCI) that are used as benchmarking
for Prototype Generation approaches. Table 1 summarizes
the properties of each benchmarking dataset in number of
objects (Obj), number of attributes (Att), and number of
classes (Cla). For all databases, the attributes are numerical.
The separation of these datasets in training and test set were
done with the use of the 5-fold cross validation.

4.2. Parameterization of Algorithms. The SOM𝑖NN approach
will be compared with 𝑘NN, 𝑖NN, and SOM𝑘NN.The classi-
fiers parameterizations are represented in Table 2. The SOM
parametrization is the same for SOM𝑘NN and SOM𝑖NN.
The experiments were implemented using the R language,

version 3.1.2, with RStudio IDE version 0.98 and using
a conventional computer with Windows 10, i7 with 8GB
RAM.The experimental results are presented in the following
section.

4.3. Qualitative and Quantitative Analysis Using the Artificial
Dataset. The objective of experiments using artificial dataset
was to compare the performance of 𝑖NN, 𝑘NN, SOM𝑖NN,
and SOM𝑘NN classifiers in situations where there are well-
separated classes (Figure 4(a)), classes partially overlapped
(Figure 4(b)), and a large number of classes overlapped
(Figure 4(c)).
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Figure 4: For each experiment, a set of four results was conducted and the results are (A) 𝑘NN; (B) 𝑖NN; (C) SOM𝑘NN; and (D) SOM𝑖NN.
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Table 1: Properties of dataset used in experimental analysis
of this work. These datasets are available in UCI webpage
(https://archive.ics.uci.edu/ml/datasets.html) and also in webpage
auxiliar of Triguero et al. publication [9].

# Name Properties
(#Obj) (#Att) (#Cla)

1 appendicitis 106 7 1
2 iris 150 4 2
3 australian 690 14 16
4 balance 625 4 15
5 dermatology 366 33 13
6 glass 214 9 7
7 haberman 306 3 11
8 heart 270 13 10
9 hepatitis 155 19 4
10 mammographic 961 5 20
11 monk-2 432 6 14
12 movement libras 360 90 12
13 newthyroid 215 5 8
14 pima 768 8 18
15 sonar 208 60 6
16 spectfheart 267 44 9
17 tae 151 5 3
18 vehicle 846 18 19
19 vowel 990 13 21
20 wine 178 13 5
21 wisconsin 699 9 17

Analyzing qualitatively, starting by Figures 4(a)(A),
4(b)(A), and 4(c)(A), 𝑘NN results, we can note that the
boundary separation degrades from the moment that the
classes start the overlapping. In the worst case, we can
observe that a high overlap (Figure 4(c)) is clearly one of the𝑘NN disadvantages, because it makes the decision boundary
considering all objects as having the same importance. For
the 𝑖NN results (Figures 4(a)(B), 4(b)(B), and 4(c)(B)), it is
clear that the border of separation is softer, even when the
class overlap increases. This is because the separation was
defined by informative representation of the objects from the
same class. This fact is most evident in the last experiment
(Figure 4(c)), where we can observe that the boundary
separation is created to preserve the predominant class in the
border region.
Figures 4(a)(C and D), 4(b)(C and D), and 4(c)(C and

D) are the results using SOM as the Generation Prototype
approach. That is, the decision boundary was generated
without using all objects of the database but, instead, based
on objects distributed in prototypes of the trained SOMmap.
In this qualitative analysis, the most important to note is that
the preservation of the decision boundary was maintained in
all experiments, without significant changes.
Finally, we analyzed quantitatively the experiments with

artificial data, with an average classification accuracy defined
by a dataset with 106 objects (which were used to generate
the decision boundary of Figure 4). The results are shown in

kNN iNN SOMkNN SOMiNN
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Figure 5: Accuracy results for classifiers using artificial dataset.

Figure 5. The conclusion for the experiments using artificial
dataset is that the use of 𝑖NN is more effective than 𝑘NN
when the separation class has high confusion and that for this,
the performance accuracy has not been abruptly reduced.We
also note in this qualitative analysis that the use of SOM as
Prototype Generation method does not significantly degrade
the accuracy performance.
The use of artificial datasets can make qualitative and

quantitative analyses between the classifiers. The next exper-
iment has the objective of expanding the previous study [23]
through analysis with other performance measures, such as
kappa, impact of dataset reduction on the accuracy, and per-
formance of classification time. For these new experiments,
12 new public datasets were used that are benchmarking in
Prototype Generation approach [9].

4.4. Experiments and Analysis Using the Benchmarking
Dataset. This section shows the experiments and results for
datasets introduced in Table 1. The results are analyzed using
the following measures as performances: accuracy, kappa,
hypothesis test, rate of dataset reduction, and classification
time.
Table 3 shows all the classification results for the paper

experiments. In this table, the accuracy and kappa measures
are shown in terms of average and standard deviation. The
other results are also discussed in this section.
In practical aspects, the accuracy and kappa measures

are equivalent in terms of performance. For purposes of
simplification, only the accuracy will be considered in the
extended discussion of the result analysis.
The accuracy is analyzed by comparing the results of

the classifiers in pairs. The average and the result deviation
of each dataset are compared using the 𝑡-test with 95%
of confidence interval. The comparison result is shown in
Table 4. In this table, the datasets indices (“#,” see Table 1)
are separated according to the classifier results: higher results
(𝑋 > 𝑌), equal results (𝑋 = 𝑌), and lower results (𝑋 < 𝑌),
with 𝑋 and 𝑌 being a representation of classifiers compared
in pairs. From this result, the same comparison structure will
be used again for the count of the incidences percentage.

https://archive.ics.uci.edu/ml/datasets.html
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Table 2: Parametrization of algorithms.

Algorithm Parameters
𝑘NN 𝑘 = 1 and Euclidian distance
SOM

Euclidian distance, batch training, maximum training time equal to 1000, rectangular lattice, and Gaussian neighborhood
function with maximum aperture of 1 with decay due to the number of iterations. The SOMmap dimension has the square
root of the number of dataset objects by two (√𝑁/2)

𝑖NN Execution of the 𝑘NN algorithm with 𝑘 value equal to 7 (best result from [10]) and informative neighbor number equal to 1

The general counting is shown in Table 5. This table has
an additional column to represent the sum of the percentages
of equal and lower results, in order to show when a classifier
performance is really better than the other. This was the
reason to compare (𝑋 > 𝑌) with (𝑋 = 𝑌) and (𝑋 < 𝑌) in
Table 5.
Analyzing the results from Table 5 is possible to note

in the first two lines of table that 𝑖NN showed to be better
than 𝑘NN inmost of cases (66.7% and 52.4%, combined with
SOM). The use of SOM in the classification process (last two
lines of the table) has been shown to be slightly better orworse
in some cases. The SOM performance with 𝑖NN is improved
(52.4%) and with 𝑘NN there is a little degradation (47.7%).
However, an important result that should be emphasized (last
row of the table) is that the use of SOM with 𝑖NN maintains
or improves the performance in most databases (52.4%).
As a final analysis of the accuracy performance, in order

to show that the degradation with the use of SOM has little
impact on the final performance, the comparison of the
same pair of classifier presented above is performed using
a radar chart (Figure 6). In this graph, the external values
(polar scale) indicate the dataset number of 1 to 21, and
the internal values show the accuracy performance, starting
from 0.6 to 1.0. The ideal result would be to have the graph
contour in 1.0. In this study, the main results are obtained
for the overlapped lines, representing an equivalent result for
contrasted classifiers. Combining the results of the accuracy
performance (statistical and chart), we can consider that𝑖NN has, in the vast majority of studies, a superiority in the
classification performance when compared to 𝑘NN. From
this result, it is interesting to note that the 𝑖NN superiority
occurs mainly in datasets with performance below 90% as
follows: 7, 9, 11, 12, 14, 15, 16, 18, 19, and 20. On the other
hand, the result is lower in experiments with datasets 2 and 21,
that is, where the accuracy performance is close to 1 (100%).
Therefore, the results also suggest that 𝑖NN has superior
results in datasets in which the decision boundary is not well
separated.
The next analysis consists in verifying the SOM effi-

ciency in reducing input objects. For this, the reduction and
accuracy percentage of each dataset performance is checked.
The results are shown in Figure 7. Interestingly, in both
results, SOM𝑘NN and SOM𝑖NN, there are three regions very
well defined in the accuracy reduction experiment. The first
datasets have an average of 150.5 objects, with the second
averaging 215 and the last averaging 694.5 objects.That is, the
reduction varies with the number of objects. Therefore, the

results of SOM𝑘NN (Figure 7(a)) and SOM𝑖NN (Figure 7(b))
show that the more objects in dataset, the higher the reduc-
tion rate.
The next results to be analyzed are the time consumed in

the classification process. The results are shown in Figure 8,
and, for interpretation purposes, the databases are arranged
in the vertical axis and are organized in ascending order of
number of objects. In vertical axis, each dataset is described
by name, number of objects, and number of attributes
(described in Table 3).The time shown on the horizontal axis
is measured in seconds.
By analyzing in detail the result of the time classification

algorithms 𝑖NNand 𝑘NN in Figure 8(a), it is observed that, to
a certain number of objects, around 180 (datasets appendicitis
to wine), the classification time is almost linear. From this
point the tendency curve is not clear. The reason is that
there are an increasing number of objects in these other
databases and also a variation in the number of attributes.
This means that the classification time depends not only on
the number of objects but also on the number of attributes, for
example, the balance database (625 objects) and dermatology
(366 objects), whose last dataset has a smaller number of
objects and consumes more time. Another interesting case
to mention is observed between the base mov libras and
vowel. The former has almost half the number of objects
and nearly ninefold more attributes than the latter but both
consumed an equivalent time in the classification process.
Another point to consider in the graph is that, for every
experiment, the classification time of 𝑖NN is higher than𝑘NN.This result was expected because, as mentioned earlier,𝑖NN is computationally more costly due to the fact that 𝑘NN
is run before it as a preprocessing step and, thus, it finds the
closest informative object. Although it seems to be an obvious
result, the experiments confirm their reliability. Finally, for a
general idea of the time, a tendency line was added to the
results and the best adjustment was an exponential trend,
with Pearson coefficient above 0.7, which is considered a
high value. As it is difficult to find a relationship between
the numbers of objects and attributes to explain the process
timing, the trend is more indicative about the number of
objects. Thus, for this experiment, the classification time is
more sensitive to the number of objects.
The same time experiment discussed above was repeated

for SOM𝑖NN and SOM𝑘NN (Figure 8(b)). The behavior of
the results in this experiment is similar to that discussed for
Figure 8(a). This can be interpreted in two ways. The first is
that the above analysis can be applied for these results and,
more importantly, that the objects selected by the reduced
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Figure 6: Radar graphic contrasting pairs of classifiers.
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Figure 7: Results of reduction per accuracy.

set SOM prototypes can maintain the characteristics of the
raw database. However, it should be noted in the result
analysis that the time classification scale (horizontal axis)
ranges from 0 to 100 seconds. In the earlier results, the scale
ranged from 0 to 350 seconds. Nonetheless, the importance

of this result is that the trend remains exponential, 𝑅2 with
0.7. It is noteworthy that, in the result time shown for SOM
(SOM𝑘NN and SOM𝑖NN), the training time is included.
For a global analysis, in the Figure 9, there are all clas-

sification time results together: 𝑘NN, 𝑖NN, SOM𝑘NN, and
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Figure 8: Classification time analysis. The datasets are organized in ascendant order of number of objects.

SOM𝑖NN.The databases in the horizontal axis were arranged
again in quantities of objects. By analyzing qualitatively the
results shown in this figure, we can note that when the
number is lower than about 180 (to the wine dataset), the

use of SOM as a preprocessing to 𝑖NN and 𝑘NN algorithms
in order to reduce the time classification does not have
significant advantages. Thus, the use of SOM to decrease the
classification time of 𝑖NN and 𝑘NN algorithms seems to be
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Figure 9: Classification time summarized for all classifiers.

more advantageous in database with more than 180 objects
(from sonar dataset).This result can be observed at the upper
end, where the consumption of classification time is high
(vowel dataset), and the use of SOM can reduce by more than
3 times the 𝑘NN and 𝑖NN classification time.
4.5. Contrasting the Results of This Work with That in the
Literature. For an idea about the importance of the results
herein mainly using the 𝑖NN and the combination SOM𝑖NN
approach, the performance indexes obtained here was com-
pared with the literature result [9]. The approach chosen for
the comparative experiments, Chen algorithm, belongs to the
same Prototype Generation category of SOM. The algorithm
namedChen [9, 27] was executed using the datasets of Table 3
and the compiled results for this algorithm are shown in
terms of average and standard deviation of accuracy, time,
and reduction. The comparative results are summarized in
Table 6.
Note from the comparative results of Table 6 that 𝑖NN is

the algorithm that has the best performance accuracy. This
is an important result because it is the algorithm introduced
here as an alternative to 𝑘NN. In terms of time, the lowest
result was obtained by the SOM𝑘NN; therefore, it involves
the SOM as the approach of Prototype Generation method
introduced in this work and it is expected that 𝑖NN is more
time consuming than the 𝑘NN, as discussed in Section 2.
Finally, the Chen algorithm has the bigger reduction, which
is to be expected too, since according to Triguero et al. [9],
the prototypes parameter has to be configured as being 90%
of the number of objects of the dataset.

5. Conclusion

This paper introduces a new classifier named SOM𝑖NN,
which is based on the combination of Self-Organizing Maps

(SOM) and informative nearest neighbors (𝑖NN). The 𝑖NN
classifier is costly in computational terms, because in a
classification process the informativity is not calculated only
by the object under classification analysis, but also consid-
ering the other objects of the training set. Song et al. [10]
suggested the use of 𝑘NN algorithm (with the best 𝑘 value
experimentally found as being 7) before 𝑖NN tominimize the
high computational cost, that is, using 7-NN to find a reduced
subset for the classification process with the informative
nearest neighbor algorithm.
In order to contribute to the Song et al. [10], in this

paper, the 𝑘NN has been substituted by SOM because of
quantization vector and maintenance topological of raw
dataset. In otherwords, a SOMmap is trainedwith the dataset
and, after this, the objects of this set are associated with the
nearest (or winning) neurons. And, thus, each neuron of
the map or prototype represents an object subset. Now, in a
classification process, the object is compared with the map
prototypes, where the winner is elected. The objects mapped
in this winning neuron and adjacent neurons are retrieved
and presented to then have the execution of 𝑖NN.
Thus, due to the preprocessing made by the SOM to

the 𝑖NN algorithm, the computational effort as a whole to
find the informative nearest neighbor is much smaller, which
results in a significant reduction in the classification time
when compared to the classification time of the 𝑖NN without
preprocessing.
Therefore, the primary objective of the classifier

addressed in this paper was the maintenance of the accuracy
of the 𝑖NN and the reduction of the classification time in
a classification process, thus concluding that the use of the
objects represented by the winning neuron and adjacent
neurons was effective in the analytical aspects by not
degrading the performance of 𝑖NN. The results presented in
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Table 3: Classification results for all algorithms represented by
mean and standard deviation of accuracy and kappa measures.

Classifiers Acc Kappa

1

𝑘NN 0.87 ± 0.1 0.6 ± 0.32
𝐼NN 0.87 ± 0.06 0.52 ± 0.24

SOM-𝑘NN 0.86 ± 0.09 0.57 ± 0.3
SOM-𝐼NN 0.87 ± 0.06 0.52 ± 0.24

2

𝑘NN 0.96 ± 0.04 0.94 ± 0.07
𝐼NN 0.95 ± 0.05 0.93 ± 0.08

SOM-𝑘NN 0.95 ± 0.02 0.93 ± 0.03
SOM-𝐼NN 0.93 ± 0.05 0.90 ± 0.08

3

𝑘NN 0.54 ± 0.1 0.30 ± 0.15
𝐼NN 0.54 ± 0.07 0.30 ± 0.10

SOM-𝑘NN 0.52 ± 0.07 0.28 ± 0.10
SOM-𝐼NN 0.49 ± 0.08 0.23 ± 0.11

4

𝑘NN 0.86 ± 0.07 0.41 ± 0.32
𝐼NN 0.86 ± 0.07 0.41 ± 0.32

SOM-𝑘NN 0.88 ± 0.09 0.48 ± 0.41
SOM-𝐼NN 0.88 ± 0.09 0.48 ± 0.41

5

𝑘NN 0.95 ± 0.03 0.92 ± 0.05
𝐼NN 0.95 ± 0.03 0.92 ± 0.05

SOM-𝑘NN 0.95 ± 0.03 0.93 ± 0.04
SOM-𝐼NN 0.95 ± 0.03 0.93 ± 0.04

6

𝑘NN 0.85 ± 0.05 0.69 ± 0.10
𝐼NN 0.84 ± 0.04 0.68 ± 0.09

SOM-𝑘NN 0.87 ± 0.05 0.75 ± 0.11
SOM-𝐼NN 0.87 ± 0.05 0.75 ± 0.11

7

𝑘NN 0.67 ± 0.05 0.55 ± 0.08
𝐼NN 0.7 ± 0.05 0.58 ± 0.07

SOM-𝑘NN 0.66 ± 0.04 0.54 ± 0.07
SOM-𝐼NN 0.68 ± 0.04 0.56 ± 0.05

8

𝑘NN 0.94 ± 0.03 0.88 ± 0.05
𝐼NN 0.95 ± 0.02 0.9 ± 0.04

SOM-𝑘NN 0.95 ± 0.03 0.89 ± 0.06
SOM-𝐼NN 0.95 ± 0 0.9 ± 0

9

𝑘NN 0.69 ± 0.03 0.16 ± 0.09
𝐼NN 0.71 ± 0.01 0.17 ± 0.07

SOM-𝑘NN 0.72 ± 0.05 0.2 ± 0.12
SOM-𝐼NN 0.72 ± 0.06 0.18 ± 0.12

10

𝑘NN 0.79 ± 0.04 0.56 ± 0.09
𝐼NN 0.80 ± 0.03 0.59 ± 0.06

SOM-𝑘NN 0.76 ± 0.03 0.52 ± 0.06
SOM-𝐼NN 0.79 ± 0.04 0.56 ± 0.08

11

𝑘NN 0.65 ± 0.05 0.11 ± 0.15
𝐼NN 0.67 ± 0.03 0.04 ± 0.02

SOM-𝑘NN 0.64 ± 0.05 0.07 ± 0.15
SOM-𝐼NN 0.67 ± 0.07 0.03 ± 0.17

12

𝑘NN 0.83 ± 0.03 0.82 ± 0.03
𝐼NN 0.84 ± 0.03 0.82 ± 0.04

SOM-𝑘NN 0.83 ± 0.03 0.82 ± 0.04
SOM-𝐼NN 0.83 ± 0.03 0.82 ± 0.04

Table 3: Continued.

Classifiers Acc Kappa

13

𝑘NN 0.94 ± 0.02 0.92 ± 0.02𝐼NN 0.95 ± 0.02 0.94 ± 0.02
SOM-𝑘NN 0.93 ± 0.02 0.92 ± 0.02
SOM-𝐼NN 0.94 ± 0.01 0.93 ± 0.01

14

𝑘NN 0.82 ± 0.12 0.63 ± 0.25𝐼NN 0.89 ± 0.04 0.78 ± 0.09
SOM-𝑘NN 0.79 ± 0.08 0.58 ± 0.15
SOM-𝐼NN 0.79 ± 0.03 0.58 ± 0.06

15

𝑘NN 0.77 ± 0.02 0.6 ± 0.03𝐼NN 0.88 ± 0.02 0.78 ± 0.03
SOM-𝑘NN 0.78 ± 0.03 0.62 ± 0.04
SOM-𝐼NN 0.86 ± 0.02 0.75 ± 0.05

16

𝑘NN 0.81 ± 0.03 0.61 ± 0.06𝐼NN 0.84 ± 0.04 0.68 ± 0.08
SOM-𝑘NN 0.8 ± 0.04 0.6 ± 0.08
SOM-𝐼NN 0.84 ± 0.04 0.68 ± 0.07

17

𝑘NN 0.96 ± 0.02 0.90 ± 0.04𝐼NN 0.97 ± 0.01 0.94 ± 0.02
SOM-𝑘NN 0.96 ± 0.02 0.92 ± 0.03
SOM-𝐼NN 0.97 ± 0.01 0.94 ± 0.02

18

𝑘NN 0.71 ± 0.03 0.34 ± 0.05𝐼NN 0.75 ± 0.02 0.42 ± 0.05
SOM-𝑘NN 0.71 ± 0.03 0.35 ± 0.06
SOM-𝐼NN 0.74 ± 0.04 0.42 ± 0.07

19

𝑘NN 0.69 ± 0.02 0.58 ± 0.03𝐼NN 0.71 ± 0.03 0.62 ± 0.04
SOM-𝑘NN 0.68 ± 0.02 0.57 ± 0.03
SOM-𝐼NN 0.69 ± 0.04 0.59 ± 0.05

20

𝑘NN 0.75 ± 0.02 0.51 ± 0.04𝐼NN 0.83 ± 0.02 0.66 ± 0.03
SOM-𝑘NN 0.76 ± 0.01 0.52 ± 0.03
SOM-𝐼NN 0.83 ± 0.02 0.65 ± 0.04

21

𝑘NN 0.99 ± 0.01 0.99 ± 0.01𝐼NN 0.96 ± 0.01 0.96 ± 0.01
SOM-𝑘NN 0.98 ± 0.01 0.98 ± 0.01
SOM-𝐼NN 0.95 ± 0.01 0.95 ± 0.01

Section 4 indicate this reduction of the time and, in addition,
that the classification rates of the SOM𝑖NN are statistically
similar when compared to the 𝑖NN, that is, time reduction
and accuracy preservation.
Another important conclusion in analysis of the classifi-

cation experiments,mainly using artificial dataset, and also in
benchmarking dataset where the accuracy performance was
worst, the 𝑖NN approach presents more significant accuracy
results when the objects of different classes are not well
separated, with high mixture in the border region.
As a final conclusion, the 𝑖NN is an algorithm with

accuracy performance better than 𝑘NN. But the classification
time is a bottleneck for the algorithm, which is minimized
using SOM as a Prototype Generation technique. Thus, the
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Table 4: Classifiers compared in pairs and datasets index (“#”) where the performance is significantly improved.

𝑋 𝑌 𝑋 > 𝑌 𝑋 = 𝑌 𝑋 < 𝑌
𝑖NN 𝑘NN 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 1, 3, 4, 5 2, 6, 21
SOM𝑖NN SOM𝑘NN 1, 7, 10, 11, 13, 15, 16, 17, 18, 19, 20 4, 5, 6, 8, 9, 12, 14 2, 3, 21𝑘NN SOM𝑘NN 1, 2, 3, 7, 10, 11, 13, 14, 16, 19, 21 5, 12, 17, 18 4, 6, 8, 9, 15, 20𝑖NN SOM𝑖NN 3, 7, 10, 12, 13, 14, 15, 18, 19, 21 1, 2, 5, 8, 11, 16, 17, 20 4, 6, 9

Table 5: Dataset percentage for performance analysis in terms of statistical significance.

𝑋 𝑌 𝑋 > 𝑌 𝑋 = 𝑌 𝑋 < 𝑌 (𝑋 = 𝑌) + (𝑋 < 𝑌)
𝑖NN 𝑘NN 66.7% 19.1% 14.2% 33.30%
SOM𝑖NN SOM𝑘NN 52.4% 33.3% 14.3% 47.6%𝑘NN SOM𝑘NN 52.4% 19.1% 28.62% 47.7%𝑖NN SOM𝑖NN 47.6% 38.1% 14.3% 52.4%

Table 6: Comparing the results of this work with the Chen
algorithm [27].

Accuracy Time Reduction
𝑘NN 0.81 ± 0.04 88.04 ± 0.05 0𝑖NN 0.83 ± 0.03 99.04 ± 107.81 0
SOM𝑘NN 0.81 ± 0.04 19.32 ± 21.26 0.85 ± 0.05
SOM𝑖NN 0.82 ± 0.04 29.76 ± 30.68 0.85 ± 0.05
Chen 0.79 ± 0.01 30.32 ± 31.83 0.87 ± 0.10

SOM𝑖NN classifier is proposed here which is specialized to
solve problems where the border region is not well defined in
a tolerable time.
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